ATIVIDADES RECUPERAÇÃO PARALELA
|
|
|
- Ana Vitória Van Der Vinne Figueiroa
- 8 Há anos
- Visualizações:
Transcrição
1 ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno da apostila.. Esclarcr dúvidas com o profssor /ou no plantão d dúvidas/ rforço. 4. Esta lista d xrcícios dvrá sr ntrgu no dia da avaliação d rcupração, 0/08. GABARITO Pint somnt um quadrículo por qustão dix todos os cálculos A A A A A A A A A A B B B B B B B B B B C C C C C C C C C C D D D D D D D D D D E E E E E E E E E E ) Na figura a sguir, qual é a soma dos ângulos dstacados (m cinza)? a) 0 b) 55 c) 80 d) 00 ) 05 Profssor Dnis Rocha Matmática 6 º ano D º bi. Página
2 ) Papai tm 80 anos. Eu tnho um quinto da idad dl mu irmão tm um décimo da idad dl. A soma da minha idad com a idad do mu irmão é igual a: a) b) 5 c) 9 d) 4 ) 7 ) Catarina stava brincando d construir pirâmids usando bolinhas d isopor para os vértics palitos d churrasco para as arstas. A figura a sguir mostra a pirâmid d bas triangular fita por Catarina. S la construíss da msma manira uma pirâmid d bas hxagonal, usaria: a) 6 bolinhas 6 palitos b) 7 bolinhas palitos c) 6 bolinhas palitos d) 7 bolinhas 6 palitos ) 9 bolinhas 0 palitos 4) Rodrigo, Marclo Vítor compraram uma pizza. Rodrigo comu 4 da pizza, Marclo comu a mtad do qu comu Rodrigo Vítor comu o triplo do qu comu Marclo. Qu fração da pizza Vítor comu? a) b) c) 6 d) 8 ) 4 Profssor Dnis Rocha Matmática 6 º ano D º bi. Página
3 5) Justino comprou 7 bolinhas d gud, mas prdu 6 dlas. Quantas bolinhas rstaram? a) b) 50 c) 60 d) 7 ) 6 6) As facs latrais d uma pirâmid d bas quadrada são triângulos quilátros d lado 0 cm. Somando as mdidas d todas as arstas da dssa pirâmid, obtmos um valor igual a: a) 40 cm b) 50 cm c) 60 cm d) 80 cm ) 00 cm 7) Mariana stava brincando d construir pirâmids usando bolinhas d isopor para os vértics palitos d churrasco para as arstas. A figura a sguir mostra a pirâmid d bas triangular fita por Mariana. S la construíss da msma manira uma pirâmid d bas pntagonal, usaria: a) 5 bolinhas 5 palitos b) 6 bolinhas 0 palitos c) 5 bolinhas 0 palitos d) 6 bolinhas 6 palitos ) 0 bolinhas 6 palitos 8) Albrto, Marcos João compraram uma pizza. Marcos comu da pizza, Albrto comu a um quarto do qu comu Marcos João comu o triplo do qu comu Albrto. Qu fração da pizza João comu? a) b) c) 6 Profssor Dnis Rocha Matmática 6 º ano D º bi. Página
4 d) 8 ) 4 9) Considr as afirmaçõs sobr a pirâmid d bas quadrada da figura a sguir julgu m Vrdadiras(V) ou Falsas(F) I. Tm 4 vértics. ( ) II. Tm 4 facs triangulars fac pntagonal. ( ) III. Tm 8 arstas. ( ) É (são) vrdadira(s) apnas: a) I b) II c) III d) I II ) I III Qustõs Escritas 0) As rtas da figura abaixo são concorrnts o mnor ângulo formado por las d 8. Dtrmin as mdidas dos ângulos d, b. b d 8 ) Flip comprou uma moto por R$ 9 000,00 ftuou o pagamnto do sguint modo: uma ntrada 0 prstaçõs iguais, cada uma corrspondndo a do prço total da moto. 5 Calcul a quantia paga como ntrada. Profssor Dnis Rocha Matmática 6 º ano D º bi. Página 4
5 ) Num sítio xistm cavalos, 8 vacas 40 frangos. Dtrmin a fração dss conjunto d animais qu corrspond aos animais quadrúpds. ) Dona Joaquina tm ntos dividiu ntr ls 80 figurinhas. Du 4 para o mais vlho, para o do mio o rstant para o mais novo. Quantas figurinhas rcbu o nto mais novo? 4) Considr uma pirâmid d bas hxagonal. Dtrmin o númro d vértics (V), arstas (A) facs (F) dsta pirâmid. 5) Considr um tronco d pirâmid d bas pntagonal. Dtrmin o númro d vértics (V), arstas (A) facs (F) dst tronco. 6) Considr o cubo da figura a sguir julgu as afirmaçõs m Vrdadiras (V) ou Falsas (F): a) ( ) As arstas AB HG são rvrsas. b) ( ) As arstas BF DH são concorrnts. c) ( ) As arstas EF CG são parallas. d) ( ) As arstas AB CG são rvrsas. ) ( ) As arstas EH GH são parallas. f) ( ) As arstas EH BC são rvrsas. 7) Simplifiqu as fraçõs a sguir até ncontrar as fraçõs irrdutívis: a) 6 48 b) 0 c) 8 Profssor Dnis Rocha Matmática 6 º ano D º bi. Página 5
