!

Documentos relacionados
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia

Análise Combinatória 2

Aula 16 - Erivaldo. Probabilidade

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

a R$ 1 800,00 o metro quadrado. Um grupo de médicos comprou um conjunto comercial. Sua representação plana é dada abaixo.

Probabilidade Parte 1. Camyla Moreno

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

Prof.: Joni Fusinato

INTRODUÇÃO À PROBABILIDADE

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS

b) Se entre as 7 empresas escolhidas devem figurar obrigatoriamente as empresas R e S, de quantas formas ele poderá escolher as empresas?

MATEMÁTICA MÓDULO 4 PROBABILIDADE

n! = n (n 1) (n 2) 1.

Introdução à Bioestatística

ANÁLISE COMBINATÓRIA

ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6}

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Estatística. Aula : Probabilidade. Prof. Ademar

PROBABILIDADE. Prof. Patricia Caldana

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.

Aula 3: Estudando Arranjos

Matemática E Extensivo V. 5

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

MATEMÁTICA NA ESCOLA 3ª SÉRIE 1º BIMESTRE TAREFA 4 REENVIO DO PLANO DE TRABALHO 2 HORACIO DE SOUZA LIMA GRUPO 2 TUTOR: EDESON DOS ANJOS SILVA

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

8 A do total de lançamentos, ou seja, x = 5625 Resposta: C

Probabilidade e Estatística Preparação para P1

T o e r o ia a da P oba ba i b lida d de

LISTA 29 - PROBABILIDADE 1

Aulas particulares. Conteúdo

3º trimestre Sala de estudos Data: 29/09/17 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

MÃES D ÁGUA AGRUPAMENTO DE ESCOLAS

8 ANÁLISE COMBINATÓRIA E

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

Lista 10 Análise Combinatória e Probabilidade

= 3 modos de escolher duas pessoas 2

O conceito de probabilidade

ANÁLISE COMBINATÓRIA II E PROBABILIDADE

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Resolução dos exercícios de probabilidade Cap. 6 - Pág. 54

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Lista - Matemática. w: e: Princípio Multiplicativo. Princípio Multiplicativo e permutações.

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

Probabilidade. Sumário Introdução Conceitos Básicos... 2

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Análise Combinatória e Probabilidade

Formação Continuada em Matemática. Matemática - 3º Ano - 2º Bimestre/2014. Plano de Trabalho 1. Probabilidade

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?

PROBABILIDADE - INTRODUÇÃO

Estatística: Probabilidade e Distribuições

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento?

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO

SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Estatística Planejamento das Aulas

Centro Educacional ETIP

Estatística Empresarial. Fundamentos de Probabilidade

3 O ANO EM. Lista 19. Matemática II. f(x) g (x). g, 0,g 1 R R as seguintes funções: x 2 x 2 g 0(x) 2 g 0(4x 6) g 0(4x 6) g 1(x) 2 RAPHAEL LIMA

INTRODUÇÃO ÀS PROBABILIDADES15

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)

Revisão EXAMES FINAIS Data: 2017.

Aula 10 - Erivaldo. Probabilidade

MATEMÁTICA 2ª QUESTÃO

AULA 08 Probabilidade

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO ÀS PROBABILIDADES14. Licenciatura em Ciências USP/ Univesp. Vanderlei S. Bagnato

PROBABILIDADE PROPRIEDADES E AXIOMAS

Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20

Matemática. Probabilidade Básica. Professor Dudan.

Exercícios de Aprofundamento Mat Probabilidade

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

Matemática & Raciocínio Lógico

Estatística aplicada a ensaios clínicos

Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan

Matemática. Alex Amaral (Allan Pinho) Probabilidade

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)

CAPÍTULO 3 PROBABILIDADE

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

Processos Estocásticos

Roteiro D. Nome do aluno: Número: Revisão. Combinações;

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Análise Combinatória

Probabilidade. Dr. NIELSEN CASTELO DAMASCENO DANTAS AULA 9

Transcrição:

SEGUNDO ANO ANÁLISE COMBINATÓRIA 1) Uma empresa tem 4 executivos. De quantas formas podem ser escolhidos o presidente e o seu vice? São 4 executivos, mas só dois podem ser escolhidos, a ordem importa, por isso esse é um problema de arranjo. 4! A 4, = (4 )! 4 = 1 Podem ser escolhidos de 1 formas diferentes. ) Uma empresa tem 4 executivos. De quantas formas podem ser escolhidos executivos para formar uma comissão? São 4 executivos, podem ser escolhidos, a ordem não importa, por isso é combinação. Há formas de escolher os dois membros, por isso, basta dividir o número de arranjos por! 4! C 4, = (4 )!. 1! C 4! 4, = (4 )!! C 4, = 4. 4 4 = 6 Podem ser escolhidos de 6 formas diferentes. 3) Uma loteria é feita da seguinte forma: de 50 números existentes ( de 01 a 50), devese acertar 6 números na ordem em que são sorteados. De quantas formas os números podem ser sorteados? Como aumentar a motivação dos jogadores? A 50,6 = 50! 50! 50.49.48.47.46.45.44! = 11.441.304.000 formas de os números (50 6)! 44! 44! serem sorteados. Para torna-la mais atraente é só tirar a exigência da ordem. Faremos isso mudando de arranjo para combinação. C 50,6 = 50! 50! 50.49.48.47.46.45.44! 11.441.304.000 = 15.890.700 formas de (50 6)!6! 44!6! 44!6! 70 os números serem sorteados. 4) De um baralho de 5 cartas, retiram-se 5 sem repetição. De quantas formas isso pode ser feito? A ordem não importa! C 5,5 = 5! 5! 5.51.50.49.48.47! 311.875.00 =.598.960 formas de ser (5 5)!5! 47!5! 47!5! 10 feito. 5) Quantas diagonais há em um heptágono?

Seja n o número de lados de um polígono, cada diagonal é determinada por um par não ordenado de dois vértices (AB = BA ), o número total de segmentos é a combinação de n, a : ( n ) Retirando do total o número de lados n: ( n ) n = n! n(n 1) n = (n )!! = n n n = n 3n = n = n n n(n 3) Logo o número de diagonais é dado por: N = n(n 3) 7(7 3) 7.4 = 8 = 14 diagonais n 6) Uma prova consta de 1 questões, das quais o aluno deve resolver 7. De quantas formas ele pode fazer a prova? (observe que a ordem não importa) Resolver as questões {1,,3,4,5,6,7} é o mesmo que resolver as questões {7,6,5,4,3,,1}, assim a ordem do agrupamento não importa. De 1 são escolhidas 7 questões: C 1,7 = ( 1 7 ) = 1! = 1! = 1.11.10.9.8.7! = 95040 = 79 formas (1 7)!7! 5!7! 5!7! 10 7) Em um campeonato de futebol em que cada time jogou uma vez com todos os outros times, houve 35 jogos. Quantos times havia no campeonato? Só houve um jogo a cada times, logo, a ordem não importou. Seja x o número de times no campeonato: C x, = ( x ) = x! (x )!! como foram 35 jogos no campeonato: x(x 1)(x )! x(x 1) = 35 = 35 x (x x 650 = 0 )!!! ( 1) 51 = 601 x = 6 e x = 5 Sendo válido o valor positivo, teremos 6 times. PROBABILIDADE SEGUNDO ANO ENSINO MÉDIO 1) No lançamento de uma moeda, qual é a probabilidade de obter a face cara? Indicando C por cara e K por coroa, o espaço amostral desse experimento é: E={C,K} em que n(e)=, o evento que esperamos ocorrer é A={C}, em que n(a)=1 P(A) = n(a) n(e) 1 = 50% A probabilidade é de 50%.

) No lançamento de um dado, qual é a probabilidade de obter, na face voltada para cima, um número de pontos menor que 3? O espaço amostra desse experimento são as faces de um dado, logo E={1,, 3, 4, 5, 6}, em que n(e)=6, o evento que esperamos ocorrer é B={1, }, em que n(b)= P(B) = n(b) n(e) 6 = 1 3 A probabilidade é de 1/3. 3) No lançamento de duas moedas, qual é a probabilidade de obter, nas faces voltadas para cima, pelo menos uma cara? O espaço amostral desse experimento é E={(C,C);(C,K);(K,C);(K,K)}, em que n(e)=4, o evento que esperamos ocorrer é G={ C,C);(C,K);(K,C)}, em que n(g)=3 P(G) = n(g) n(e) 3 = 0,75 0,75.100 = 75% 4 A probabilidade de se obter ao menos uma cara é de 75%. 4) No lançamento de dois dados, qual é a probabilidade de obter, nas faces voltadas para cima, a soma dos pontos igual a 5? O espaço amostral desse experimento é: (1,1) (1,) (1,3) (1,6) (,1) (,) (,3) (,6) E = (3,1) (3,) (3,3) (3,6) ou seja n(e)=6.6 ou n(e)=36 {(6,1) (6,) (6,3) (6,6)} O evento que esperamos ocorrer é H={(1,4);(,3);(3,);(4,1)}, em que n(h)=4 P(H) = n(h) n(e) 4 36 = 1 9 A probabilidade é de 1/9, ou de uma em nove jogadas. 5) Para a rifa de um computador, foram vendidos mil bilhetes, numerados de 1 a 1000, dos quais apenas um será premiado por sorteio. Carlos comprou os bilhetes de números 34, 35, 36, 37, 38, 39 e 330. Qual é a probabilidade de um dos bilhetes de Carlos ser sorteado? O espaço amostral desse experimento é E={1,, 3, 4,..., 1000}, em que n(e)=1000, o evento esperado é T={34, 35, 36, 37, 38, 39, 330}, em que n(t)=7 P(T) = n(t) n(e) 7 = 0,007 = 0,007.100 = 0,7% 1000 A probabilidade de Carlos ser sorteado é de 0,7%. 6) Com o objetivo de avaliar a eficiência de vitaminas na alimentação das crianças de determinada região, foram examinadas 800 crianças, constatando-se que entre elas: 385 apresentavam deficiência de vitamina A, 48 apresentavam deficiência de vitamina C e 47 não apresentavam deficiência dessas vitaminas. Selecionando, ao

