Testes de Geometria Analítica
|
|
|
- Ana Laura Teves Botelho
- 8 Há anos
- Visualizações:
Transcrição
1 GEOMETRIA 1 Testes de Geometria Analítica 1. O mapa de certa cidade foi dividido em quatro quadrantes por meio de duas retas perpendiculares e numeradas, que se cortam no ponto (, ), cada um deles correspondendo a um quadrante do plano cartesiano. O sentido positivo do eio y é o norte, e o sentido positivo do eio é o leste. Edificações que, nessa cidade, estiverem a mais de um quilômetro a oeste e mais de um quilômetro ao norte estarão localizadas no: 1o quadrante o quadrante 3o quadrante 4o quadrante. Dois amigos, Adão e Eva, encontram-se na origem de um sistema cartesiano ortogonal. Eles só podem dar um passo de cada vez para Norte, Sul, Leste ou Oeste. Cada passo é representado, nesse sistema, pelo deslocamento de uma unidade para uma das direções mencionadas anteriormente. Eva deu passos para o Sul, depois deu passos para o Leste e parou. Adão deu 7 passos para o Norte, depois deu 3 passos para o Oeste, mais 3 passos para o Sul e parou. Após esses passos, podemos afirmar que a distância entre Adão e Eva é de: passos. 8 passos. 1 passos. 1 passos. 7 passos. 3. Dois navios navegavam pelo Oceano Atlântico, supostamente plano: X, à velocidade constante de 16 milhas por hora, e Y à velocidade constante de 1 milhas por hora. Sabe-se que às 1 horas de certo dia Y estava eatamente 7 milhas ao sul de X e que, a partir de então, Y navegou em linha reta para o leste, enquanto que X navegou em linha reta para o sul, cada qual mantendo suas respectivas velocidades. Nessas condições, às 17 horas e 1 minutos do mesmo dia, a distância entre X e Y, em milhas, era Um grande vale é cortado por duas estradas retilíneas E 1 e E, que se cruzam perpendicularmente, dividindo-o em quatro quadrantes. Duas árvores que estão num mesmo quadrante têm a seguinte localização: a primeira dista 3 metros da estrada E 1 e 1 metros da estrada E, enquanto a segunda se encontra a 6 metros de E 1 e a metros de E. A distância entre as duas árvores é: metros 3 metros 4 metros metros 6 metros. Para estudar o movimento de um astro que se desloca com velocidade constante em trajetória retilínea, um astrônomo fiou um plano cartesiano contendo essa trajetória e adotou nos eios coordenados uma unidade conveniente para grandes distâncias. Em certo momento, o cientista observou que o astro estava no ponto A(3, 6) e, quatro minutos depois, estava no ponto B(, 8). Qual era a posição do astro dois minutos após a passagem pelo ponto A? (3, 8) (3, 7) (4, 7) (3, 4) (4, 8) 6. Sejam A e B os pontos (1, 1) e (, 7) no plano. O ponto médio do segmento AB é: (3, 4) (4, 6) (-4, -6) (1, 7) (, 3) 7. Para medir a área de uma fazenda de forma triangular, um agrimensor, utilizando um sistema de localização por satélite, encontrou como vértices desse triângulo os pontos A(,1), B(3,) e C(7,4) do plano cartesiano, com as medidas em km. A área dessa fazenda, em km, é de
2 8. Os pontos (,8), (3,1) e (1,y) do plano são colineares. O valor de y é igual a: 6 17/3 11/,3 9. Um bairro de uma cidade foi planejado em uma região plana, com ruas paralelas e perpendiculares, delimitando quadras de mesmo tamanho. No plano de coordenadas cartesianas seguinte, esse bairro localizase no segundo quadrante, e as distâncias nos eios são dadas em quilômetros A equação cartesiana da reta que passa pelo ponto (1, 1) e faz com o semi-eio positivo o um ângulo de 6 é: ( ) - y = () -1 ( 3) + y = 1-3 ( 3) - y = (3) - 1 ( 3)/ + y = 1 - ( 3)/ ( 3)/ - y = [( 3)/3] - 1 A reta de equação y = + 4representa o planejamento do percurso da linha do metrô subterrâneo que atravessará o bairro e outras regiões da cidade. No ponto P = (,), localiza-se um hospital público. A comunidade solicitou ao comitê de planejamento que fosse prevista uma estação do metrô de modo que sua distância ao hospital, medida em linha reta, não fosse maior que km. Atendendo ao pedido da comunidade, o comitê argumentou corretamente que isso seja automaticamente satisfeito, pois já estava prevista a construção de uma estação no ponto 13. Seja a reta r, de equação y = (/) +17. Das equações a seguir, a que representa uma reta paralela a r é y = (/) + 1 y = - + y = + 1 y = - + y = Leia o teto a seguir. (,). ( 3,1). (,1). (,4). (,6). 