Matemática I Prof. Damasceno -
|
|
|
- Terezinha Teves Barroso
- 9 Há anos
- Visualizações:
Transcrição
1 Questão 01) O gráfico ao lado mostra a evolução da produção de lâmpadas de uma certa fábrica em milares de unidades. Pergunta-se: qual foi a produção no ano de 003? (A) lâmpadas. (B) lâmpadas. (C) 8000 lâmpadas. (D) lâmpadas. (E) lâmpadas. Questão 0) No mercado imobiliário, um imóvel no valor de R$ ,00 valoriza-se 5% ao ano. Qual o seu valor daqui a x anos? (A) (C) (E) , ,00x (B) , ,00 5x x , ,00 0,05x (D) ,00(1 + 5) ,00(1 + x 0,05) Questão 03) As variáveis e y estão relacionadas de acordo com a tabela ao lado. Dessa maneira, a relação entre e y é dada por: (A) y = (B) y = (C) y = + 1 (D) y = 1 (E) y = Questão 04) A função geradora do gráfico ao lado é do tipo y = mx + n. Então, o valor de m + n é: (A) 0 (B) 9 (C) 6 (D) 5 (E) 34 Questão 05) O gráfico a seguir representa as curvas de Custo Total e de Receita Total de uma empresa. Essas curvas são representadas, respectivamente, por: (A) C(q) = q + 0 e R(q) = 3q. (B) C(q) = 3q + 10 e R(q) = 3q. (C) C(q) = q + 6 e R(q) = 3q. (D) C(q) = q + 6 e R(q) = 4q. (E) C(q) = q + 6 e R(q) = 5q. Questão 06) Na função f(x) = x + 4, fazendo o esboço de seu gráfico, obtemos uma reta que, no sentido trigonométrico, forma com o eixo das abscissas um ângulo de: (A) 60º. (B) 10º. (C) 5º. (D) 45º. (E) 135º. s: [email protected]; [email protected]; [email protected]
2 Questão 07) Sejam as funções f, g : R R, definidas por f ( x 1) = x valor de A = 3 f ( g(4)). (A) A =. (B) A = 4. (C) A = 7. (D) A = 5/. (E) A = /9. e 1 g ( x) = x +, Encontre o Questão 08) Ao lado, pode-se ver parte de um gráfico que mostra o valor y a ser pago (em reais) pelo uso de um determinado estacionamento por um período de x oras. Supona que o padrão observado no gráfico não se altere quando x cresce. Nessas condições, o valor a ser pago por um indivíduo que estacionar seu veículo das de um dia até as 8 e 30min do dia seguinte é: (A) R$ 17,00. (B) R$ 16,00. (C) R$ 11,00. (D) R$ 14,50. (E) R$ 17,50. Questão 09) Duas plantas de mesma espécie A e B, que nasceram no mesmo dia, foram tratadas desde o início com adubos diferentes. Um botânico mediu todos os dias o crescimento (em centímetros) dessas plantas. Após 10 dias de observação, ele notou que o gráfico que representa o crescimento da planta A é uma reta que passa por (, 3) e o que representa o crescimento da planta B 4x x pode ser descrito pela função y =. Um esquema dessa situação está apresentado ao lado. Assinale a alternativa que apresente o dia em que as plantas A e B atingiram a mesma altura e qual foi essa altura. (A) 8 cm no 5º dia (B) 1 cm no 6º dia (C) 7 cm no 5º dia (D) 9 cm no 6º dia (E) 11 cm no 6º dia 1 Questão 10) Seja Q(x) o quociente da divisão de P(x) = 8x 5 5x 4 + 7x 3 3x + 4 por x +. Pode-se, então, afirmar que Q(0) é: (A) 103. (B) 193. (C) 154. (D) 138. (E) 15. Questão 11) Sabe-se que o lucro total L de uma empresa é dado pela fórmula L = R C, em que R é a receita total e C é o custo total da produção (em reais). Numa certa empresa que produziu p unidades em determinado período, verificou-se que R(p) = 1000p p e C(p) = p + p. Nessas condições, pode-se afirmar que a produção p para que o lucro seja máximo e o lucro máximo são, respectivamente: (A) 340 e R$ ,00. (B) 40 e R$ ,00. (C) 30 e R$ ,00. (D) 360 e R$ ,00. (E) 80 e R$ ,00. Questão 1) Em IR X IR, sejam (a + b; a 4) e (a + 1; b) dois pares ordenados iguais, então a b é igual a: (A) 0. (B) 1. (C). (D) 0,5. (E) 1/ s: [email protected]; [email protected]; [email protected]
