Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Tamanho: px
Começar a partir da página:

Download "Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial"

Transcrição

1 1/1 Resistência dos Materiais 3/4 Curso de Gestão e Engenharia Industrial 4ª Aula Duração - Horas Data - de Outubro de 3 Sumário: Mudança de Eixos de Referência. Tensões Principais e Direcções Principais. Invariantes das Tensões. Tensor Hidrostático ou Isotrópico. Tensor das Tensões de Desvio. Casos Particulares. Objectivos da Aula: Apreensão das Operações com o Tensor das Tensões mais relevantes para efeitos de Utilização do Tensor das Tensões em Problemas de Mecânica dos Sólidos. Definição de alguns Tensores relevantes na análise do comportamento de Sólidos e Estruturas. Resumo do Conteúdo da Aula 1- Mudança de Eixos de Referência A mudança de eixos de referência implica mudanças nas componentes do tensor das tensões. Considere-se conhecido o tensor das tensões no sistema de eixos Oxyz e determine-se o tensor das tensões no sistema de eixos Ox y z, sendo os cosenos directores das direcções Ox, Oy e Oz, {l,m,n}, definidos de acordo com a tabela seguinte: x y z l1 l l3 x l1 m1 n1 ou [ Q] = 1 3 y l m n m m m (4.1) n1 n n3 z l3 m3 n3 onde [Q] representa a matriz de transformação de Oxyz em Ox y z. Uma vez que a transformação de coordenadas é ortogonal, os cosenos directores estão relacionados pelas equações seguintes: l1+ l+ l3 = 1 m1+ m+ m3 = 1 n1+ n+ n3= 1 l1+ m1+ n1 = 1 l+ m+ n= 1 l3+ m3+ n3= 1 ll 1 + mm 1 + nn 1 = ll 1 3+ mm 1 3+ nn 1 3= ll 3+ mm 3+ nn 3= lm 1 1+ lm + lm 3 3= ln 1 1+ ln + ln 3 3= mn 1 1+ mn + mn 3 3= (4.)

2 /1 z z z y y y x x x Figura 4. 1: Mudança de Eixos O tensor das Tensões no Sistema de Eixos Oxyz é: σ τ τ σ τ σ τ τ τ σ xx xy xz xy yy yz xz yz zz (4.3) A mudança de sistema de eixos pode fazer-se começando por calcular as componentes das tensões nas facetas perpendiculares aos eixos Ox, Oy e Oz, no sistema de eixos Oxyz que são: Tx x Ty x Tz x σxx τyx τzx l1 l l3 T= Tx y Ty y Tz y = τxy τzy m1 m m3 = σq (4.4) Tx z Ty z Tz z τxz τyz σzz n1 n n3 As componentes do Tensor das Tensões no sistema de Eixos Oxý z podem ser calculadas projectando as Tensões T, no sistema de eixos Ox y z, ou seja calculando o produto matricial seguinte: σ σx x τy x τz x l1 m1 n1 Tx x Ty x Tz x τ σ τ = l m n T T T x y y y z y x y y y z y τx z τy z σz z l3 m3 n3 Tx z Ty z Tz z Q T T (4.5) ou seja:

3 3/1 T [ ] = [ Q] [ ][ Q] σ σ (4.6) onde [ Q ] representa a matriz de transformação do sistema de eixos Oxyz no sistema de eixos Ox y z. Caso Particular do Estado Plano de Tensão As tensões no sistema de eixos Oxy são, σxx, e τ xy, como se representa na figura 4.. Pretendem-se as tensões no sistema de eixos Ox y definido de tal modo que os ângulos formados por Ox e Ox e Oy e Oy tenham a grandeza θ, como se representa na referida figura. O referido ângulo é medido a partir do eixo dos xx (sentido positivo) e no sentido contrário ao dos ponteiros do relógio. Considerando o elemento triangular ABC e considerando o equilíbrio de forças na direcção do eixo dos x x, F x =, obtém-se: σx x da = σxxdacosθcosθ+ dasenθsenθ+ τxydacosθsenθ+ τ xydacosθsenθ (4.7) ou seja: = θ+ θ+ cosθsenθ σx x σxxcos sen τ xy (4.8) tendo em conta que: 1 cos 1 cos cos θ= + θ, sen θ= θ e senθcosθ= senθ a equação 4.8 pode escrever-se com a forma 1+ cosθ 1 cosθ sen σx x = σxx + + τ xy θ (4.9) simplificando obtém-se: σ + σ σ σ xx yy xx yy σx x = + cosθ+ τ xysenθ (4.1) Considerando o equilíbrio de forças segundo o eixo dos y y no elemento ABC de espessura unitária, obtém-se a tensão tangencial ou de corte na faceta BC, como sendo: σ σ yy xx τx y = senθ+ τ xycosθ (4.11)

