BANCO DE EXERCÍCIOS - 24 HORAS
|
|
|
- Derek Arthur Amorim Peralta
- 9 Há anos
- Visualizações:
Transcrição
1 BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 14 EXERCÍCIOS 01) A figura abaixo mostra um semicírculo com diâmetro O AB = 1. Sabendo-se que o arco AC mede 135 e D é o ponto médio da corda AC, podemos afirmar que a área sombreada delimitada por CD, BD e arco BC vale: a) 4π b) 4,5π c) 5π d) 5,5π e) 6π 0) A figura abaixo mostra um hexágono regular ABCDEF de 4 cm de perímetro Se M e N são os pontos médios de CD e AE, respectivamente, a área do triângulo MBN em cm é: a) 10 3 b) 1 3 c)18 d) 14 3 e) 0 03) ACDE é um quadrado e ABC, um triângulo retângulo. A área do quadrilátero ABCO é: a) 18 b) 4 c) 30 d) 36 e) 40 04) O triângulo ABC da figura ao lado, tem área igual a 48 cm. A área do hexágono EMDHFG, em cm é: a) 18 b) 0 c) d) 4 e) 30 05) No semicírculo de centro O com diâmetro AB = 1 cm, o Arco AC = 135 e D é o ponto médio do arco AC. A área sombreada delimitada por CD, BD e arco BC é igual a: a) 4π b) 4,5π c) 5π d) 5,5π e) 6π
2 06) O perímetro do quadrado ABCD, onde E, F, G e H são pontos médios dos lados é igual a 1 5 cm. O área do octógono convexo em destaque abaixo é em cm : a) 15/16 b) 1/13 c) 16/17 d) 14/15 e) 9/10 07) A figura abaixo consta de um hexágono formado por 4 triângulos equiláteros de lado 1. A área sombreada é formada por três triângulos equiláteros de tamanhos distintos entre si. Se S é a área sombreada e B é a área não sombreada do hexágono, o valor de B S é a) 11 4 b) 15 4 c) 9 11 d) e) 9 4 BM 08) Tem-se o quadrado de vértices ABCD com lados medindo k cm. Sobre AB marca-se M, de modo que AM =. 3 Sendo N o simétrico de B em relação ao lado CD, verifica-se que MN corta a diagonal AC em P. Em relação à área ABCD, a área do triângulo PBC equivale a: a) 18% b) 4% c) 7% d) 30% e) 36% 09) No triângulo ABC da figura, M é ponto médio de AB e P e Q são pontos dos lados BC e AC, respectivamente, tais que BP = AQ = a e PC = QC = 4a. Os segmentos AP, BQ e CM interceptam-se no ponto O e a área do triângulo BOM é 5 cm. Dessa forma, a área do triângulo BOP, assinalado na figura, é igual a a) 5 cm. b) 6 cm. c) 8 cm. d) 9 cm. e) 10 cm. 10) O mapa de uma região utiliza a escala de 1: A porção desse mapa, contendo uma Área de Preservação Permanente (APP), está representada na figura, na qual AF e DF são segmentos de reta, o ponto G está no segmento AF, o ponto E está no segmento DF, ABEG é um retângulo e BCDE é um trapézio. Se AF = 15, AG = 1, AB = 6, CD = 3 e DF = 5 5 indicam valores em centímetros no mapa real, então a área da APP é a) 100 km b) 108 km c) 10 km d) 40 km e) 444 km 11) A figura abaixo representa um octógono regular tal que CH = 6 cm. A área desse polígono, em cm, é igual a a) 56( 1) b) 64( 1) c) 7( 1) d) 80( 1) e) 90 ( 1)
