Canguru Matemático sem Fronteiras 2018
|
|
|
- Paulo Molinari Melgaço
- 7 Há anos
- Visualizações:
Transcrição
1 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial pod sr rproduzido apnas com autorização do Canguru Matmático Não pods usar calculadora. Em cada qustão dvs assinalar a rsposta corrta. As qustõs stão agrupadas m três nívis: Problmas d 3 pontos, Problmas d 4 pontos Problmas d 5 pontos. Inicialmnt tns 24 pontos. Por cada qustão corrta ganhas tantos pontos quantos os do nívl da qustão, no ntanto, por cada qustão rrada és pnalizado m 1/4 dos pontos corrspondnts a ssa qustão. Não és pnalizado s não rspondrs a uma qustão, mas inflizmnt também não adicionas pontos. Problmas d 3 pontos 1. Oqusobtémstrocarmosntrsiascorsnafiguraaolado? 2. A Alic dsnhou um caminho qu liga as joaninhas da figura ao lado, sguindo a ordm crscnt do númro d pintas das suas asas. S la comçou na joaninha com uma só pinta, qual foi a figura qu la dsnhou? DEPARTAMENTO DE MATEMÁTICA
2 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II 3. A Marta colou várias strlas d quatro pontas como sta para obtr a figura ao lado. No mínimo, quantas strlas colou a Marta? A piza da figura ao lado foi cortada m fatias iguais. Quantas fatias já foram rtiradas? Canguru Matmático. Todos os diritos rsrvados. Est matrial pod sr rproduzido apnas com autorização do Canguru Matmático Na figura vmos cangurus qu stão m dois parqus. Quantos cangurus dvm sr movidos d um parqu para o outro para ficar o msmo númro d cangurus nos dois parqus? Na figura abaixo vmos 5 joaninhas. Qu joaninha tm d sr rtirada para qu no final a soma das pintas das asas sja igual a 20? 7. A Emília construiu algumas torrs sguindo o padrão indicado ao lado. Qual foi a décima sxta torr a sr construída?? Alunos do 3. o ano d scolaridad 2
3 Canguru Matma tico sm Frontiras 2018 Catgoria: Mini-Escolar - nı vl II 8. O bb Tiago mpilhou va rias argolas obtv o brinqudo rprsntado na figura ao lado. Quantas argolas qu l v s olhar para o brinqudo d cima? Canguru Matmático. Todos os diritos rsrvados. Est matrial pod sr rproduzido apnas com autorização do Canguru Matmático Problmas d 4 pontos 9. A Uxa, uma bruxa simpa tica, tm 5 vassouras spalhadas na sua garagm, como s pod vr na figura abaixo. S la rtirar as vassouras uma a uma sm mxr nas rstants, qu vassoura rtira m u ltimo lugar? A B C D E 10. Os dois quadros transparnts rprsntados na figura abaixo sa o colocados um por cima do outro. Qual das figuras sguints s pod obtr? 11. O Pdro dsnhou um padra o duas vzs, como s pod vr na figura abaixo. B A D E C S l dsnhar novamnt o msmo padra o, qu ponto vai star no su dsnho? A B Alunos do 3.o ano d scolaridad C D E 3
4 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II 12. A Luísa tm as quatro pças rprsntadas na figura abaixo para compltar o puzzl da figura ao lado, mas só vai prcisar d 3. Qu pça não vai sr ncssária? Canguru Matmático. Todos os diritos rsrvados. Est matrial pod sr rproduzido apnas com autorização do Canguru Matmático A B C D CouD 13. A Diana stava a lançar stas a um alvo. No primiro lançamnto la obtv 6 pontos com as 3 stas colocadas no alvo, como s pod vr na figura da squrda. No sgundo lançamnto obtv 8 pontos com a jogada rprsntada na figura do cntro. S a figura da dirita rprsntar o rsultado do su trciro lançamnto, quantos pontos obtv la dssa vz? 6 pontos 8 pontos?? pontos O cão rprsntado nas figuras abaixo qur ir comr o osso qu tm à sua spra, mas para isso tm d prcorrr um dos caminhos indicados nas figuras. Sabndo qu nos cruzamntos vai tr d virar xatamnt 3 vzs à dirita 2 vzs à squrda, qual é o caminho qu l vai tr d scolhr? 15. Quantas das mãos dsnhadas na figura podm rprsntar a tua mão dirita? Alunos do 3. o ano d scolaridad 4