4 4/1 y y θ D C A B F E τxy x σ xx σxx y τxy y τ x y 9º x σ x x θ x (a) θ x (b) Figura 4.: Mudança de Eixos. De forma análoga, considerando o elemento DEF se obtém as tensões σ y y. A fórmula que permite a obtenção de σ y y, pode ser obtida de 4.1 substituindo θ por θ+9º, ou seja: σ + σ σ σ cos sen xx yy xx yy σy y = θ τ xy θ (4.1) Adicionando as equações 4.1 e 4.1 obtém-se: σxx + = σx x + σ y y (4.13) donde se conclui que a soma dos elementos da diagonal de cada um dos tensores σ e σ é idêntica qualquer que seja o ângulo θ considerado ou seja o tr(σ) é um invariante do tensor das tensões. Resultados análogos aos anteriores podem ser obtidos considerando o produto matricial representado pela equação 4.6, tendo em conta que no estado plano de tensão não existem tensões na faceta perpendicular ao eixo dos zz. As tensões σx x e τx y representam as tensões normais e de corte na faceta BC cuja normal faz um ângulo θ com o eixo dos xx.

5 5/1 - Tensões Principais e Direcções Principais Existem três facetas ortogonais entre si em que o vector Tensão tem a direcção da normal sendo nulas as Tensões Tangenciais. Ao plano no qual são nulas as Tensões Tangenciais chama-se Plano Principal, às Tensões Normais no Plano Principal chamamse Tensões Principais e à direcção da normal ao plano principal chama-se Direcção Principal. Relembrando o estudo feito em Álgebra Linear, as matrizes simétricas são diagonalizáveis sendo os valores da diagonal designados por Valores Próprios e as direcções a que estão associados por Vectores Próprios. As componentes do Tensor das Tensões foram representadas por uma matriz simétrica sendo portanto legítimo pensar que os valores próprios da Matriz das Tensões são as Tensões Principais e que os Vectores Próprios que lhe estão associados são as Direcções Principais. O cálculo das Tensões Principais é feito considerando o sistema de equações seguinte: σxx τxy τxz l l τyx τyz m =σ m τzx τ zy σzz n n ou σxx τxy τxz l l τyx τyz m σ m = τzx τ zy σzz n n (4.14) onde {l,m,n} representam os cosenos directores da direcção normal ao plano em que a tensão tangencial é nula e em que a tensão normal tem grandeza σ. O sistema de equações linear e homogéneo, 4.14, pode ser escrito com a seguinte forma: σxx σ τxy τxz l τyx σ τyz m = τzx τ zy σzz σ n (4.15) A existência de uma solução não trivial (solução trivial l=m=n=) para este sistema de equações Algébricas e Lineares obriga a que se considere que o determinante da matriz dos coeficientes seja igual a zero, sendo a equação resultante designada por Equação Característica, ou seja: σxx σ τxy τxz 3 τyx σ τyz = σ + I1σ Iσ+ I3= τzx τzy σzz σ (4.16) onde I 1 = σxx + + σ zz xx yy xx zz yy zz xy xz yz I = σ σ + σ σ + σ σ τ τ τ I = σ σ σ + τ τ τ σ τ σ τ σ τ 3 xx yy zz xy xz yz xx yz yy xz zz xy

6 6/1 As raízes da equação característica podem ser representadas por σ 1, σ, σ 3 e são designadas por Tensões Principais. As quantidades, ( I 1, I, I 3 ), são designadas por Invariantes do Tensor das Tensões por não dependerem do sistema de eixos em que as componentes do Tensor das Tensões estão a ser consideradas. A equação característica é independente do referencial em que se consideram as componentes do Tensor das Tensões, tendo três raízes que foram representadas por σ1, σ, σ 3. Os invariantes do tensor das tensões podem ser escritos em termos das tensões principais, σ1, σ, σ 3, do seguinte modo: I 1 = σ1+ σ+ σ 3 I = σσ + σσ + σσ I 3 = σσσ As Tensões Principais são valores extremos das Tensões Normais e uma vez conhecidos os seus valores σ 1, σ, σ 3, os cosenos directores das Direcções Principais {l,m,n} podem ser calculados, considerando o sistema de equações 4.15 e a condição l + m + n = 1. Para efeitos de cálculo de l,m,n, pode considerar-se o sistema de equações constituído por das equações 4.15, com σ substituído por um dos valores σ1, σ, σ 3, conjuntamente com a condição l + m + n = 1, ou podem arbitrar, o valor de l=1 no sistema de equações 4.15 (com σ substituído por um dos valores σ 1, σ, σ 3 ) e determinar m,n e normalizar de seguida o vector l,m,n obtido. Note-se que algum cuidado deve existir quando as tensões σ1, σ, σ 3 não são distintas. Caso Particular do Estado Plano de Tensão A tensão normal σx x tem um valor máximo para um certo ângulo,θ. A determinação dos valores extremos de σ x x pode ser feita derivando em ordem a θ a expressão 4.1 e igualando a zero, ou seja dσ σ σ dθ x x xx yy = sen θ+ xy cosθ donde: tan gθ p = τ xy ( σxx ) / τ (4.17) (4.18) O ângulo θ p representa o ângulo formado pela direcção principal máxima ou mínima com a direcção do eixo dos xx como se representa na figura 4.3. Existem dois valores possíveis para θp desfasados de 9º, como se mostra na referida figura. Note-se que as facetas com as orientações definidas pelos ângulos θp e θ p são facetas em que a tensão tangencial ou de corte é nula, como se constata substituindo os valores de θp e θ p na expressão 4.1. Os planos definidos pelos referidos ângulos são planos principais e

