Espaços Amostrais Finitos
|
|
|
- Teresa de Vieira Nobre
- 10 Há anos
- Visualizações:
Transcrição
1 EST029 Cálculo de Probabilidade I Cap. 2: Espaços Amostrais Finitos Prof. Clécio da Silva Ferreira Depto Estatística - UFJF
2 Espaços Amostrais Finitos Espaço amostral S = {a 1, a 2, a 3,..., a k } (finito) {a i }: evento simples ou elementar. {a i } {a j } = Ø, para todo i j A cada evento simples {a i } associaremos um nº p i, denominado probabilidade de {a i }, que satisfaça às seguintes condições: a) p i 0 para todo i=1,2...,k e b) p 1 +p p k = 1. Se um evento A é formado por r eventos simples, A={a i1,a i2,...,a ir }, então P(A)= p i1 +p i p ir 2
3 Resultados Igualmente Verossímeis S={a 1, a 2,..., a k } P({a i }) = p i Se {a i } são igualmente prováveis => p i = 1/k Se um evento A é formado por r eventos simples, A={a i1,a i2,...,a ir }, então P(A)= r/k. P(A): nº de casos favoráveis a A (em relação a S) nº total de casos Objetivo: Dados N objetos, {a 1, a 2,..., a N }, escolha ao acaso de um ou mais objetos: a) Escolher ao acaso um objeto => P(escolher a i }= 1/N. b) Escolher ao acaso dois objetos => cada par é igualmente provável. c) Escolher ao acaso n objetos (n < N) => cada ênupla é igualmente provável (ou equiprovável) 3
4 Diagrama de Árvore Exemplo: Um fabricante de automóveis fornece veículos equipados com os seguintes opcionais: com ou sem transmissão automática, com ou ser ar-condicionado, com 3 escolhas de som estéreo e 4 escolhas de cores. 4
5 Princípio Fundamental de Contagem Um experimento é constituído por K sub-experimentos, de forma que: No primeiro sub-experimento, n 1 resultados sejam possíveis. Para cada um dos n 1 resultados possíveis do primeiro sub-experimento, n 2 resultados possíveis podem ser obtidos do segundo experimento. Assim sucessivamente até o sub-experimento K. Então o experimento tem n 1 xn 2 x...xn K resultados possíveis. Pode ser representado pelo Diagrama de árvore". Observação: Em alguns livros: Regra da Multiplicação (Meyer) ou Princípio Básico da Contagem (Ross). 5
6 Princípio Fundamental de Contagem - Exemplos 1) Uma peça manufaturada deve passar por 3 estações de controle. Em cada estação a peça é inspecionada, classificada e marcada. Na primeira estação, 3 classificações são possíveis; na 2ª e 3ª, 4 classificações são possíveis. Quantas formas de marcação são possíveis? 2) O grêmio de uma faculdade é formado por: 3 calouros, 4 estudantes do 2º ano, 5 do 3º ano e 2 formandos. Um subcomitê de 4 pessoas, formado por uma pessoa de cada ano, deve ser escolhido. Quantos subcomitês diferentes são possíveis? 3) Quantas diferentes placas de automóveis com 7 caracteres (3 primeiras campos são letras e 4 últimos algarismos) são possíveis de se formar? 6
7 Regra da Adição Admita que: Um procedimento pode ser realizado de n 1 maneiras. Um segundo procedimento pode ser realizado de n 2 maneiras. Não seja possível realizar os dois experimentos em conjunto. Então existem n 1 + n 2 maneiras de realizar um OU outro experimento. Observação: podemos estender para K experimentos. Exemplo 1: Suponha que tenhamos a opção de viajar de trem ou de ônibus. Se existirem 3 rodovias e duas ferrovias, quantos caminhos/rotas possíveis existem? Exemplo 2: Lançamento de dois dados. Evento de interesse W: a soma dá 7 ou 12. Espaço amostral: S ={(x,y) x,y=1,2,3,4,5,6} W={(x,y) x+y=7 ou x+y=12} Sejam W 1 ={(x,y) x+y=7 } e W 2 ={(x,y) x+y=12} W=W 1 U W 2, W 1 e W 2 mutuamente excludentes Logo, n(w) = n(w 1 ) + n(w 2 ) = = 7 7
8 Permutações De quantas maneiras podemos dispor/permutar n objetos diferentes? n n x (n-1) x (n-2) x...1 = n! (fatorial de n) Nº de Permutações. Notação: n P n Convenção: 0!=1 Exemplo: De quantas formas podemos compor as letras a, b e c? {abc,acb,bac,bca,cab,cba} => Importa a ordem (elementos diferentes! Quantas diferentes ordens de rebatedores são possíveis em um time de beisebol formado por 9 jogadores? Anagramas: reordenação de letras de uma palavra.se não possuir letras repetidas é um exemplo de permutação. Ex. Iracema => America, Amor => Roma ou 8