acaso, uma dessas crianças, qual é a probabilidade de ela ter deficiência das duas vitaminas, A e C? O conjunto U é o universo de crianças examinadas. O conjunto A são as crianças com deficiência de vitamina A. O conjunto C são as crianças com deficiência de vitamina C. A intersecção dos dois conjuntos, A e C, nos dará a quantidade de crianças com deficiência das duas vitaminas, por isso, o conjunto A será dado por 385 menos as crianças da intersecção, o mesmo acontecerá com o conjunto C, que será formado por 48 menos os elementos da intersecção. Não podemos desprezar as 47 crianças que não apresentavam nenhuma das deficiências. A expressão a seguir é a soma das partes, igualada ao todo, para que possamos encontrar o valor de x. (385-x)+x+(48-x)+47=800 385+48+47-x+x-x=800 860-x=800 860-800-x=0 60-x=0 -x=-60 (-1) x=60 P(A) = 60 800 6 80 = 3 40 = 7,5% 7) A figura a seguir representa o mapa de uma cidade, no qual uma pessoa se encontra na origem do sistema cartesiano ortogonal. Essa pessoa deseja ir ao ponto P(6,5) e, para isso, só pode dar um passo de cada vez, para norte (N) o para leste (L). Quantos caminhos diferentes essa pessoa pode escolher para alcançar seu objetivo?

Como o par ordenado é dado por (6,5), essa pessoa terá de dar 6+5 passos, logo, alcançará seu destino com 11 passos. O eixo x representa o deslocamento para leste, pois este é na horizontal, já o eixo y representará o deslocamento para o norte, pois este é na vertical, sendo assim, serão 6 passos para leste e 5 para o norte, para alcançar seu objetivo. Dessa forma, os caminhos possíveis serão dados por n (t) = P 11 6,5 n (t) = P11 11! 11.10.9.8.7.6! 55440 = 46 caminhos possíveis. P6P5 6!5! 6!5! 10 8) O número de permutações da palavra ECONOMIA que não começam nem terminam com a letra O é? Há seis escolhas para a 1ª letra, e consequentemente 5 para a última, pois já usamos uma. As demais seis letras que incluem o O duas vezes, pode ser encontrada com 6!! = 360 Assim, as opções de letra para o início da palavra, vezes as possibilidade de combinações para o meio da palavra, vezes as opções de letras para o final da palavra será: 6.360.5=10800 O número de permutações da palavra ECONOMIA que não começam nem terminam com O é de 10800. 9) Oito garotas chegam de férias a uma pequena cidade do litoral norte. Dirigem-se a um hotel onde somente estão disponíveis dois quartos triplos e um quarto duplo. a) De quantos modos diferentes elas podem alojar-se no hotel? b) As ruas da cidade interceptam-se em ângulos retos, como mostra a figura. Certo dia elas decidem almoçar no único restaurante da cidade. Quantos caminhos diferentes elas podem escolher par ir do hotel ao restaurante? Elas caminham somente para o norte ou para o leste. A figura indica um possível caminho. a) C8,3-1 quarto triplo para 8; serão acomodadas 3 meninas neste quarto, restando 5 para serem acomodadas. C5,3 1 quarto triplo para 5; serão acomodadas 3 meninas neste quarto, restando para serem acomodadas. C, 1 quarto duplo para ; serão acomodadas meninas neste quarto. 8! C 8,3= (8 3)! 3! 8! 5! 3! 8.7.6.5! = 336 5! 3! 6 = 56 C 5,3= 5! (5 3)! 3! 5!! 3! 5.4.3!! 3! = 0 = 10 C,=! ( )!! = 1

Como as meninas podem se revezar na ordem de distribuição nos quartos temos: 56.10.1=560 modos. b) O restaurante encontra-se nas coordenadas (6,4), logo serão dados 6+4=10 passos. n (t) = P 10 6,4 n (t) = P10 11! 10.9.8.7.6! 5040 = 10 caminhos possíveis. P6P4 6!4! 6!4! 4