7 7/1 as tensões actuantes nestes planos são tensões principais. As grandezas das tensões principais obtêm-se substituindo os valores dos senos e cosenos dos ângulos θ p e θ p definidos pela equação 4.18, na expressão 4.1, obtendo-se os valores máximos e mínimos das tensões σ x x : τ xy B τ θ p σxx σ yy σxx σ yy O θ p A τ xy σxx OA = OB = + τ xy τxy sen θp = sen θ P = σ σxx + τ ( σxx ) / cosθp = cosθ P = σxx + τ xy xy Figura 4.3: Ângulos θ p para as Tensões Principais. ( σx x ) σxx + σxx max = ± + τxy min (4.19) Estas tensões são usualmente designadas por σ 1 e σ correspondendo σ 1 ao valor da tensão principal máxima e σ ao valor da tensão principal mínima. Estes valores também podem ser calculados a partir do tensor das tensões calculando os valores próprios do referido tensor. 3- Valores Extremos das Tensões Tangenciais As tensões actuantes num plano com orientação arbitrária são representadas por Tx, T y e T z, l,m,n os cosenos directores do vector normal n, as componentes da tensão T, segundo os eixos Ox, Oy e Oz, obtêm-se recorrendo às equações de Cauchy, como se viu na aula anterior:

8 8/1 T T T = lσ + mτ + nτ x xx yx zx = lτ + mσ + nτ y xy yy zy = lτ + mτ + nσ z xz yz zz (4.) A componente normal, T, da tensão é calculada, projectando o vector T segundo a n direcção normal à faceta, ou seja : Tn = ltx+ mty+ ntz= = l σ m n x+ σy+ σz+ lmτxy+ ln τxz+ mnτyz (4.1) A grandeza da tensão tangencial pode ser calculada por aplicação do teorema de Pitágoras como sendo = (4.) T t T T n No caso de se considerar o sistema de eixos constituído pelas direcções principais, o cálculo das tensões, numa faceta com uma orientação arbitrária em relação ao sistema de eixos principais, pode ser feito a partir das tensões principais, σ1, σ, σ 3, obtendo-se para a tensão tangencial a expressão seguinte: ( l ) ( m ) ( n ) ( σ σ σ ) T t = σ1 + σ + σ 3 l 1+ m + n 3 (4. 3) Para determinar os máximos e mínimos de T t, pode usar-se o método dos multiplicadores de Lagrange. De acordo com o referido método, considere-se a função f = Tt + λ l + m + n (4.4) ( ) onde λ é o multiplicador de Lagrange. Os valores extremos de f são tais que: f f f = = = l m n (4.5) Estas condições tendo em conta as equações 4.3 e 4.4 conduzem a ( l m n )( ) ( l m n )( ) ( l m n )( ) lσ1 σ1+ σ+ σ3 lσ1 + λ l= mσ σ1+ σ+ σ3 mσ + λ m= n n n σ3 σ1+ σ+ σ3 σ3 + λ = (4.6)