1. A equação da reta que contém o ponto A (1, ) e é perpendicular à reta y = + 3 é: + y - = + y = + y - 4 = - y + 3 = + 3y - 7 = 11. Até o ano de, a inflação num certo país manteve-se em 4% ao ano, aproimadamente. A partir daí sofreu aumentos sucessivos de % ao ano, até, declinando novamente em 3, conforme mostra o gráfico abaio. Segundo previsões otimistas de que esse declínio se manterá constante pelos próimos anos, pode-se esperar que a inflação volte ao patamar de 4% no ano de: Um estudante fez uma eperiência semelhante à descrita no teto, utilizando uma vareta AO de metros de comprimento. No início do inverno, mediu o comprimento da sombra OB, encontrando 8 metros. Utilizou, para representar sua eperiência, um sistema de coordenadas cartesianas, no qual o eio das ordenadas (y) e o eio das abscissas () continham, respectivamente, os segmentos de reta que representavam a vareta e a sombra que ela determinava no chão. Esse estudante pôde, assim, escrever a seguinte equação da reta que contém o segmento AB: y = 8 4 = 6 3y = 8 4y y = 6 3 y =.
3 1. (Enem 13) Nos últimos anos, a televisão tem passado por uma verdadeira revolução, em termos de qualidade de imagem, som e interatividade com o telespectador. Essa transformação se deve à conversão do sinal analógico para o sinal digital. Entretanto, muitas cidades ainda não contam com essa nova tecnologia. Buscando levar esses benefícios a três cidades, uma emissora de televisão pretende construir uma nova torre de transmissão, que envie sinal às antenas A, B e C, já eistentes nessas cidades. As localizações das antenas estão representadas no plano cartesiano: (1; 1). (1; ). (; 1). (; ). (; ). 17. (Upe 13) A reta r da figura possui equação 3y + 6 =, e o trapézio OBCD tem área igual a 9 unidades de área. Qual é a equação da reta s? A torre deve estar situada em um local equidistante das três antenas. O local adequado para a construção dessa torre corresponde ao ponto de coordenadas (6 ; 3). (3 ; 3). (4 ; 3). ( ; ). ( ; 3)., = 3 = 3, = 4 = 4, = 18. (UPE) No primeiro quadrante de um sistema de coordenadas cartesianas, foi desenhado o retângulo RETO, não quadrado, em que S é o encontro de suas diagonais, e seus lados são paralelos aos eios, como mostra a figura a seguir: 16. Os pontos A, B, C e D do plano a seguir representam 4 cidades. MATEMÁTICA PROFESSOR AMBRÓSIO ELIAS Para cada um desses cinco pontos, calcula-se a razão Uma emissora y/ de entre televisão a sua ordenada quer e construir a sua abscissa. uma estação transmissora numa localização tal que: a distância Para entre qual a estação desses e pontos, a cidade essa localizada razão é a em menor? A seja igual à distância entre a estação e a cidade localizada em B. a distância entre R a estação e a cidade localizada em C seja igual à distância E entre a estação e a cidade localizada em D. Considerando as coordenadas T do plano ao lado, a localização da estação deverá ser O o ponto (1; 1). S (1; ). (; 1). (; ). (; ). Uma emissora de televisão quer construir uma estação transmissora 13. (UNICAMP) numa localização As transmissões tal que: de uma determinada emissora de rádio são feitas por meio de 4 antenas situadas nos pontos A(, ), B(1, ), C(6, 4) e D(, 4), sendo o quilômetro