3 Questão 13) Uma fábrica de carteiras escolares tem receita e custo dados pelas leis R(x) = 10x + 500x e C(x)=100x+3000, sendo que x representa a quantidade produzida / vendida. Nessas condições tem-se lucro se a quantidade x for: (A) x < 10. (B) x 10. (C) 0 < x 15. (D) x = 4. (E) 10 < x < 30. Resp.: E Questão 14) Os gráficos das funções custo e receita em função da quantidade produzida de determinada empresa estão representados ao lado. A partir da análise desses gráficos, pode-se concluir que o custo fixo, o custo variável por unidade e o preço de venda são, respectivamente: (A) 5.000, 15 e 5. (B) , 15 e 5. (C) 5.000, 5 e 15. (D) 5.000, 10 e 5. (E) , 10 e 5. Questão 15) Considere a função quadrática f (x) = x 5x + 6. Assinale a alternativa correspondente ao conjunto de todos os pontos onde essa função é crescente. (A) [;,5] (B) [; 3] (C) (,5; ) (D) ( ;,5) (E) ( ; ] [3, ) Questão 16) Estima-se que o número necessário de omens-ora, N(x), para distribuir catálogos de telefone entre x por cento de moradores numa certa comunidade seja dado pela função: 600x N x) = 300 x (. A porcentagem de moradores da comunidade que recebeu catálogos, quando o número necessário de omens-ora foi de 150, é: (A) 100%. (B) 40%. (C) 80%. (D) 7%. (E) 60%. Questão 17) A equação da reta representada graficamente no sistema cartesiano abaixo (lado esquerdo) é dada pela equação: (A) y = x + 3/ (B) y = x + 3/ (C) y = (1/)x + (3/) (D) y = (1/)x + (3/) (E) y = x 3/ Questão 18) O gráfico acima (lado direito) representa o trinômio do º grau x + Bx + C. Pode-se concluir que: (A) B = 1 e C = 0. (B) B = 0 e C = 1. (C) B = 1 e C = 1. (D) B = e C = 0. (E) B = 4 e C = 0. s: [email protected]; [email protected]; [email protected]
4 Questão 19) Assinale a única opção que não pode representar uma função. Questão 0) Assinale o gráfico que melor representa a função ƒ: IR {} IR definida por y = f ( x) = x x Questão 1) O gráfico ao lado representa uma função. Determine o domínio e a imagem. (A) D = [ 1, 1]; I = [1, 0] (B) D = IR; I = [0, 1] (C) D = IR { 1, 1}; I = [1, 0] (D) D = IR*; I = [0, 1] (E) D = [ 1, 1]; I = IR Questão ) Observe o gráfico ao lado. Determine o valor do custo C1. (A) C1 = 14 (B) C1 = 13 (C) C1 = 1 (D) C1 = 11 (E) C1 = 10 Questão 4) Observe o gráfico ao lado de uma função quadrática: A expressão que define essa função é: x + 3 Questão (A) y = 3) x Sendo y = ( x ) y = f ( x) = para x 1, calcule ( f (6)) x 1 f. (A) (B) 9/. (B) 11/. (C) 13/3. (D) 16/3. (E) 17/4. (C) y = x x y = x 4x s: (D) [email protected]; [email protected]; [email protected] (E) y = x x
5 Questão 5) Se P(4,k) é um ponto eqüidistante dos pontos A(,0) e B(0,), então k é igual a: (A) 1. (B) 4. (C) 3. (D). (E) 5. s: [email protected]; [email protected]; [email protected]
MATEMÁTICA E RACIOCÍNIO LÓGICO
FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
Lista de Função Quadrática e Módulo (Prof. Pinda)
Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).