9 9/1 Estas equações correspondem a condições necessárias e suficientes para que f tenha um valor extremo. Para obter o extremo de T t é necessário considerar a condição l + m + n = 1. As soluções óbvias são l=m=, n= ± 1 a que corresponde λ = σ 3 e T t = n=m=, l= ± 1 a que corresponde λ = σ 1 e T t = l=n=, m= ± 1 a que corresponde λ = σ e T t = À solução l,m,n corresponde σ1= σ= σ 3 e T t = As soluções remanescentes correspondem a considerar só um dos cosenos directores igual a zero sendo os outros dois diferentes de zero, por exemplo, l=, m,n, nestas condições a 1ª das equações 4.6 é sempre satisfeita e as duas restantes conduzem à equação seguinte depois de simplificação adequada ( n m )( σ σ ) = 3 Sendo σ σ 3, a equação anterior implica n = m, e sendo m + n = 1, obtém-se 1 1 l=, m =±,n =± e T t =± 1 ( σ σ 3) De modo análogo se obtém 1 1 m=, l =±,n =± e T t =± 1 ( σ1 σ 3) n=, 1 1 l,m 1 =± =± e T t =± ( 1 ) σ σ (4.7) Donde se infere que os planos que correspondem a tensões de corte máximas fazem ângulos de 45º com os planos principais e os valores das tensões de corte podem ser obtidos a partir das tensões principais considerando as expressões anteriores. 4- Tensor Isotrópico ou Hidrostático e Tensor das Tensões de Desvio O Tensor Isotrópico ou Hidrostático é σm σ m = m σ σm com (4.8)

10 1/1 σ + σ + σ = = I 3 3 O Tensor das Tensões de Desvio, tensor hidrostático e é xx yy zz 1 σ m a representar a Pressão Hidrostática σ σ τ τ σ d obtêm-se a partir do tensor das tensões, σ e do xx m xy xz σ d τyx σm τyz (4.9) τ τ σ σ zx zy zz m 5- Problemas Propostos Para Resolução na Aula 1. Determine as tensões principais, a tensão de corte máxima e a orientação dos eixos principais para os estados planos de tensão abaixo indicados. Ilustre os resultados com uma figura que mostre a orientação e as componentes da tensão a actuarem em cada caso. a) σ xx = 5MPa; = ; σxy = 6MPa, b) σ xx = 1MPa; = ; σxy = 5MPa, c) σ xx = 11MPa; = 4MPa; σxy = 6MPa. Resolva o problema analiticamente.. O tensor das tensões no sistema de eixos Oxyz, num ponto de um sólido tridimensional, é o seguinte: 9 1 σij = 45 MPa 1 3 a) Identifique as tensões e desenhe um volume elementar com as tensões actuando sobre ele, b) Determine as tensões principais no referido ponto, c) Os cossenos directores das direcções principais em relação ao sistema de eixos Oxyz. Mostre que as direcções principais são ortogonais, d) Determine o tensor das tensões de desvio, e) Determine os invariantes do tensor das tensões de desvio, f) Determine a tensão de corte máxima e a respectiva tensão normal, g) Calcule a tensão resultante, a tensão normal e a tensão de corte num plano igualmente inclinado em relação aos eixos coordenados, h) Determine o Tensor das Tensões num sistema de Eixos obtido do sistema de eixos inicial rodando 3º em torno do eixo dos zz. 3. O estado de tensão, num ponto de um sólido, é definido pelas tensões principais σ 1 = MPa, σ = 1MPa, σ3 = 1MPa, nas direcções Ox, Oy e Oz respectivamente. Determine as tensões normais, resultante e de corte num plano

11 11/1 cuja normal tem cossenos directores,.71 e.456 em relação aos eixos Ox e Oy respectivamente. Resolva o problema analiticamente. 4. O estado de tensão num ponto P é definido pelas seguintes componentes cartesianas σxx = 6MPa = 3MPa σzz = 3MPa τyz = 1MPa τ xy=τxz a) Pode afirmar-se sem efectuar cálculos que yz é um plano principal de tensão? Justifique. b) Determine as tensões principais no ponto considerado assim como as direcções principais correspondentes. c) Determine a Pressão Hidrostática e mostre que é um invariante. d) Determine o Tensor das Tensões de Desvio. 6- Problemas Propostos Para Resolução nas Horas de Estudo 1. Determine as tensões principais, a tensão de corte máxima e a orientação dos eixos principais para os estados planos de tensão abaixo indicados. Ilustre os resultados com uma figura que mostre a orientação e as componentes da tensão a actuarem em cada caso. d) σ xx = 6MPa; = 6; σxy = 6MPa, e) σ xx = 8MPa; = 4; σxy = 6MPa, f) σ xx = 13MPa; = 6MPa; σxy = 7MPa. Resolva o problema analítica e graficamente.. O tensor das tensões no sistema de eixos Oxyz, num ponto de um sólido tridimensional, é o seguinte: σ ij 1 = a) Identifique as tensões e desenhe um volume elementar com as tensões actuando sobre ele. b) Determine as tensões principais no referido ponto. c) Determine os cossenos directores das direcções principais em relação ao sistema de eixos Oxyz. Mostre que as direcções principais são ortogonais.