5 Canguru Matma tico sm Frontiras 2018 Catgoria: Mini-Escolar - nı vl II Canguru Matmático. Todos os diritos rsrvados. Est matrial pod sr rproduzido apnas com autorização do Canguru Matmático 16. O Carlos cortou uma corda m 3 bocados iguais dpois du alguns no s iguais m cada bocado. Qu figura pod rprsntar os tr s bocados d corda? Problmas d 5 pontos 17. No jardim ncantado da Matma tica, o nu mro d dunds qu s podm abrigar dbaixo d um cogumlo igual ao nu mro d pintas qu o chap u do cogumlo tm. Na figura abaixo vmos um dos lados dos chap us dos cogumlos dst jardim sabmos qu o outro lado do chap u tm xatamnt o msmo nu mro d pintas. S stivrm 30 dunds no jardim num dia d chuva, quantos dunds na o ira o consguir abrigar-s dbaixo dos cogumlos? Na Glataria Canguru um glado custa 1 uro, mas agora ha uma promoc a o sis glados custam 5 uros. Qual o maior nu mro d glados qu pods comprar com 36 uros? Quantos nu mros maiors do qu 10 mnors do qu 25, com algarismos difrnts, s podm obtr usando dois dos algarismos 2, 0, 1 8? Um pirata tm duas arcas do tsouro. A arca da squrda tm 10 modas a da dirita sta vazia. Comc ando amanha, o pirata vai colocar todos os dias uma moda na arca da squrda duas modas na arca da dirita. Ao fim d quantos dias as duas arcas tra o o msmo nu mro d modas? 5 8 Alunos do 3.o ano d scolaridad Nunca 5
6 Canguru Matma tico sm Frontiras 2018 Catgoria: Mini-Escolar - nı vl II 21. A Sofia tm 3 pdac os d papl brancos, 2 prtos 2 cinzntos. Ela corta cada pdac o qu na o sja prto ao mio. D sguida, corta cada pdac o qu na o sja branco ao mio. No final, com quantos bocados d papl qu a Sofia fica? Canguru Matmático. Todos os diritos rsrvados. Est matrial pod sr rproduzido apnas com autorização do Canguru Matmático 22. O Migul tm alguns paus d glado d comprimnto 5 cm largura 1 cm, com os quais fz a construc a o qu sta ilustrada na figura abaixo. Qual o comprimnto dsta construc a o? 20 cm 21 cm 22 cm 23 cm 23. A strada qu liga as casas da Ana da Maria tm 16 km. A strada qu liga a casa da Maria com a casa do Joa o tm 20 km a strada qu liga o cruzamnto das duas stradas com a casa da Maria tm 9 km. Quantos quilo mtros tm a strada ntr as casas da Ana do Joa o? 7 km 9 km 11 km 25 cm Maria Ana João 16 km 18 km 24. O Nuno comprou alguns brinqudos. Sabmos qu os prc os dls vrificam as sguints igualdads:,. Qual foi o brinqudo mais barato qual foi o mais caro? Alunos do 3.o ano d scolaridad 6
Canguru Matemático sem Fronteiras 2018
Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Não pods usar calculadora. Em cada qustão dvs assinalar
Canguru Matemático sem Fronteiras 2018
Canguru Matmático sm Frontiras 208 Catgoria: Mini-Escolar - nívl III Dstinatários: alunos do 4. o ano d scolaridad Nom: Turma: Duração: h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos do 2. o ano de escolaridade Nome: Turma: Duração: 1h 15min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:
Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam
1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?
Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos
Canguru Matemático sem Fronteiras 2015
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 3. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:
Curso d Engnharia Química Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EQ3M Smstr: 1 sm/2017 Data: 27/04/2017 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES
TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.
Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES PÁGINA 26 16 A) COMBINAÇÃO SIMPLES Bca possui 12 pars d sapatos dos quais la vai scolhr 5 pars. Algumas das maniras são rprsntadas plas imagns abaixo: 5 pars
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL 01 RESOLUÇÕES voc PÁGINA 5 58 25 É imdiato qu a probabilidad pdida é igual a 1 8 voc 59 LETRA C O númro total d qustõs é dado por 125 + 98 + 40 + 25 798 Q A probabilidad d Camilla
COLÉGIO OBJETIVO JÚNIOR
COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você
2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo
Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é
v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?
12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos
Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.
Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois
3. Geometria Analítica Plana
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,
TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS Sit: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmática A º Ano Fichas d Trabalho Compilação Tma
UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
Enunciados equivalentes
Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................
RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180
Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto
Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE
INTRODUÇÃO À ESTATÍSTICA
INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,
Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e.
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação /08/0 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada
Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além
Canguru Matemático sem Fronteiras 2014
Canguru Matemático sem Fronteiras 014 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão
Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:
Curso d Engnharia Química Disciplina: Física I Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EQ2M Smstr: 2 sm/2016 Data: 25/11/2016 Avaliação: 2 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES
Representação de Números no Computador e Erros
Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
λ, para x 0. Outras Distribuições de Probabilidade Contínuas
abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl
Conteúdos Exame Final e Avaliação Especial 2017
Componnt Curricular: Matmática Ano: 7º ANO Turma: 17 D. Profssora: Frnanda Schldr Hamrski Contúdos Exam Final Avaliação Espcial 2017 1. Númros Racionais 2. Ára prímtro d figuras planas 3. Ára do círculo
ATIVIDADES RECUPERAÇÃO PARALELA
ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno
Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano
Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa
/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P
26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ
ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.
soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,
5.10 EXERCÍCIO pg. 215
EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
EXAME NACIONAL MATEMÁTICA
MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL DE MATEMÁTICA 3.º CICLO DO ENSINO BÁSICO 2007 Prova 23 1.ª Chamada 16 páginas Duração da prova: 90 minutos Critérios d Classificação Dcrto-Li n.º 6/2001, d 18 d Janiro,
Solução da equação de Poisson 1D com coordenada generalizada
Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno
2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)
Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas
Explorar o poder dos homens e das mulheres sobre os recursos
Frramntas para apoiar a transformação das comunidads A2 ACTIVIDADES PARA REVELAR PROBLEMAS ESCONDIDOS Explorar o podr dos homns das mulhrs sobr os rcursos Porquê utilizar sta actividad? Esta frramnta ajuda
Segunda Prova de Física Aluno: Número USP:
Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá
UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia
UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção
Processo Avaliativo TRABALHO - 1º Bimestre/2017 Disciplina: Física A 2ª série EM A Data: Nome do aluno Nº Turma
Procsso Avaliativo TRABALHO - 1º Bimstr/2017 Disciplina: Física A 2ª séri EM A Data: Nom do aluno Nº Turma Atividad Avaliativa: A atividad dv sr rspondida ENTREGUE. Todas as qustõs, dvm contr as rsoluçõs,
Canguru Matemático sem Fronteiras 2012
Canguru Matemático sem Fronteiras 01 http://www.mat.uc.pt/canguru/ Categoria: Mini-Escolar - nível II Destinatários: alunos do 3. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora.
ANÁLISE CUSTO - VOLUME - RESULTADOS
ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs
Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE
PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem
PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa
Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE
Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 2
Matrial Tórico - Módulo Triângulo tângulo, Lis dos ossnos dos Snos, Poĺıgonos gulars laçõs Métricas m Poĺıgonos gulars - Part Nono no utor: Prof. Ulisss Lima Parnt visor: Prof. ntonio aminha M. Nto 3 d
A relação formal (parataxe ou hipotaxe) é assegurada pelas conjunções (no caso da coordenação e da subordinação).
Rita Vloso - matriais d PPE Faculdad d Ltras da Univrsida d Lisboa Cosão intrfrásica assgurada por procssos d squncialização qu xprimm vários tipos d intrdpndência smântica das frass qu ocorrm na suprfíci
Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO
www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo
Canguru Matema tico sem Fronteiras 2013
Canguru Matema tico sem Fronteiras 2013 http://www.mat.uc.pt/canguru/ Destinata rios: alunos dos 7.o e 8.o anos de escolaridade Durac a o: 1h 30min Nome: Turma: Na o podes usar calculadora. Em cada questa
RI406 - Análise Macroeconômica
Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica
Algumas distribuições de variáveis aleatórias discretas importantes:
Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad
4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)
4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 4. o ano de escolaridade Nome: Turma: Duração: h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. s questões
SISTEMA DE PONTO FLUTUANTE
Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,
Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2
Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )
ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon
NORMA BRASILEIRA ABNT NBA 6027 Sgunda dição 11.12.2012 Válida a partir d 11.01.201 3 Informação documntação - Sumário - Aprsntação lnformation and documntatíon - Contnts físt - Prsntatíon ICS 01.140.20