9 Arranjos De quantas formas podemos escolher r objetos de um total de n DISTINTOS (0 < r n) e permutá-los? Arranjo: n A r = n!/(n-r)! = n(n-1)(n-2)...(n-(r-1)). Compartimento r r+1... n Situação ocupado ocupado ocupado ocupado vazio vazio vazio Aqui você vai selecionar r objetos, dentre os n possíveis, r < n. Exemplo 1: Das letras a, b, c e d, quantos arranjos diferentes podemos formar com duas letras? Resp.: {ab,ac,ad,ba,bc,bd,ca,cb,cd,da,db,dc} => 4x3 = 4 A 2 Exemplo 2: Em um campeonato participam 20 times. Quantos resultados são possíveis para as 3 primeiras posições? Exemplo 3: Um cofre possui um disco marcado com os dígitos {0,1,2,...,9}. O segredo do cofre é formado por uma sequência de 3 dígitos distintos. Quantas tentativas são possíveis para abrir o cofre? E se não há a exigência de que os dígitos devam ser distintos? Aqui importa a ordem! 9
10 Combinações Escolher r objetos, dentre n disponíveis (distintos), não importando a ordem! Combinação: n C r =, 0 r n. (Combinação de n elementos, tomados r a r). Binômio de Newton: (a+b) n = Propriedades: a) b) Exemplo: De um grupo de 30 pessoas, quantas comissões de 5 pessoas podem ser formadas? Exemplo: Se um espaço amostral S contém n elementos (distintos), quantos subconjuntos existem? Combinação: Não importa a ordem dos elementos! 10
11 Coeficientes Multinomiais Também chamado de Permutações com elementos repetidos. Considere um conjunto de n itens, dos quais n 1 são de espécie 1, n 2 são de espécie 2,..., n r são de espécie r, n 1 + n n r = n. Ou seja, uma partição de n itens em r grupos. Existem Exemplos: permutações possíveis. 1. O departamento de polícia de um vilarejo é formado por 10 policiais. A política é: 5 policiais patrulhando as ruas, 2 na delegacia e 3 na reserva. Quantas divisões são possíveis? 2. Um torneio de xadrez tem 10 competidores, dois quais 4 são russos, 3 dos EUA, 2 da Inglaterra e 1 do Brasil. Se o resultado do torneio listar apenas a nacionalidade dos jogadores em sua ordem de colocação, quantos resultados são possíveis? 3. Se temos 4 bandeiras brancas, 3 vermelhas e 2 azuis, de quantas formas diferentes podemos alinhá-las? Observação: Se r =2, teremos uma combinação! 11
12 Extensão (Hipergeométrica) De um total de N objetos, existem N 1 do grupo 1 e N 2 do grupo 2. Extraia n < N objetos ao acaso. Qual a probabilidade de conter n 1 objetos do grupo 1 e n 2 do grupo 2? Probabilidade = ( n 1 + n 2 = n) Exemplos: 1. De um grupo de 5 mulheres e 7 homens, seleciona-se 5 pessoas ao acaso. Qual a probabilidade de selecionarmos 2 mulheres e 3 homens? carros foram enviados da fábrica para certa cidade. Dentre os 30 carros, 9 apresentam um defeito no motor. Sabendo que 3 carros foram vendidos na cidade e devem ser entregues, qual a probabilidade que ao menos 2 apresentem o defeito no motor. 12
13 Métodos de Contagem - Resumo Amostras podem ser: com ou sem reposição ordenadas ou não-ordenadas ordenadas <-> objetos distinguíveis <-> importa a ordem/disposição em que os objetos serão formados Selecionar uma amostra de tamanho r de N objetos (r < N): Amostra Ordenada Não ordenada Com reposição N r N + r 1 r Sem reposição na r N r 13
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos
PROBABILIDADE PROFESSOR: ANDRÉ LUIS
PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7
RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco
1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação
Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações
Contagem Prof. Dr. Leandro Balby Marinho Matemática Discreta Prof. Dr. Leandro Balby Marinho 1 / 39 UFCG CEEI Motivação Contagem e combinatória são partes importantes da matemática discreta. Se resumem
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Considere o produto dos números naturais ímpares, 19 17 15... 3 1: Como pode ser reescrito utilizando fatorial? (a) 19! (b) 19! 20! (c) 19! 18 16... 2 (d) 19! 20 Exercício 2
Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade
Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
Probabilidade - aula I
e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar
1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M.