a unidade de a distância comprimento. entre a estação Desprezando e a cidade a localizada altura das em antenas A e supondo que o alcance máimo de cada antena é de seja igual km, à distância pergunta-se: entre a estação e a cidade localizada em O B. ponto médio do segmento BC recebe as transmissões dessa emissora? a distância entre Qual a a estação área da e região a cidade limitada localizada pelo em quadrilátero C ABCD que não é alcançada pelas transmissões da seja igual à distância referida emissora? entre a estação e a cidade localizada em D. Considerando as coordenadas do plano ao lado, a localização da estação deverá ser o ponto 14. Ao realizar uma eperiência multidisciplinar, um professor de Física pediu aos alunos que observassem um raio luminoso partindo de um ponto A(3, 1) e refletindo no ponto B(7, ) e em seguida determinassem: Obs: tg 68 o =, 3 y A r
4 19. (UPE) Na figura a seguir, uma das retas tem equação = 4. Sabendo-se que a distância entre O e P é, a equação da reta que passa pelos pontos O e P é 1. (UPE) Na figura a seguir, o triângulo equilátero OAB está representado em um sistema cartesiano ortogonal, e sua área mede Qual é a equação da reta suporte do lado AB? 4 3y = 3y = 3 4y = 3 4y = 3 4 3y =. (UPE) Na figura a seguir, o quadrado ABCO de lado 3 e o triângulo equilátero ODE, também de lado 3, estão representados num sistema cartesiano ortogonal Oy y 4 = + 3y - 16 = y 8 = - 3y - 1 = 3-3y - 1 =. (Enem 14) A figura mostra uma criança brincando em um balanço no parque. A corda que prende o assento do balanço ao topo do suporte mede metros. A criança toma cuidado para não sofrer um acidente, então se balança de modo que a corda não chegue a alcançar a posição horizontal. Com base nas informações acima, analise as seguintes afirmativas: I. A ordenada do ponto E é igual a 3. II. A equação da reta suporte do segmento BD é 3 + 3y 1 =. III. A reta suporte do segmento OE tem declividade igual a 3. IV. A área do triângulo hachurado OPQ é aproimadamente, u.a. Está CORRETO o que se afirma em I e II III e IV II e III I, II e III II e IV Na figura, considere o plano cartesiano que contém a trajetória do assento do balanço, no qual a origem está localizada no topo do suporte do balanço, o eio X é paralelo ao chão do parque, e o eio Y tem orientação positiva para cima. A curva determinada pela trajetória do assento do balanço é parte do gráfico da função f() = f() = f() = f() = 4 f() = 4 4
5 3. Um espelho no formato de circunferência foi pendurado em uma parede. Considerando o canto inferior esquerdo como a origem de um sistema cartesiano, o espelho pode ser representado pela equação da circunferência + y 4 4y+ 7,84 =. Dessa forma, constata-se que o espelho está a uma altura do chão de 1, metros. 1, metros. 1, 6 metros. 1, 74 metros. 1,76 metros. 4. Um fabricante de brinquedos utiliza material reciclado: garrafas, latinhas e outros. Um dos brinquedos despertou a atenção de um estudante de Geometria, por ser confeccionado da seguinte forma: amarra-se um barbante em um bico de garrafa pet cortada e, na etremidade, cola-se uma bola de plástico que, ao girar em torno do bico, forma uma circunferência. O estudante representou-a no sistema por coordenadas cartesianas, conforme a figura a seguir: + y y 8 =. + y y+ 7 =. + y 8 =. + y y 7 =. + y = As coordenadas do centro e a medida do raio da circunferência de equação 4 + (y+ 1) = são, respectivamente: (, 1) e 4 (, 1) e (4, 1) e ( 1, ) e (, ) e 7. Resolver a questão com base na regra da FIFA, segundo a qual a bola oficial de futebol deve ter sua maior circunferência medindo de 68cm a 7cm. Considerando essa maior circunferência com 7cm e usando um referencial cartesiano para representá-la, como no desenho abaio, poderíamos apresentar sua