12 1/1 d) Determine a tensão de corte máxima e a respectiva tensão normal. Calcule a tensão resultante, a tensão normal e a tensão de corte num plano cujos cossenos directores são l=.73 e m=.51 com os eixos dos xx e dos yy respectivamente. e) Determine o tensor das tensões desvio. f) Determine os Invariantes do tensor das tensões desvio. 3. O campo de Tensões num sólido elástico, na ausência de forças de volume é definido, em cada ponto, pelas componentes seguintes: σxx = ax = cy σzz = τxy = ax + by + c τyz = (by ) τzx = ax 5z a) Determine a, b, c, de modo que o campo de tensões acima referido seja compatível com a Teoria da Elasticidade. b) Determine as tensões principais na origem das coordenadas e as respectivas direcções. c) No referido ponto (origem) determine o valor da tensão de corte máxima, bem como o plano e a direcção segundo a qual actua. 7- Leituras a Efectuar nas Horas de Estudo - V. Dias da Silva, Mecânica e Resistência dos Materiais, Ediliber Editora, 1995, Páginas 16-3, Carlos Moura Branco, Mecânica dos Materiais, Teoria e Aplicação, McGraw-Hill, Páginas 4-8, 1-1, Incompleto - J. F. Silva Gomes, Apontamentos de Mecânica dos Sólidos, Editorial de Engenharia. No final da Aula deve saber responder às seguintes questões - Diga o que entende por Matriz de Transformação - Diga, justificando, como procede ao cálculo das Componentes do Tensor das Tensões no sistema de Eixos Ox y z conhecendo o Tensor das Tensões no Sistema de Eixos Oxyz. - Defina Plano principal, Tensão e Direcção Principal - Diga o que são os Invariantes do Tensor das Tensor - Diga o que entende por Tensor das Tensões de Desvio - etc.

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula Sumário e Objectivos Sumário: Equações de Equilíbrio de Forças e Momentos. Mudança de Eixos de Referência. Tensões Principais e Direcções Principais. Invariantes das Tensões. Tensor Hidrostático ou Isotrópico.

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/9 Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 5ª Aula Duração - Horas Data - 6 de Outubro de 003 Sumário: Caso Particular do Estado Plano de Tensão. Circunferência de Mohr.

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/16 Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 3ª Aula Duração - 2 Horas Data - 29 de Setembro de 2003 Sumário: Equações de Equilíbrio de Forças. Equações de Equilíbrio

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial /8 Resistência dos Materiais 3/4 Curso de Gestão e Engenharia Industrial 8ª Aula Duração - Horas Data - 3 de Outubro de 3 Sumário: Energia de Deformação. Critérios de Cedência. Equações de Equilíbrio em

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

Nota de aula 7 - Estado Triaxial de Tensões - Resistência dos Materiais II

Nota de aula 7 - Estado Triaxial de Tensões - Resistência dos Materiais II Nota de aula 7 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos

Leia mais

Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II

Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Estado Triaxial de Tensões Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o.

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/ Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 14ª Aula Duração - Horas Data - 13 de Novembro de 003 Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão

Leia mais

Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II

Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 011 Flávia Bastos

Leia mais

Sumário: Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência.

Sumário: Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência. Sumário e Objectivos Sumário: Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência. Objectivos da Aula: Ser Capaz de estabelecer e utilizar a lei de Hooke Generalizada. Fazer Controlo

Leia mais

Sumário: Compatibilidade das Deformações. Roseta de Extensómetros. Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência.

Sumário: Compatibilidade das Deformações. Roseta de Extensómetros. Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência. Sumário e Objectivos Sumário: Compatibilidade das Deformações. Roseta de xtensómetros. Relações Tensões - Deformações. nergia de Deformação. Critérios de Cedência. Objectivos da Aula: Ser Capaz de utilizar

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/17 Resistência dos Materiais 003/004 Curso de Gestão e ngenharia Industrial 7ª Aula Duração - Horas Data - 0 de Outubro de 004 Sumário: Compatibilidade das Deformações. Roseta de tensómetros. Relações

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/14 Resistência dos Materiais 00/004 Curso de Gestão e Engenharia Industrial ª ula Duração - Horas Data - 5 de Setembro de 00 Sumário: Tensões numa Barra Traccionada. Conceito de Tensão. Tensor das Tensões.

Leia mais

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos Aula 5 1

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos Aula 5 1 Sumário e Objectivos Sumário: Deformações sobre um plano. Valores Estacionários das Deformações. Compatibilidade das Deformações. Construção de Mohr para Deformações. Roseta de Extensómetros. Objectivos

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006 Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini

Leia mais

4. Tensores cartesianos em 3D simétricos

4. Tensores cartesianos em 3D simétricos 4. Tensores cartesianos em D simétricos 4.1 Valores e vectores próprios ou valores e direcções principais Em D não é possível deduzir as fórmulas que determinam os valores e as direcções principais na

Leia mais

Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II

Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini

Leia mais

Capítulo 6 Transformação de tensão no plano

Capítulo 6 Transformação de tensão no plano Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Transformar as componentes de tensão

Leia mais

Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial.

Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Sumário e Objectivos Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Objectivos da Aula: Apreensão da forma de Cálculo das Tensões Axiais

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Deformação. - comportamento de um material quando carregado

Deformação. - comportamento de um material quando carregado Deformação - comportamento de um material quando carregado : tipos de deformação Deformação - deformação normal variação do comprimento de uma fibra em relação a uma direção. : tipos de deformação Deformação

Leia mais

Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II

Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia

Leia mais

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P Cap. 3. Tensão 1. Existência das forças internas 2. Princípio das tensões de Euler e Cauchy 3. Vector das tensões no ponto P 3.1 Componentes cartesianas 3.2 Componentes intrínsecas 4. Tensor das tensões

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/ Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 6ª Aula Duração - 2 Horas Data - 8 de Outubro de 2003 Sumário: Deformações. Conceito de Etensão e Distorção. Componentes do

Leia mais

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:

Leia mais

Resistência dos Materiais I

Resistência dos Materiais I Resistência dos Materiais I Luciano Pessanha Moreira, D.Sc. Professor Associado Departamento de Engenharia Mecânica Escola de Engenharia Metalúrgica Industrial de Volta Redonda Universidade Federal Fluminense

Leia mais

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos 7ª Aula

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos 7ª Aula Sumário e Objectivos Sumário: Torção de Veios de Secção Circular Objectivos da Aula: Apreensão dos conceitos Fundamentais associados à torção de veios de Secção Circular. 1 2 Torção 3 Vigas 4 Torção de

Leia mais

1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação.

1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação. Mecânica dos Sólidos I Lista de xercícios III Tensões, Deformações e Relações Constitutivas.. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff.

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Sumário e Objectivos Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Objectivos da Aula: Apreensão das diferenças entre as grandes deformações e as pequenas deformações no contexto da análise

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial.

Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Sumário e Objectivos Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Objectivos da Aula: Apreensão da forma de Cálculo das Tensões Axiais

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

Lista 6: transformações lineares.

Lista 6: transformações lineares. Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

Actividade Formativa 1

Actividade Formativa 1 Actividade Formativa 1 Resolução 1. a. Dada a função y 3+4x definida no conjunto A {x R: 2 x < 7} represente graficamente A e a sua imagem; exprima a imagem de A como um conjunto. b. Dada a função y 3

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

Sumário e Objectivos. Objectivos: Lúcia M.J.S. Dinis 2005/2006. Mecânica dos Sólidos e das Estruturas 2ª Aula

Sumário e Objectivos. Objectivos: Lúcia M.J.S. Dinis 2005/2006. Mecânica dos Sólidos e das Estruturas 2ª Aula Sumário e Objectivos Sumário: Barra Traccionada. Conceito de Deformação. Conceito de Tensão. Tensor das Tensões. Casos articulares. Simbologia. Unidades e Aplicações Elementares. Relações Tensões Deformações

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos 8ªAula. Lúcia M.J.S. Dinis 2007/2008

Sumário e Objectivos. Mecânica dos Sólidos 8ªAula. Lúcia M.J.S. Dinis 2007/2008 Sumário e Objectivos Sumário: Função de Prandtl. Torção de Veios de Secção Elíptica e Rectangular e de Secções Abertas de paredes delgadas. Perfis Tubulares Objectivos da Aula: Apreensão dos conceitos

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas

Leia mais

Geometria Analítica II - Aula 5 108

Geometria Analítica II - Aula 5 108 Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ

Leia mais

MECÂNICA APLICADA II. Enunciados Exames 2003/2004. Enunciados Exames 2004/2005. Resolução dos exames 2004/2005

MECÂNICA APLICADA II. Enunciados Exames 2003/2004. Enunciados Exames 2004/2005. Resolução dos exames 2004/2005 INSTITUTO POLITÉCNICO DE BRAGANÇA Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO Enunciados Exames 2003/2004 Enunciados Exames 2004/2005 Resolução dos exames 2004/2005

Leia mais

Teórica 3_complementar

Teórica 3_complementar Teórica _complementar Problema 1 Considere o estado bidimensional de tensões indicado na figura. Detere: a) As tensões e as direcções principais (define a base do referencial principal em que a primeiro