3 3 1) Com o objetivo de prevenir assaltos, o dono de uma loja irá instalar uma câmera de segurança. A figura a seguir representa uma planta baixa da loja, sendo que a câmera será instalada no ponto C e as áreas hachuradas representam os locais não cobertos por essa câmera. De acordo com essas informações, a área a ser coberta pela câmera representa, aproximadamente, a) 90,90% da área total da loja. d) 96,14% da área total da loja. b) 91,54% da área total da loja. c) 95,45% da área total da loja. e) 97,% da área total da loja. 13) A figura abaixo é formada por oito semicircunferências, cada uma com centro nos pontos médios dos lados de um octógono regular de lado. A área da região sombreada é a) 4π b) 4π c) 4π d) 4π e) 4π ) A figura abaixo mostra um quadrilátero ABCD com E ponto médio de AC e BE paralela a AD. Se a área do triângulo ABC = 1 e área do triângulo BCD = 4, a área de quadrilátero ABCD é: a) 6 b) 6,5 c) 7 d) 8 e) 9 15) A Jornada Mundial da Juventude (JMJ) aconteceu no Rio de Janeiro, em julho de 013, e atraiu visitantes do Brasil e de vários outros países. Segundo a Prefeitura do Rio, 3, milhões de pessoas compareceram à cerimônia de encerramento da JMJ, que ocorreu na Praia de Copacabana. (folha.uol.com.br/poder/013/07/ calculo-oficial-de-3-milhoes-de-pessoasem-copacabana-e-superestimado-diz-datafolha.shtml Acesso em: Adaptado) A área da superfície ocupada pelas pessoas que compareceram à cerimônia de encerramento da JMJ equivale à área da superfície de cerca de N campos de futebol do estádio do Maracanã. Sabendo-se que o campo de futebol do Maracanã tem forma retangular com dimensões de 105 metros por 68 metros e adotando-se que, em uma concentração de grande porte como essa, um metro quadrado é ocupado por 4 pessoas, em média; então, considerando os dados apresentados, o número inteiro positivo mais próximo de N será a) 45. b) 57. c) 11. d) 136. e) 144.
4 4 16) Na figura abaixo, ABCDE é um pentágono regular de lado a e AB = BC = CD = DE = EA são arcos de circunferência cujo raio mede a. Assim, a área hachurada nessa figura, em função de a, é igual a 5a æp 3 ö a) ç - b) 5a çè3 ø æ ö ç - çè3 ø p 3 a 4 c) ( 4p - 5 3) d) a ( 4 5 3) p - e) 5a (3π 5 ) 17) O mosaico da figura adiante foi desenhado em papel quadriculado 1 x 1. A razão entre a área da parte escura e a área da parte clara, na região compreendida pelo quadrado ABCD, é igual a a) 1 b) 1 3 c) 3 5 d) 5 7 e) ) A figura abaixo mostra uma semicircunferência de centro O e diâmetro AC. Em seu interior encontram-se duas semicircunferências de centros O 1 e O tangentes entre si. A medida do segmento BC é um quarto da medida do segmento AC. A razão entre a área da circunferência de diâmetro BD e da semicircunferência de centro O é a) 3 3 b) c) 5 d) 5 e) ) Para preparar biscoitos circulares, após abrir a massa formando um retângulo de 0 cm de largura por 40 cm de comprimento, dona Maria usou um cortador circular de 4 cm de diâmetro, dispondo-o lado a lado várias vezes sobre toda a massa para cortar os biscoitos, conforme a figura. Considere que: os círculos que estão lado a lado são tangentes entre si e completam todo o retângulo com o padrão apresentado; os círculos das bordas são tangentes aos lados do retângulo. Com a sobra de massa, dona Maria abre um novo retângulo, de mesma espessura que o anterior, para cortar mais biscoitos. Assim sendo, desconsiderando a espessura da massa, as dimensões desse novo retângulo podem ser Dados: área do círculo de raio r: A = πr ; adote: π = 3 a) 8 cm x 30 cm. b) 8 cm x 5 cm. c) 9 cm x 4 cm. d) 10 cm x cm. e) 10 cm x 1 cm.