([HUFtFLRVÃÃ&DStWXORÃÃ Ã Tomou-se uma amostra de 000 pessoas num shopping center com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar (em salários mínimos). Os
Este material traz a teoria necessária à resolução das questões propostas.
Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem
Regra do Evento Raro p/ Inferência Estatística:
Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1
1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,
MÓDULO 6 INTRODUÇÃO À PROBABILIDADE
MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para
1 Um pouco de história. 2 Análise Combinatória. 2.1 Princípio básico da contagem:
1 Um pouco de história Início da Probabilidade: 1654 com a troca de cartas entre Pascal e Fermat sobre o Problema dos Pontos colocado para Pascal por Chevalier de Méré. A e B jogam dados, vamos supor que
I. Experimentos Aleatórios
A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em
Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO
PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante
Professor Mauricio Lutz PROBABILIDADE
PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos
Introdução à Probabilidade e Estatística
Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes
Contagem. George Darmiton da Cunha Cavalcanti CIn - UFPE
Contagem George Darmiton da Cunha Cavalcanti CIn - UFPE Sumário Princípios Básicos de Contagem A Regra do Produto A Regra da Soma O número de subconjuntos de um conjunto finito Princípio da Inclusão-Exclusão
Espaço Amostral ( ): conjunto de todos os
PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,
Probabilidade. Contagem
Probabilidade Contagem Problema da Contagem no Estudo da Probabilidade Conforme definição clássica, podemos determinar uma probabilidade calculando a relação entre o total de eventos de sucesso e o total
Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16
Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o
PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA
PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer
TRABALHO DE MATEMÁTICA II
TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / 2012 2 o Azul Questão 04 GRUPO 1 (FUVEST2010) Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os
23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem
Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta
Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:
Primeira Lista de Exercícios de Estatística
Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =
Exercícios resolvidos sobre Definição de Probabilidade
Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora
Noções de Probabilidade
Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas
Francisco Ramos. 100 Problemas Resolvidos de Matemática
Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de
Prof. Paulo Henrique Raciocínio Lógico
Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre
A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.
Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,
Módulo X. Querido aluno(a)!!!
1 Módulo X Querido aluno(a)!!! É o que deseja a equipe www.somaticaeducar.com.br 2 Exercícios 1) Um grupo de 15 elementos apresenta a seguinte composição: Um elemento é escolhido as acaso. Pergunta-se:
4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:
Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer
Distribuições de Probabilidade Distribuição Binomial
PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:
7- Probabilidade da união de dois eventos
. 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade
O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração
Probabilidade. Definições, Notação, Regra da Adição
Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento
Exercícios Resolvidos da Distribuição Binomial
. a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos
Estatística II. Capítulo 1:
1 Estatística II Capítulo 1: Consciente ou inconsciente, a probabilidade é usada por qualquer individuo que toma decisão em situações de incerteza. Conhecendo ou não regras para seu cálculo, muitas pessoas
Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.
Pg. 1 Universidade Federal do Espírito Santo - UFES Mestrado em Informática 2004/1 Projetos O Projeto O projeto tem um peso maior na sua nota final pois exigirá de você a utilização de diversas informações
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias
Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:
Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,
CAP5: Amostragem e Distribuição Amostral
CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?
1 Axiomas de Probabilidade
1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada
Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica
Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Introdução aos critérios de consulta. Um critério é semelhante a uma fórmula é uma cadeia de caracteres que pode consistir em
Material retirado do site Office online. Introdução aos critérios de consulta Um critério é semelhante a uma fórmula é uma cadeia de caracteres que pode consistir em referências de campo, operadores e
Aula 11 Esperança e variância de variáveis aleatórias discretas
Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição
Revisão de combinatória
A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de
O que é a estatística?
Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os
Um carro do modelo B foi comprado nessa concessionária. Dado que esse carro é de cor prata, qual a probabilidade que seu motor seja 1.0?
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0) - (UEMS) Uma
Probabilidade. Distribuição Binomial
Probabilidade Distribuição Binomial Distribuição Binomial (Experimentos de Bernoulli) Considere as seguintes experimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na
Exercícios Análise Combinatória
Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números
x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?
Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões
Probabilidade. Multiplicação e Teorema de Bayes
robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,
1 Probabilidade Condicional - continuação
1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos
AULA 6 LÓGICA DOS CONJUNTOS
Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:
Avaliação e Desempenho Aula 4
Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios
Teoria das Probabilidades
Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário
Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira
- Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito
1. INTRODUÇÃO 2. EXPERIMENTO ALEATÓRIO 3. ESPAÇO AMOSTRAL
PROBABILIDADE 1. INTRODUÇÃO Embora o cálculo das probabilidades pertença ao campo da Matemática, sua inclusão aqui se justifica pelo fato da maioria dos fenômenos de que trata a Estatística ser de natureza
Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas
1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações
O princípio multiplicativo
A UA UL L A O princípio multiplicativo Introdução A palavra Matemática, para um adulto ou uma criança, está diretamente relacionada com atividades e técnicas para contagem do número de elementos de algum
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer
Princípio da contagem e Probabilidade: conceito
Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São
LISTA DE EXEMPLOS - PROBABILIDADE
LISTA DE EXEMPLOS - PROBABILIDADE EXEMPLO 1 CONVERTENDO UM ARREMESSO LIVRE Ache a probabilidade de que o jogador de basquete da NBA, Reggie Miller, converta um arremesso livre depois de sofrer uma falta.
Projeto e Desenvolvimento de Algoritmos
Projeto e Desenvolvimento de Algoritmos Variáveis Adriano Cruz e Jonas Knopman Índice Objetivos Introdução Modelo de Memória Armazenamento de Dados Numéricos Dados Inteiros Dados Reais Armazenamento de
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado
Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
MANUAL DO SISTEMA GT WEB CALL. Teledata
MANUAL DO SISTEMA GT WEB CALL Teledata Indíce analítico 1. Prefácio...3 2. Funcionalidades...3 3. Abrir chamados...7 4. Atribuir chamados...9 5. Consultar chamados...10 6. Fechar chamados...12 7. Relatórios...15
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -
Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75
Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Este material tem por objetivo ajudar o aluno a aplicar o Princípio Fundamental
(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).
Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,
Espaços Amostrais Finitos
2 ESQUEMA DO CAPÍTULO Espaços Amostrais Finitos 1.1 ESPAÇO AMOSTRAL FINITO 1.2 RESULTADOS IGUALMENTE VEROSSÍMEIS 1.3 MÉTODOS DE ENUMERAÇÃO UFMG-ICEx-EST-032/045 Cap. 2 - Espaços Amostrais Finitos 1 2.1
Descreve de uma forma adequada o
EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada
Métodos de contagem. Francimário Alves de Lima. Universidade Federal do Rio Grande do Norte. 6 de agosto de 2014
Universidade Federal do Rio Grande do Norte 6 de agosto de 2014 Sumário 1 Introdução 2 Permutação 3 Combinações 4 Exercícios Sumário 1 Introdução 2 Permutação 3 Combinações 4 Exercícios Introdução Um sistema
Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42
Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista
Aula 1: Introdução à Probabilidade
Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo
Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco
1. A figura abaixo ilustra um bloco de massa igual a 8 kg, em repouso, apoiado sobre um plano horizontal. Um prato de balança, com massa desprezível, está ligado ao bloco por um fio ideal. O fio passa
4) Quais dos seguintes pares de eventos são mutuamente exclusivos:
INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no
Autómatos Finitos Determinísticos
Ficha 2 Autómatos Finitos Determinísticos 2.1 Introdução Se olharmos, de forma simplificada, para um computador encontramos três componentes principais: a) A unidade de processamento central b) As unidades