Leia mais

Aula Orientação do espaço. Observação 1

Aula Orientação do espaço. Observação 1 Aula 14 Nesta aula vamos definir dois novos produtos entre vetores do espaço, o produto vetorial e o produto misto. Para isso, primeiro vamos apresentar o conceito de orientação. 1. Orientação do espaço

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Sumário e Objectivos. Resistência dos Materiais 18ªAula. Lúcia M.J.S. Dinis 2005/2006

Sumário e Objectivos. Resistência dos Materiais 18ªAula. Lúcia M.J.S. Dinis 2005/2006 Sumário e Objectivos Sumário: Função de Prandtl. Torção de Veios de Secção Elíptica e Rectangular e de Secções Abertas de paredes delgadas. Objectivos da Aula: Apreensão dos conceitos Fundamentais associados

Leia mais

Objectivos da Aula: Ser Capaz de proceder à Construção de Mohr para estados planos. Comparar os resultados Analíticos com os Resultados Gráficos.

Objectivos da Aula: Ser Capaz de proceder à Construção de Mohr para estados planos. Comparar os resultados Analíticos com os Resultados Gráficos. Sumário e Objectivos Sumário: Perpedicularidade das esões Pricipais. Elipsóide de Lamé. esões Octaédricas. Caso Particular do Estado Plao de esão. esões Pricipais Secudárias. Circuferêcia ou Circulo de

Leia mais

Sumário e Objectivos. Setembro. Elementos Finitos 2ªAula

Sumário e Objectivos. Setembro. Elementos Finitos 2ªAula Sumário e Objectivos Sumário: Revisão de Alguns Conceitos Fundamentais da Mecânica dos Sólidos. Relações Deformações Deslocamentos. Relações Tensões Deformações Equações de Equilíbrio. Objectivos da Aula:

Leia mais

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES

Leia mais

MAT Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva

MAT Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva MAT212 - Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva Nome : N ō USP : GABARITO Q 1 2 3 4 5 6 Total N 1. Seja f(x, y) = 2xy2, se (x, y) (0, 0), f(0, 0) =

Leia mais

Sumário e Objectivos. Sumário: Resolução de Problemas. Objectivos da Aula: Ser Capaz de resolver problemas com perfis tubulares

Sumário e Objectivos. Sumário: Resolução de Problemas. Objectivos da Aula: Ser Capaz de resolver problemas com perfis tubulares Sumário e Objectivos Sumário: Resolução de Problemas. Objectivos da Aula: Ser Capaz de resolver problemas com perfis tubulares 1 Vigas 2 Camião 3 Bicicleta 4 Função de Tensão de Prandtl A solução do problema

Leia mais

3 a LISTA DE EXERCÍCIOS

3 a LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DA BAHIA DEARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR I rofs: Enaldo Vergasta e Glória Márcia a LISTA DE EXERCÍCIOS Sejam u (x, y, z e v (x, y, z vetores do R Verifique se cada uma das

Leia mais

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7

Leia mais

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula.

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula. Ao longo desta secção será abordada a análise do efeito de forças actuando em partículas. Substituição de duas ou mais forças que actuam na partícula por uma equivalente. A relação entre as várias forças

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Escola Superior de Tecnologia e Gestão

Escola Superior de Tecnologia e Gestão Escola Superior de Tecnologia e Gestão Curso de Engenharia Civil Duração: 60 min. Sem consulta e sem calculadora Nome: Nº Exercício 1 (50%) Responda classificando com V (verdadeiro) ou F (falso) as afirmações

Leia mais

Sumário: Tensões Tangenciais Resultantes do Esforço Transverso em Secções Rectangulares, em I e em T.

Sumário: Tensões Tangenciais Resultantes do Esforço Transverso em Secções Rectangulares, em I e em T. Sumário e Objectivos Sumário: Tensões Tangenciais Resultantes do Esforço Transverso em Secções Rectangulares, em I e em T. Objectivos da Aula: Ser capaz de determinar a forma como se distribuem as tensões

Leia mais

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07 Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA UNIVERSIAE NOVA E LISBOA FACULAE E CIÊNCIAS E TECNOLOGIA CURSO E LICENCIATURA EM ENGENHARIA GEOLÓGICA Resistência de Materiais (LEG): Exame de época normal Semestre par 005/006, 6 de Julho 006, duração

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais. CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas

Leia mais

Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas.

Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas. Sumário e Objectivos Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas. Objectivos da Aula: Apreensão do modo de cálculo das tensões

Leia mais

Sumário e Objectivos. Sumário: Tensões Tangenciais Resultantes do Esforço Transverso em Secções Rectangulares, em I e em T.