5 5 0) O SBT, em parceria com a Nestlé, criou um novo programa de perguntas e respostas chamado UM MILHÃO NA MESA. Nele o apresentador Silvio Santos faz perguntas sobre temas escolhidos pelos participantes. O prêmio máximo é de R$ ,00 que fica, inicialmente, sobre uma mesa, distribuídos em 50 pacotes com cédulas de R$ 0,00 cada um. Cada cédula de R$ 0,00 é um retângulo de 14 cm de base por 6,5 cm de altura. Colocando todas as cédulas uma ao lado da outra, teríamos uma superfície de: a) 415 m b) 40 m c) 45 m d) 455 m e) 475 m 1) Jorge quer instalar aquecedores no seu salão de beleza para melhorar o conforto dos seus clientes no inverno. Ele estuda a compra de unidades de dois tipos de aquecedores: modelo A, que consome 600 g/h (gramas por hora) de gás propano e cobre 35 m de área, ou modelo B, que consome 750 g/h de gás propano e cobre 45 m de área. O fabricante indica que o aquecedor deve ser instalado em um ambiente com área menor do que a da sua cobertura. Jorge vai instalar uma unidade por ambiente e quer gastar o mínimo possível com gás. A área do salão que deve ser climatizada encontra-se na planta seguinte (ambientes representados por três retângulos é um trapézio). Avaliando-se todas as informações, serão necessários a) quatro unidades do tipo A e nenhuma unidade do tipo B. b) três unidades do tipo A e uma unidade do tipo B. c) duas unidades do tipo A e duas unidades do tipo B. d) uma unidade do tipo A e três unidades do tipo B. e) nenhuma unidade do tipo A e quatro unidades do tipo B. ) Conforme a figura abaixo, A é o ponto de tangência das circunferências de centros C 1, C e C 3. Sabe-se que os raios dessas circunferências formam uma progressão geométrica crescente. Se os raios das circunferências de centros C 1 e C medem, respectivamente, r e 3r, então a área da região sombreada vale, em unidades de área, a) 55 πr b) πr c) 61 8 πr d) 8 πr e) 9 8 πr 3) A figura abaixo representa o logotipo que será estampado em 450 camisetas de uma Olimpíada de Matemática realizada entre os alunos do Colégio Alfa. Essa figura é formada por um círculo de centro O inscrito num triângulo isóscele cuja base BC mede 4 cm e altura relativa a esse lado mede 16 cm. O círculo será pintado com tinta cinza e sabe-se que é necessário, exatamente, 1 pote de tinta cinza para pintar 5400 cm. Adote π = 3 Com base nesses dados, é correto afirmar que o número de potes necessários para pintar o círculo em todas as camisetas é igual a a) 9 b) 10 c) 11 d) 1 e) 13
6 6 4) Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa grande, a empresa produz 4 tampas médias e 16 tampas pequenas. Área do círculo: πr As sobras de material da produção diária das tampas grandes, médias e pequenas dessa empresa são doadas, respectivamente, a três entidades: I, II e III, para efetuarem reciclagem do material. A partir dessas informações, pode-se concluir que a) a entidade I recebe mais material do que a entidade II. b) a entidade I recebe metade de material do que a entidade III. c) a entidade II recebe o dobro de material do que a entidade III. d) as entidades I e II recebem, juntas, menos material do que a entidade III. e) as três entidades recebem iguais quantidades de material. 5) As regras que normatizam as construções em um condomínio definem que a área construída não deve ser inferior a 40% da área do lote e nem superior a 60% desta. O proprietário de um lote retangular pretende construir um imóvel de formato trapezoidal, conforme indicado na figura. Para respeitar as normas acima definidas, assinale o intervalo que contém todos os possíveis valores de x. a) [6, 10] b) [8, 14] c) [10, 18] d) [16, 4] e) [1, 4] 6) Em um treinamento da arma de Artilharia, existem 3 canhões A, B e C. Cada canhão, de acordo com o seu modelo, tem um raio de alcance diferente e os três têm capacidade de giro horizontal de Sabendo que as distâncias entre A e B é de 9 km, entre B e C é de 8 km e entre A e C é de 6 km, determine, em km, a área total que está protegida por esses 3 canhões, admitindo que os círculos são tangentes entre si. a) 3 π b) π c) π d) π e) π 7) As disputas de MMA (Mixed Martial Arts) ocorrem em ringues com a forma de octógonos regulares com lados medindo um pouco menos de 4 metros, conhecidos como Octógonos. Medindo o comprimento exato de seus lados, pode-se calcular a área de um Octógono decompondo-o, como mostra a figura a seguir, em um quadrado, quatro retângulos e quatro triângulos retângulos e isósceles. A medida do lado do quadrado destacado no centro da figura é igual à medida a do lado do Octógono. Se a área desse quadrado é S, então a área do Octógono vale a) S( + 1). c) S( + 1). e) 4S( + 1). b) S( + ). d) S( + ).
7 7 8) Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo. 1) Dobrar o papel ao meio, para marcar o segmento MN, e abri-lo novamente: ) Dobrar a ponta do vértice B no segmento AB, de modo que B coincida com o ponto P do segmento MN: 3) Desfazer a dobra e recortar o triângulo ABP. A área construída da bandeirinha APBCD, em cm, é igual a: a) 5 (4 3) b) 5 (6 3) c) 50 ( 3 ) d) 50 (3 3) e) 50 (3 )
ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)
DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,
CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO
CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 1 GABARITO COMENTADO 1) OBS: Dado um trapézio, quando traçamos as diagonais, o mesmo fica decomposto em triângulos
ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:
ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,
2. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Utilize 1,7 como aproximação para 3.