equação como Considerando o tamanho do barbante igual a 6 unidades de comprimento (u.c.) e o bico centrado no ponto (3,4), a equação que representa a circunferência é igual a + y 6 8y 11= + y y 11= + y y+ 11= + y 6 8y+ 11= + y 8 6y 11=. Uma antena de telefone celular rural cobre uma região circular de área igual a 9 π km. Essa antena está localizada no centro da região circular e sua posição no sistema cartesiano, com medidas em quilômetros, é o ponto (,1). Assim, a equação da circunferência que delimita a região circular é 3 + y = π 3 + y = π 7 + y = π 7 + y = π + y = 7 8. O ponto da circunferência + y + + 6y+ 1= que tem ordenada máima é (, 6 ) ( 1, 3 ) ( 1, ) (,3 ) (, 3 )
6 9. (Enem 13) Durante uma aula de Matemática, o professor sugere aos alunos que seja fiado um sistema de coordenadas cartesianas (, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue: I. é a circunferência de equação + y = 9; II. é a parábola de equação y = 1, com variando de 1 a 1; III. é o quadrado formado pelos vértices (, 1), ( 1, 1), ( 1, ) e (, ); IV. é o quadrado formado pelos vértices (1, 1), (, 1), (, ) e (1, ); V. é o ponto (, ). A seguir, o professor representa corretamente os cinco conjuntos sobre uma mesma malha quadriculada, composta de quadrados com lados medindo uma unidade de comprimento, cada, obtendo uma figura. Qual destas figuras foi desenhada pelo professor? 3. A construção da cobertura de um palanque usado na campanha política, para o 1 o turno das eleições passadas, foi realizada conforme a figura. Para fiação da lona sobre a estrutura de anéis, foram usados rebites assim dispostos: 4 no primeiro anel, 16 no segundo, 64 no terceiro e assim sucessivamente. Se, no plano cartesiano, a equação da circunferência eterna do anel eterno da figura é X + y y + 43 =, então o centro e o raio dessa circunferência são, respectivamente, (6, - 4) e 3 (- 6, 4) e 9 (6, - 4) e 9 (- 6, 4) e 3 (6, 4) e Um círculo tangencia a reta r, como na figura abaio. O centro do círculo é o ponto ( 7, ) e a reta r é definida pela equação 3 4y + 1 =. A equação do círculo é 7 y. ( ) + ( ) = ( ) ( ) y+ =. ( 7) + ( y+ ) = 36. ( ) ( ) y = 36. ( ) ( ) 7 + y = (UPE) Se r é a mediatriz do segmento que liga os pontos de interseção dos gráficos das funções y = e y = 3, podemos afirmar que r tem por equação: + 3y 9 = + 3y 1 = + 3y 6 = + 3y + 9 = + 3y + 1 = 6
7 33. (UPE) Sendo (r) a reta dada pela equação y + =, então a equação da reta simétrica a (r) em relação ao eio das abscissas é A) + y =. B) 3 y + 3 =. C) + 3y + 1 =. D) + y + =. E) y =. 34. (UPE) As retas ( r ) cortam os eios nos pontos (,-1) e (,), e a reta ( s ) perpendicular à ( r ) corta o eio das abscissas no ponto (,). A área do triângulo ABC é igual a A) B) 3 ( r ) 4 9 C) D) 1 E) 7 3. (UPE) Geometricamente o sistema + y 1 y 1 y 1 ( s ) 1. B. D 3. A 4. D. B 6. A 7. C 8. B 9. C 1. A 11. E 1. D 13. E 14. B 1. E 16. E 17. B 18. C 19. C. D 1. A. [D] 3. [C] 4. [A]. [A] 6. [B] 7. [B] 8. [C] 9. [E] 3. [A] 31. [A] 3. C 33. D 34. C 3. B Gabaritos 1 determina uma região do plano, cuja área é: unidades de área; 1 unidade de área; 4 unidades de área; 3 unidades de área; 6 unidades de área. 7
Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre
Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Álgebra [011 - ENEM] Um bairro de uma cidade foi planejado em uma região plana, com ruas paralelas e perpendiculares,delimitando
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA
MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA y Ya d =? A Yb B Xb Xa x y Ya d =? A Yb B Xb Xa x y Ya d =? A Ya - Yb Yb B Xb Xa - Xb Xa x y Ya A Ym =? M Yb B Xb Xm=? Xa x y Ya A Ym =? M T Yb B R Xb
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
Média, Mediana e Distância entre dois pontos
Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:
Exercícios de Aprofundamento Matemática Geometria Analítica
1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:
1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular
RETA E CIRCUNFERÊNCIA
RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine
MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander
MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)
QUESTÕES TRIÂNGULO RETÂNGULO
QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016
INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a
Módulo de Geometria Anaĺıtica 1. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado
Prof. Luiz Carlos Moreira Santos. Questão 01)
Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
- GEOMETRIA ANALÍTICA -
Vestibulando Web Page 1. (Puc-rio 2004) Sejam A e B os pontos (1, 1) e (5, 7) no plano. O ponto médio do segmento AB é: a) (3, 4) b) (4, 6) c) (-4, -6) d) (1, 7) e) (2, 3) 2. (Ufg 2004) Para medir a área
Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )
UNIDADE X geometria analítica CAPÍTULO 8 Geometria analítica: ponto e reta Banco de questões 1 (Cesgranrio RJ) Observe a figura e considere uma reta r cuja equação é y = x +. A esse respeito, são feitas
Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,
Resolução de questões de provas específicas de
4.11.016 Resolução de questões de provas específicas de 4.11.016 #6 - Resoluções de Questões Específicas de Matemática 1. Em um triângulo equilátero de perímetro igual a 6 cm, inscreve-se um retângulo
Matemática: Geometria Plana Vestibulares UNICAMP
Matemática: Geometria Plana Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0),
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância
Geometria Analítica Fundamentos
Geometria Analítica Fundamentos 1. (Eear 017) Seja ABC um triângulo tal que A(1, 1), B(3, 1) e C(5, 3). O ponto é o baricentro desse triângulo. a) (,1). b) (3, 3). c) (1, 3). d) (3,1).. (Ita 017) Considere
REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO
PUERI DOMUS ENSINO MÉDIO MATEMÁTICA Saber fazer saber fazer + 10 MÓDULO Saber fazer Geometria analítica 1. Determine as coordenadas dos pontos da figura. 2. Sendo A (2, 2), B (4, 6) e C (7, ) vértices
MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75
MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,
Exercícios de Aprofundamento 2015 Mat Geo. Analítica
Exercícios de Aprofundamento 015 Mat Geo. Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0), (t, 0)
Resolução de Problemas
Resolução de Problemas 16/10/014 1. (Enem) Estima-se que haja, no Acre, 09 espécies de mamíferos, distribuídas conforme a tabela a seguir. grupos taxonômicos número de espécies Artiodáctilos 4 Carnívoros
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
PROFESSOR FLABER 2ª SÉRIE Circunferência
PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de
Distância entre dois pontos, média e mediana
Distância entre dois pontos, média e mediana 1. (Pucrj 014) Considere o quadrado ABCD como na figura. Assuma que A (5,1) e B (13,6). a) Determine a medida do lado do quadrado ABCD. b) (modificado) Determine
Professor Mascena Cordeiro
www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)
Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas
Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo
COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.
INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva
LISTA DE EXERCÍCIO GEOMETRIA PLANA
QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que
SEMELHANÇA DE TRIÂNGULOS
SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia
GEOMETRIA ANALÍTICA 2017
GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -
QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?