Sumário e Objectivos. Sumário: Tensões Tangenciais Resultantes do Esforço Transverso em Secções Rectangulares, em I e em T. Sumário e Objectivos Sumário: Tensões Tangenciais Resultantes do Esforço Transverso em Secções Rectangulares, em I e em T. Objectivos da Aula: Apreensão da forma como se distribuem as tensões tangenciais

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A. Ficha de revisão n.º 3

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A. Ficha de revisão n.º 3 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A Ficha de revisão n.º 1. No referencial da figura está representada uma pirâmide quadrangular regular. Sabe-se que B(6,0,0)

Leia mais

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA 7 a LISTA DE PROBLEMAS E EXERCÍCIOS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2006/07 - aulas práticas de 2006-12-04 e 2006-12-06

Leia mais

Pedro M. Ponces R. de Castro Camanho. Gabinete: L

Pedro M. Ponces R. de Castro Camanho. Gabinete: L Pedro M. Ponces R. de Castro Camanho Gabinete: L405 E-mail: pcamanho@fe.up.pt Pedro Ponces Camanho 1 Pedro Ponces Camanho Sumário: Introdução. Apresentação e objectivos da Unidade Curricular. Método de

Leia mais

Sumário e Objectivos. 2007/2008 Lúcia MJS Dinis. Mecânica dos Sólidos 4ª Aula 1

Sumário e Objectivos. 2007/2008 Lúcia MJS Dinis. Mecânica dos Sólidos 4ª Aula 1 Sumário e Objectivos Sumário: Deformações. Conceito de Extensão e Distorção. Componentes do Tensor das Deformações. Propriedades do Tensor das Deformações. Deformação Volumétrica. Casos Particulares do

Leia mais

Sumário e Objectivos. Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas.

Sumário e Objectivos. Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas. Sumário e Objectivos Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas. Objectivos da Aula: Ser capaz de calcular as tensões de corte

Leia mais

Dinâmica da partícula fluida

Dinâmica da partícula fluida Dinâmica da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Dinâmica da partícula fluida 1 / 14 Sumário 1 Tipo de forças 2 Dinâmica da partícula

Leia mais

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016. Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama

Leia mais

Tensores Cartesianos

Tensores Cartesianos Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -

Leia mais

Equações de Navier-Stokes

Equações de Navier-Stokes Equações de Navier-Stokes J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Equações de Navier-Stokes 1 / 16 Sumário 1 Relações constitutivas 2 Conservação do momento

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II

Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 21 Flávia

Leia mais

Álgebra Linear I - Aula 14. Roteiro

Álgebra Linear I - Aula 14. Roteiro Álgebra Linear I - Aula 14 1 Matrizes 2 Forma matricial de uma transformação linear 3 Composição de transformações lineares e produto de matrizes 4 Determinante do produto de matrizes Roteiro 1 Matrizes

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR. Prefácio 3. Parte 1. Sistemas de equações lineares 4. Parte 2. Matrizes 10. Parte 3.

EXERCÍCIOS DE ÁLGEBRA LINEAR. Prefácio 3. Parte 1. Sistemas de equações lineares 4. Parte 2. Matrizes 10. Parte 3. EXERCÍCIOS DE ÁLGEBRA LINEAR PEDRO MATIAS Conteúdo Prefácio 3 Parte 1. Sistemas de equações lineares 4 Parte 2. Matrizes 10 Parte 3. Determinantes 16 Parte 4. Geometria analítica 18 Parte 5. Espaços lineares

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22). F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil º ANO EXERCICIOS PRÁTICOS Ano lectivo 005/006 Ano lectivo: 005/006.º semestre MECÂNICA APLICADA II I - Teoria do estado de

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

aula6 Projeções Planas 2017/2 IC / UFF

aula6 Projeções Planas 2017/2 IC / UFF http://computacaografica.ic.uff.br/conteudocap2.html aula6 P p O Projeções Planas 2017/2 IC / UFF Relembrando Transformações De corpo rígido (semelhança). Distância entre 2 pontos quaisquer é inalterada.

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Introdução à Computação Gráfica Desenho de Construção Naval Manuel Ventura Instituto Superior Técnico Secção Autónoma de Engenharia Naval 27 Sumário Entidades Geométricas Transformações Geométricas 2D

Leia mais

Aula 9 Cônicas - Rotação de sistemas de coordenadas

Aula 9 Cônicas - Rotação de sistemas de coordenadas MÓDULO 1 - AULA 9 Aula 9 Cônicas - Rotação de sistemas de coordenadas Objetivos Entender mudanças de coordenadas por rotações. Identificar uma cônica rotacionada a partir da sua equação geral. Identificar

Leia mais

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018 MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I a Lista de Exercícios - o semestre de 8 Exercícios -8: os espaços V e V 3. Exercícios 9-7: dependência, independência linear, bases. Exercícios 8-48: sistemas lineares.

Leia mais