1. A soma das medidas dos ângulos internos de um triângulo é 180º. A soma das medidas dos ângulos internos de um hexágono é: a) 180º b) 360º c) 540º d) 70º e) 900º 4. (Enem 013) Em um sistema de dutos,
A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d)
1 Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo 1 Dobrar o papel ao meio, Dobrar a ponta
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
MATEMÁTICA. 3 o Série Prof. Tiago. Aluno (a): Nº. a) 50,24 m² b) 25,12 m² c) 12,56 m² d) 100,48 m² e) 200,96 m². a) 50m 2
p s MATEMÁTICA o Série Prof. Tiago Lista: 01 Data: 16 / 07 / 019 Aluno (: Nº A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central. Para = 60º,
ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS
1 MATEMÁTICA III º ANO ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS 1. Após assistir ao programa Ecoprático, da TV Cultura, em que foi abordado o tema do aproveitamento da iluminação e da ventilação
a) 64. b) 32. c) 16. d) 8. e) 4.
GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A
Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF
ÁREAS. Segmento: ENSINO MÉDIO. 06/2018 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS. 20 m. 30 m. 40 m. 50 m
Segmento: ENSINO MÉDIO Disciplina: MAT-GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/018 Turma: A ÁREAS 1) O quintal da casa de Manoel é formado por cinco quadrados ABKL, BCDE, BEHK,
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.
Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
Área das figuras planas
AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Lista de Exercícios - Geometria Plana (1.ºAno)
Lista de Exercícios - Geometria Plana (1.ºAno) Questão 1:(G1 - cps 2014) A Jornada Mundial da Juventude (JMJ) aconteceu no Rio de Janeiro, em julho de 2013, e atraiu visitantes do Brasil e de vários outros
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos
Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a
Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto,
Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a
Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto,
LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI
01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120
Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a
Professor: Pedro Ítallo 01 - (UFSCar SP) Em um terreno retangular com 0 m de comprimento por 15 m de largura, foi feito um gramado com área igual a 1 4 da área de um círculo de 10 m de raio, conforme mostra
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS R p R R α R 10 cm 72º = - A segmento = A setor - A triângulo 60º 60º 12 12 60º a b a S S c e e d d b c 1 2 3 4 Lado = 1 área = 1 Lado
QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?
/ /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale
MATEMÁTICA - 1 o ANO MÓDULO 60 ÁREAS: POLÍGONOS
MATEMÁTICA - 1 o ANO MÓDULO 60 ÁREAS: POLÍGONOS h b l d l h b b B h B b D d l d l b h b a c a α b l h l l A B C a D E l l l l l l l Como pode cair no enem (ENEM) O tangram é um jogo oriental antigo, uma
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que
Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo
2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.
1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto
20/12/2017 ATIVIDADE DE AVALIAÇÃO FINAL
Geometria Gilberto Gualberto 9º 0/1/017 ATIVIDADE DE AVALIAÇÃO FINAL 1. A figura abaixo apresenta duas circunferências concêntricas, uma de raio m e outra de raio 4 m. Calcule a área da parte hachurada
Grupo de exercícios II.2 - Geometria plana- Professor Xanchão
Grupo de exercícios II. - Geometria plana- Professor Xanchão 1. (Pucrj 015) A medida da área, em círculo de raio igual a 5 cm é? a) 0 b) 5 c) 5 d) 50 e) 50 cm, de um quadrado que pode ser inscrito em um.
2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro
ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer
2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro
ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer
1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):
EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
CENTRO EDUCACIONAL SESC CIDADANIA
CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Geometria Plana aplicada na FGV e INSPER
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Geometria Plana aplicada na FGV e INSPER Questão 01 - (FGV /2016) O triângulo ABC possui medidas conforme indica a figura a seguir. A área
Lista de exercícios Prof. Ulisses Motta
Lista de exercícios Prof. Ulisses Motta 1. (Ufpe) Na figura a seguir, os retângulos ABCD e A'B'C'D' têm o mesmo centro e lados iguais a 5 cm e 9 cm. Qual o diâmetro da maior circunferência contida na região
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também
3º Bimestre. Geometria. Autor: Leonardo Werneck
3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 POLÍGONOS REGULARES INSCRITOS E CIRCUNSCRITOS NA CIRCUNFERÊNCIA... 4 1. Polígono Regular Inscrito na Circunferência... 4. Polígono Regular Circunscrito
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos
Lista de exercícios 06 Aluno (a):
Lista de exercícios 06 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Geometria euclidiana plana Antes de iniciar a lista de exercícios leia atentamente as seguintes
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe
PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.