6 d) ) Rprsntar cada uma das fraçõs na rta numérica abaixo com a ltra corrspondnt: A 5 B 6 C 5 8 D 9) Calcul a média aritmética simpls m cada caso: a) 0 0 b) ; 7 0 0) Assinal qual(quais) dos pars d fraçõs rprsnta(m) duas fraçõs quivalnts: a) b) c) ) Considr o cubo da figura abaixo julgu m Vrdadiras (V) ou Falsas (F) as afirmaçõs a sguir: B C a) ( ) AB HG são parallas. b) ( ) AB FG são concorrnts. c) ( ) AB HG são parallas. d) ( ) EF CG são rvrsas. ) ( ) AB BF são concorrnts. f) ( ) DC HG são rvrsas. Profssor Dnis Rocha Matmática 6 º ano D º bi. Página 6 A E F D H G
7 ) Dtrmin os valors d x, y z, m graus, na figura abaixo ond as rtas são concorrnts. y x z 7 ) Dtrmin os valors d x, y z, m graus, na figura abaixo ond as rtas são concorrnts. y 6 z x Profssor Dnis Rocha Matmática 6 º ano D º bi. Página 7
2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)
Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas
1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?
Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos
v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?
12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos
Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre
Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu
Conteúdos Exame Final e Avaliação Especial 2017
Componnt Curricular: Matmática Ano: 7º ANO Turma: 17 D. Profssora: Frnanda Schldr Hamrski Contúdos Exam Final Avaliação Espcial 2017 1. Númros Racionais 2. Ára prímtro d figuras planas 3. Ára do círculo
TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS Sit: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmática A º Ano Fichas d Trabalho Compilação Tma
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA
NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests
Escola Básica Tecnopolis Matemática
DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática PLANIFICAÇÃO ANUAL - 5º ANO Ano
3. Geometria Analítica Plana
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,
Derivada Escola Naval
Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
Adriano Pedreira Cattai
Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo
Matemática C Extensivo V. 7
Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
COLÉGIO OBJETIVO JÚNIOR
COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você
PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =
ALUNO (A) : PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: / 06 / 06 ÁLGEBRA LINEAR: MATRIZES, DETERMINANTES E SISTEMAS. MATRIZES 0-0) Dada a matriz, B, calcul a + -7 0 a a + a. 0) Escrva a matriz
Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 2
Matrial Tórico - Módulo Triângulo tângulo, Lis dos ossnos dos Snos, Poĺıgonos gulars laçõs Métricas m Poĺıgonos gulars - Part Nono no utor: Prof. Ulisss Lima Parnt visor: Prof. ntonio aminha M. Nto 3 d
UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES PÁGINA 26 16 A) COMBINAÇÃO SIMPLES Bca possui 12 pars d sapatos dos quais la vai scolhr 5 pars. Algumas das maniras são rprsntadas plas imagns abaixo: 5 pars
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL 01 RESOLUÇÕES voc PÁGINA 5 58 25 É imdiato qu a probabilidad pdida é igual a 1 8 voc 59 LETRA C O númro total d qustõs é dado por 125 + 98 + 40 + 25 798 Q A probabilidad d Camilla
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas
Campo elétrico. Antes de estudar o capítulo PARTE I
PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa
Canguru Matemático sem Fronteiras 2018
Canguru Matmático sm Frontiras 208 Catgoria: Mini-Escolar - nívl III Dstinatários: alunos do 4. o ano d scolaridad Nom: Turma: Duração: h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,
LISTA EXTRA DE EXERCÍCIOS MAT /I
LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,
Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano
Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.
Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE
Canguru Matemático sem Fronteiras 2018
Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a água no reservatório ocupa o cilindro, cuja base é o círculo de diâmetro
Canguru Matemático sem Fronteiras 2018
Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Não pods usar calculadora. Em cada qustão dvs assinalar
Resolução. Ficha de avaliação diagnóstica Matemática 6.º ano Parte 1
Resolução Ficha de avaliação diagnóstica Matemática 6.º ano Parte 1 1. Calcula utilizando as propriedades da adição. 2. No seu aniversário, o Jorge fez 28 sacos com guloseimas para oferecer aos seus amigos.
{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o
Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir
Prismas VOLUME DE SÓLIDOS GEOMETRICOS: CONTEÚDOS E EXERCÍCIOS
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE SARGENTO NADER ALVES DOS SANTOS SÉRIE: º
UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO
UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )
Tema: Espaço Outra Visão
Escola EB 2, de Ribeirão (Sede) ANO LECTIVO 2010/2011 Ficha de Trabalho Maio 2011 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Espaço Outra
ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.
soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2
Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )
Enunciados equivalentes
Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................
Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho. Espaço - Outra Visão
Matemática Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho 9º ano Espaço - Outra Visão 1. Arrumaram-se três esferas iguais dentro de uma caixa cilíndrica (figura 1). Como se pode observar
RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180
Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto
QFL1541 / QFL5620 CINÉTICA E DINÂMICA QUÍMICA 2019
QFL1541 / QFL560 CINÉTICA DINÂMICA QUÍMICA 019 a lista d xrcícios 1. Para as raçõs rprsntadas por 35 Cl + 1 H 1 H 35 Cl + 1 H (1) 35 Cl + 17 I 35 Cl 35 Cl + 17 I () valm os sguints dados: fator pré-xponncial
SISTEMA DE PONTO FLUTUANTE
Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,
Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e.
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação /08/0 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
Plano de Recuperação Semestral EF2
Série/Ano: 8º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Maio 2012 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Espaço Outra
Representação de Números no Computador e Erros
Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de y + az = a (a 2)x + y + 3z = 0 (a 1)y = 1 a
MAT457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de 018 Questão 1. Se a R, é correto afirmar que o sistema linear y + az = a (a x + y + 3z = 0 (a 1y = 1 a é: (a possível e indeterminado
Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.
Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva
Geometria Espacial (Exercícios de Fixação)
Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo
Mat. Professore: Gabriel Ritter Monitor: Fernanda Aranzate
Professore: PC Gabriel Ritter Monitor: Fernanda Aranzate Introdução à geometria espacial 31 ago RESUMO Na geometria espacial, trabalhamos em três dimensões. 1) Postulados de determinação 1.1) Determinação
/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P
26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: Apostila - 1ª Etapa 2018 Disciplina: Matemática - 8º Ano Página 1 de 11-7/6/2018-5:16 Página 2 de 11-7/6/2018-5:16 APOSTILA - PROGRAMA DE RECUPERAÇÃO PARALELA
1Q1. Considere o ponto A = (1, 2, 3), a reta r : x+1
Com exceção da Questão 15, em todas as questões da prova considera-se fixado um sistema de coordenadas Σ = (O, E), onde E é uma base ortonormal positiva. 1Q1. Considere o ponto A = (1, 2, 3), a reta r
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m
Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.
Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo
, ou seja, 8, e 0 são os valores de x tais que x e, Página 120
Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:
Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b
Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b MAT2457 - Álgebra Linear para Engenharia I Prova 1-10/04/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova
Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE
PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA
PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico
