Campo elétrico. Antes de estudar o capítulo PARTE I
|
|
|
- Kátia de Almada César
- 9 Há anos
- Visualizações:
Transcrição
1 PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa sobr a aprndizagm d cada tma Tmas principais do capítulo Domino o tma Vai sr fácil Vai sr difícil Analogia d com campo gravitacional Força létrica uniform Vja abaixo alguns trmos concitos qu você ncontrará no capítulo Marqu um X naquls qu você julga qu stão rlacionados à imagm X campo gravitacional trrstr linhas d força fito d borda Cadrno do studant FÍSICA Justifiqu suas scolhas Rsposta pssoal + 14
2 Capítulo 2 Sção 21 Sção 22 Trmos concitos ConCito D Campo létrico Campo létrico D CarGaS puntiforms Dfina os trmos ou concitos a sguir campo gravitacional trrstr linhas d força Campo gravitacional trrstr: spaço m torno da Trra no qual os corpos ali colocados fi cam sujitos à ação d forças : são linhas tangnts ao vtor m cada um dos sus pontos las são orintadas no sntido do vtor campo Guia d studo 1 48 Rvja o concito d compltando as frass abaixo Uma carga létrica puntiform fixa (Q ) origina, na rgião qu a nvolv, um campo d forças chamado Uma carga puntiform d prova (q) colocada num ponto dssa rgião fica sob ação d uma força létrica A carga létrica d prova (q) snt a prsnça da carga (Q ) por mio do qu a carga Q origina 2 Analogia d com campo gravitacional Compar os campos gravitacional létrico compltanto os spaços abaixo Campo gravitacional Força qu ag num corpo d prova d massa m colocado num ponto P do campo gravitacional da Trra: P 5 m fator scalar: fator vtorial: g m g Força qu ag numa carga létrica d prova q colocada num ponto P d um campo létrico: 5 q fator scalar: fator vtorial: S q 0, têm msmo sntido q Cadrno do studant FÍSICA S q, 0, têm sntidos opostos têm smpr a msma dirção 15
3 Dsnh as linhas d força do originado por uma carga puntiform positiva originado por uma carga puntiform ngativa Força létrica 49 a 54 Analis as afirmaçõs abaixo assinal V para as vrdadiras F para as falsas Dpois, rscrva as falsas corrigindo o qu for ncssário F S xist a prsnça d um m um ponto P, xist também nst ponto a prsnça d uma força létrica S xist a prsnça d um m um ponto P, só xistirá uma força létrica s m P for colocada uma carga d prova F O vtor produzido por uma carga ngativa é d afastamnto O vtor produzido m cada ponto por uma carga ngativa fixa é d aproximação Nomi os trmos da quação indiqu as unidads d mdida d cada um dos trmos no SI 5OqO 5 OqO 5 5 intnsidad da força létrica (N) valor absoluto da carga létrica (C) intnsidad do (N/C) Cadrno do studant FÍSICA Dsnh os vtors do parciais no ponto P, considrando o campo grado plas cargas Q 1 0, Q 2 Q, 0 Após fazr o dsnho, scrva a quação qu prmit ncontrar o campo rsultant no ponto P Q 1 2 P 1 Q Q 2 R
4 Capítulo 2 Sção 2 uniform Trmos concitos Dfina o trmo ou concito a sguir fito d borda ntr as placas fito d borda ntr as placas: considr o grado por duas placas parallas ltrizadas com cargas d sinais opostos Quando a distância ntr as placas não for dsprzívl, comparada com suas dimnsõs, a rgião das bordas das placas trá um não uniform, difrnt d sua rgião cntral, qu trá um campo uniform Guia d studo uniform 59 Rvja o concito d uniform compltando a fras a sguir uniform é aqul m qu o vtor é o msmo m todos os pontos Assim, m cada ponto, o vtor tm a, a o msma intnsidad msma dirção msmo sntido Caractriz os campos létricos uniforms compltando o diagrama a sguir Duas placas ltrizadas com cargas létricas d sinais opostos Para placas com distância dsprzívl comparada com suas dimnsõs Para placas com distância não dsprzívl comparada com suas dimnsõs Faça a conxão Campo uniform Campo não uniform nas bordas Os concitos d linhas d força foram introduzidos plo cintista inglês Michal Faraday Faça uma psquisa sobr a vida as contribuiçõs dss notávl psquisador Rsposta pssoal Michal Faraday, físico xprimntal inglês, é rsponsávl pla dscobrta da indução ltromagnética, sndo um dos Cadrno do studant física primiros psquisadors a studar as conxõs ntr a ltricidad o magntismo 17
5 PART I Capítulo 2 FCHANDO O CAPÍTULO Marqu um X na coluna qu mlhor rflt o su aprndizado d cada tma Dpois, compar sta tabla com a qu você prnchu no Ants d studar o capítulo Tmas principais do capítulo Já sabia tudo Aprndi sobr o tma Não ntndi Socorro!!! Analogia d com campo gravitacional Força létrica uniform S você não ntndu algum dsss tmas, rvja as atividads do Cadrno do studant rvis su livro-txto Quando for ncssário, pça ajuda a su profssor ou a um colga Rvja a sgunda atividad do Ants d studar o capítulo ravali as suas scolhas S julgar ncssário, scrva novas justificativas compar-as com suas considraçõs iniciais Na fi gura tmos a rprsntação das linhas d força do campo grado por duas cargas létricas puntiforms d msmo valor absoluto sinais contrários As linhas d força prmitm visualizar um Sinttiz Rsuma as principais idias do capítulo, aprsntando o concito d campo létrico analisando o grado por uma carga létrica puntiform por divrsas cargas Rsposta pssoal Uma carga létrica ou uma distribuição d cargas origina, na rgião qu a nvolv, um campo d forças dnominado A cada ponto do campo associa-s uma grandza vtorial dnominada vtor O sntido dss vtor dpnd da carga qu o grou sua intnsidad é 5 q ou 5 k Q 0 d sua dirção é smpr radial O vtor rsultant m um 2 R ponto P, dvido à prsnça d n cargas létricas, é dado pla soma R n Cadrno do studant FÍSICA 18
18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo
Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo
3. Geometria Analítica Plana
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,
Atrito Fixação - Básica
1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra
ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES
LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não
TRABALHO DA FORÇA ELÉTRICA I) RESUMO DAS PRINCIPAIS FÓRMULAS E TEORIAS: A) TABELA -------------------------------------------------------------------------------------------------------------------------------
Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.
Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos
PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA
PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico
Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período
Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W
Lista 2 - Campo Elétrico e Potencial Elétrico Terceiros anos Etec. estão
Lista - ampo létrico Potncial létrico Trciros anos tc. (G - ifsul 07) As cargas létricas puntiforms q 0 μ q 4 μ stão 9 fixas no vácuo 0 k 9 0 Nm, rspctivamnt nos pontos A B, conform a figura a sguir. om
Processo Avaliativo TRABALHO - 1º Bimestre/2017 Disciplina: Física A 2ª série EM A Data: Nome do aluno Nº Turma
Procsso Avaliativo TRABALHO - 1º Bimstr/2017 Disciplina: Física A 2ª séri EM A Data: Nom do aluno Nº Turma Atividad Avaliativa: A atividad dv sr rspondida ENTREGUE. Todas as qustõs, dvm contr as rsoluçõs,
FUNÇÃO REAL DE UMA VARIÁVEL REAL
Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor
Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1
Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo
Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.
AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações
Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
a) 10 x 10 2 V b) 6 x 10 2 V c) 8 x 10 2 V d) 1,5 x 10 2 V e) 2 x 10 2 V
Aprimorano os Conhcimntos Eltricia Lista 4 Potncial Elétrico Enrgia Potncial Elétrica Euilíbrio Elétrico os Conutors Prof.: Célio Normano 1. (.C.SAL-BA) Num tubo TV, os létrons são aclraos m irção à tla,
= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:
Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors
/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P
26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.
Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo
Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:
Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA
Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.
Aula Expressão do produto misto em coordenadas
Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto
RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180
Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto
ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.
Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos
Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE
Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.
Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar
Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I
Idntifiqu todas as folhas Folhas não idntificadas NÃO SERÃO COTADAS Faculdad d Economia Univrsidad Nova d Lisboa EXAME DE CÁLCULO I Ano Lctivo 8-9 - º Smstr Eam Final d ª Época m d Janiro 9 Duração: horas
1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?
Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos
Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE
- Função Exponencial - MATEMÁTICA
Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo
Representação de Números no Computador e Erros
Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................
Adriano Pedreira Cattai
Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo
Ori Junior. Ano: 3º Turma: Turno: Data: / / Listão Física Geral (3º ANO)
Profssor(a): Ori Junior Aluno(a): CPMG MAJOR OSCAR ALVELOS Ano: 3º Turma: Turno: Data: / / Listão Física Gral (3º ANO) Procdimnto d ralização: - Lista rspondida m papl almaço dvrá contr cabçalho complto
Segunda Prova de Física Aluno: Número USP:
Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá
Capítulo 1 ELETROSTÁTICA
Capítulo 1 ELETROSTÁTICA 1.1 Introdução No século VI A.C., na Grécia Antiga, o grgo Thals d Milto dscobriu uma rsina fóssil (o âmbar), cujo nom m grgo é lktron, qu adquiria a propridad d atrair corpos
Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada
Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é
Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano
DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014
5.10 EXERCÍCIO pg. 215
EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção
Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas
Planificação d Ciências Naturais 9.ºAno Altraçõs climáticas Inês Hnriqus Sandra Mnds Tma: Biosfra Aula n.º: 1 Duração: 90 minutos Introdução à unid Altraçõs climáticas. Biosfra, concito importância. Dgração
Calor Específico. Q t
Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a
ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia
Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,
Departamento Curricular do 1º Ciclo - Critérios Específicos de Avaliação pág - 1
AVALIAÇÃO nquadramnto lgal Dcrto -Li n.º 139/2012, d 5 d julho, altrado plos: Dcrto -Li n.º 91/2013, d 10 d julho, Dcrto -Li n.º 176/2014, d 12 d Dzmbro, Dcrto -Li n.º 17/2016, d 4 d abril. Dspacho-Normativo
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam
ANÁLISE CUSTO - VOLUME - RESULTADOS
ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs
Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2
Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )
Laboratório de Física
Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação
FUNÇÕES DE UMA VARIÁVEL COMPLEXA
FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor
Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:
Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários
Critérios de Avaliação Estudo do Meio
1º CICLO 3º ANO 2018/2019 Critérios d Avaliação Estudo do Mio Domínios Insuficint Suficint Bom É pouco assíduo nm smpr pontual Às vzs não rspita as rgras da comunicação oral Cumpr quas smpr as rgras da