PÁG0 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão 1 Daniel tem ração suficiente para alimentar quatro galinhas durante 18 dias No fim do 6 o
GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.
1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF
Geometria Gilberto Gualberto 9º 21/12/2016 ATIVIDADE DE AVALIAÇÃO FINAL. Geometria - 9 Ano- Prof Gilberto Gualberto
Geometria Gilberto Gualberto 9º 1/1/016 ATIVIDADE DE AVALIAÇÃO FINAL Geometria - 9 Ano- Prof Gilberto Gualberto 1. Uma folha de papel retangular foi dobrada como mostra a figura abaixo. De acordo com as
Áreas IME (A) (B) (C) (D) 104 (E) e 2
Áreas IME 1. (IME 010) Seja ABC um triângulo de lados AB, BC e AC iguais a 6, 8, e 18, respectivamente. Considere o círculo de centro O isncrito nesse triângulo. A distância AO vale: 104 (A) 6 104 (B)
GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:
Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,
AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm)
LISTA GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 8. Na figura, a reta r é tangente às circunferências de centros A e B e raios cm e cm, respectivamente, nos pontos C e D, e a distância entre os centros
Roteiro Recuperação Geometria 3º trimestre- 1º ano
Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num
Geometria Plana Exercícios de Áreas e Razão entre Áreas
Prof. Marcelo ampos Silva - [email protected] Geometria Plana Exercícios de Áreas e Razão entre Áreas 0 - s figuras abaixo representam, respectivamente, um terreno com área de.000 m e uma maquete do
CADERNO DE EXERCÍCIOS 9
MATEMÁTICA Capítulo 1 Triângulo Retângulo e Triângulo Qualquer Nível 01 Os observadores A e B vêem um balão sob ângulos de 0º e 45º, como mostra a figura. Sabendo-se que a distância entre eles é de 100m,
Resolução de Questões 9º Ano Áreas Prof. Túlio. Aplicação: Turmas A e C
Resolução de Questões 9º Ano Áreas Prof. Túlio Aplicação: Turmas A e C 1. Para decorar a fachada de um edifício, um arquiteto projetou a colocação de vitrais compostos de quadrados de lado medindo 1m,
CIRCUNFERÊNCIA E CÍRCULO
IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em
Unidade 6 Geometria: polígonos e circunferências
Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..
01) (OBMEP 2016 N1Q04 1ª fase) A figura foi construída com triângulos de lados 3 cm, 7 cm e 8 cm. Qual é o perímetro da figura?
LISTA 03 GEOMETRIA Prof: Wagner Monte Raso Braga Aluno(a): 28/06/016 01) (OBMEP 2016 N1Q04 1ª fase) A figura foi construída com triângulos de lados 3 cm, 7 cm e 8 cm. Qual é o perímetro da figura? 02)
MATEMÁTICA. Módulo 19. Frente IV -Caderno 05. Áreas dos Polígonos Regulares. Página 167
MATEMÁTICA Frente IV -Caderno 05 Módulo 19 Áreas dos Polígonos Regulares Página 167 APÓTEMA apótema édefinido como a distância entre o centro de um polígono regular e o ponto médio de qualquer lado, ou
-1,05 7,61m 2. cm, é dada por. ö ç ø. 3 = ,8 m Þ AC F = 60. Resposta da questão 1:[D]
Resposta da questão 1:[D] h 3 Sabendo que a área S de um triângulo equilátero de altura h é dada por S, tem-se que o resultado pedido é 3 igual a (,5) 1,7-1,05,5 @ 10, -,63 @ 7,61m. 3 Resposta da questão
Atividades De Recuperação Paralela De Matemática GEOMETRIA
Atividades De Recuperação Paralela De Matemática GEOMETRIA 1º ANO Ensino Médio 3º Trimestre Leia as orientações de estudos antes de responder as questões CONTEÚDO: Trigonometria na meia volta Lei dos cossenos
MATEMÁTICA Frente IV REVISÃO I Módulo 13 Geometria Plana Página 23
MATEMÁTICA Frente IV REVIÃO I Módulo 1 Geometria Plana Página 1. Considere um quadrado ABCD e dois triângulos equiláteros ABP e BCQ, respectivamente, interno e externo ao quadrado. O ângulo que a reta
SEMELHANÇA DE TRIÂNGULOS
SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia
SEMELHANÇA DE TRIÂNGULOS
SEMELHANÇA DE TRIÂNGULOS 01. Na figura as retas r, s, t e u são paralelas. Sabendo que AB = 8; BC = 9; CD = 10; CG = x; CF = y e EF = k (x + y), determine k. a) 19 8 b) 19 9 c) 1 17 d) 7 7 8 0. Na figura,