/ /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale
Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:
Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse
GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de
ENSINO MÉDIO - 2012 LISTA DE EXERCÍCIOS 3ª SÉRIE - 3º TRIM PROF. MARCELO DISCIPLINA : GEOMETRIA GEOMETRIA ANALÍTICA 1) Espcex (Aman) 2013) Considere a circunferência 2 2 λ x y 4x 0 e o ponto P 1, 3. Se
Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira
Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA
EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto
matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos
Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no
6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0
QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
III CAPÍTULO 21 ÁREAS DE POLÍGONOS
1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
A Determine o comprimento do raio da circunferência.
Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados
UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:
5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u
BANCO DE QUESTÕES DE MATEMÁTICA - PROGRESSÃO PARCIAL
Escola de Ensino Médio Professora Maria Edilce Dias Fernandes Rua Capitão Manuel Antônio 1044 Centro - C.E.P.: 62.955-000 - Ibicuitinga Ceará Telefone: (88) 3425-1000 BANCO DE QUESTÕES DE MATEMÁTICA -
Unidade 3 Geometria: semelhança de triângulos
Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e
ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:
ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.
DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA.
RESOLUÇÃO DA AVALIAÇÃO FINAL DE MATEMÁTICA APLICADA EM 008 NO COLÉGIO ANCHIETA-BA, AOS ALUNOS DA a SÉRIE DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. 0. D C
9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)
9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta
Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Matemática Prof. Leandro Conteúdo: Área de figuras planas. Ponto médio. Distância entre 2 pontos; Equação fundamental da reta. Poliedros.
3ª Série do Ensino Médio
3ª Série do Ensino Médio 01. Num laboratório, foi feito um estudo sobre a evolução de uma população de vírus. Ao final de um minuto do início das observações, existia 1 elemento na população; ao final
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos
ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:
. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m
05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,
TESTE DE DIAGNÓSTICO
TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 7 entregar no dia 4 0 013 1. O cubo da figura tem as faces paralelas aos planos coordenados
COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO
Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos
GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.
GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.
Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. ABCD, em centímetros quadrados, é
Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. Considere o setor circular de raio 6 e ângulo central 60 da figura abaixo. a) 36 3 b) 36 2 c) 8 3 d) 8 2 3. A figura abaixo é a reprodução
Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2
Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +
Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.
Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,
Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a
Professor: Pedro Ítallo 01 - (UFSCar SP) Em um terreno retangular com 0 m de comprimento por 15 m de largura, foi feito um gramado com área igual a 1 4 da área de um círculo de 10 m de raio, conforme mostra
Exercícios de Matemática Geometria Analítica Pontos e Plano Cartesiano
Exercícios de Matemática Geometria Analítica Pontos e Plano Cartesiano 1. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
F 01. Coordenadas na reta
IME IT postila IT F 1 Coordenadas na reta Uma reta diz-se orientada quando sobre ela se escolheu um sentido de percurso, chamada positivo; o sentido inverso chama-se negativo. Numa reta orientada, diz-se
1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).
Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB
G.A. Equação da Circunferência. Nível Básico
G.A. Equação da Circunferência Nível Básico 1. (Eear 017) As posições dos pontos A (1, 7) e B (7,1) em relação à circunferência de equação (x 6) (y ) 16 são, respectivamente, a) interna e interna. b) interna
LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI
01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120
Trabalho 1º Bimestre - 9ºano
Matéria: Matemática Data de entrega: 23/03/2017 Valor: 10 Trabalho 1º Bimestre - 9ºano TEMA: Problemas envolvendo números inteiros Desenvolvimento e Descrição: 1. Trabalho Individual manuscrito em folha
3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.
EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
Semelhança e Relações Métricas no Triângulo
1. Seja ABC um triângulo retângulo cujos catetos AB e BC medem 8 cm e 6 cm, respectivamente. Se D e um ponto sobre AB e o triângulo ADC e isósceles, calcule a medida do segmento AD, em cm: 2. No retângulo
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