LISTA DE EXERCÍCIO GEOMETRIA PLANA
QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que
ATIVIDADES COM GEOPLANO CIRCULAR
ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24
( Marque com um X, a única alternativa certa )
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 004/0) MÚLTIPLA-ESCOLHA ( Marque com um X, a única alternativa certa ) QUESTÃO 01. Na figura abaixo, o círculo tem centro O, OT = 6 unidades
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
Encontro 6: Áreas e perímetros - resolução de exercícios
Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90%
1 1. ( CN - 8 ) Duas retas tangenciam uma circunferência, de centro P e 8cm de raio, nos pontos R e S. O ângulo entre essas tangentes é de 10. A área do triângulo PRS em cm, é: 16 B) 16 C) 16 D) 8 E) 8.
A triângulo equilátero = 3.R2. 3. A hexágono = 2. A triângulo equilátero. Letra B
GEOMETRIA PLANA ÁREAS QUESTÃO 01 QUESTÃO 03 A = 1 + 16/ -1 = 1 QUESTÃO 0 A hexágono = 3.R. 3 A triângulo equilátero = 3.R. 3 A hexágono =. A triângulo equilátero A triângulo equilátero A hexágono = 1 No
Matemática D Extensivo V. 3
Extensivo V. Resolva Aula 9 9.0) C 9.01) B Em AC, temos: 8 x + 7 x = 9 6 = x x = PQRO é um losango. Assim, os ângulos opostos são iguais. + 00 = 60 = 80 o Aula 10 9.0) B 10.01) Comprimento:. = Comprimento:.
Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano)
Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Polígonos 1. Calcule o número de diagonais de um icoságono (20 lados). 2. Determine o polígono cujo número de diagonais é o triplo do número
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. ABCD, em centímetros quadrados, é
Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. Considere o setor circular de raio 6 e ângulo central 60 da figura abaixo. a) 36 3 b) 36 2 c) 8 3 d) 8 2 3. A figura abaixo é a reprodução
GEOMETRIA: POLÍGONOS
Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente
QUESTÕES TRIÂNGULO RETÂNGULO
QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais
Exercícios de Geometria Plana Tchê Concursos Prof. Diego
(001). Se a diferença entre o número de diagonais de dois polígonos convexos é 30 e um deles tem 5 lados a mais que o outro, então o número de lados de cada um dos polígonos é: (A) 5 e 10 (B) 6 e 11 (C)
Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes
Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes 1. Considera a figura ao lado, onde: [ABFG] é um quadrado de área 36; [BCDE] é um quadrado de área 64; F
NOCÕES DE GEOMETRIA APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE:
APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE: SITE: www.cursoaprovados.com.br FANPAGE: CURSO PREPARATÓRIO APROVADOSAPROVADOS
ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.
ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que
Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.
MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado
LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro
Aula 01 Ciclo 03. Professora Laís Pereira EMEF Antônio Aires de Almeida Gravataí
Aula 01 Ciclo 03 Professora Laís Pereira EMEF Antônio Aires de Almeida Gravataí Área e Perímetro Área e perímetro são duas medidas distintas, onde a área é a medida de uma superfície e o perímetro é a
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe
Exercícios de Revisão
Exercícios de Revisão Lista de Exercícios 14.05.015 1. A cerâmica constitui-se em um artefato bastante presente na história da humanidade. Uma de suas várias propriedades é a retração (contração), que
Em relação à área original, a área da base dessa peça, após o cozimento, ficou reduzida em a) 4%. b) 20%. c) 36%. d) 64%. e) 96%.
Geometria no ENEM 1. (Enem) A cerâmica constitui-se em um artefato bastante presente na história da humanidade. Uma de suas várias propriedades é a retração (contração), que consiste na evaporação da água
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