1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor
Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA
FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar º. BIMESTRE I PORCENTAGEM 1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre ( juros compostos), sabendo que o capital
Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data:
Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Questão 1 Quantas soluções inteiras a inequação x 2 + x 20 0 admite? (A) 2 (B) 3 (C) 7 (D) 10 (E) 13 Questão 2 A função quadrática
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180
) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.2 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
FUNÇÃO DO 2 GRAU TERÇA FEIRA
FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),
Matemática Básica. Atividade Extra
Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)
6. Sendo A, B e C os respectivos domínios das
1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU
FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE
FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
AFA Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo
AFA 2010 1. Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo CARGO SALÁRIOS Nº DE (em reais) FUNCIONÁRIOS COSTUREIRO(A) 1 000 10 SECRETÁRIO(A) 1 500 4 CONSULTOR
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários
Matemática para contabilidade/mário INTRODUÇÃO. Vejamos os problemas.
INTRODUÇÃO Vejamos os problemas. 1- Seja a oferta de mercado de uma utilidade dada por: S = -20 + 2p, com p R$270,00. Poderíamos querer saber: a) A partir de que preço haverá oferta? b) Qual o valor da
AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.
AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos
Exercícios de Aprofundamento Matemática Funções Quadráticas
1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 5/08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
Banco de questões. 4 Função quadrática. ) é igual a 60. ( ( )) por g( x) é igual ( ) = 5 ( ) = ( ) e g( f ( 7) funções UNIDADE I I
UNIDADE I I funções CAPÍTULO Função quadrática Banco de questões 1 (FURG RS) Determine os números reais a e b b para que a função quadrática f x a x x a tenha valor máximo no ponto x = 3 e que esse valor
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
MATEMÁTICA. Questão 41. O gráfico abaixo representa a evolução populacional de Porto Alegre entre os anos de 1992 e 2010.
MATEMÁTICA Questão 41 O gráfico abaixo representa a evolução populacional de Porto Alegre entre os anos de 199 e 010. Porto Alegre 1.600.000 A B C D E 1.00.000 00.000 400.000 0 199 1996 000 004 00 x Fonte:
Tecnologia em Construções de Edifícios
1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até
12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.
01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta
Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011
CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática
Erivaldo. Polinômios
Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)
Lista de exercícios Derivadas
Lista de exercícios Derivadas 1 - (ENADE 2011) - Os analistas financeiros de uma empresa chegaram a um modelo matemático que permite calcular a arrecadação mensal da empresa ao longo de 24 meses, por meio
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV ADM Objetiva Turma A 24/outubro/2010 matemática 01. O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas (x; y) dados abaixo. Podemos
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma
QUESTÃO 03. QUESTÃO 02. QUESTÃO 04. Questões de Física: QUESTÃO 01.
QUESTÃO 03. Analise o circuito elétrico e as afirmações que seguem. Leia as questões deste Simulado e, em seguida, responda-as preenchendo os parênteses com V (verdadeiro), F (falso) ou B (branco). Questões
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios
Acadêmico(a) Turma: Capítulo 6: Funções
1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.
FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni ASSUNTO: FUNÇÃO DO SEGUNDO GRAU ) As seguintes funções são definidas em R. Verifique quais delas são funções
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA
Curso de Biomedicina
Curso de Biomedicina Centro de Ciências da Saúde Universidade Católica de Petrópolis Matemática - Biomedicina Funções Polinomiais do 2o. Grau Maio de 2018 Luís Rodrigo de O. Gonçalves [email protected]
C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:
Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão
π. e) 6 π. c) π. d) 8 π b) 4
Lista de Exercícios º ANO Prof. Ulisses 1. (Mackenzie) Considerando o esboço do gráfico da função f(x) = cos x, entre 0 e π a reta que passa pelos pontos P e Q define com os eixos coordenados um triângulo
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli
Aula Teórica 3 ATIVIDADE. Represente, no plano cartesiano xy descrito abaixo, os dois pontos (x 0,y 0) = (,) e (x,y ) = (3,5).. Trace a reta r que passa pelos pontos e, no plano cartesiano acima. 3. Determine
FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO
FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação
Escola de Civismo e Cidadania ATIVIDADE REFERENTE À FUNÇÕES: LISTA 05
COLÉGIO ESTADUAL DA POLÍCIA MILITAR DE GOIÁS HUGO DE CARVALHO RAMOS ANO LETIVO 2018 1. Considere o gráfico abaio e responda: 2º BIMESTRE ATIVIDADE COMPLEMENTAR Série Turma (s) Turno 1ª do Ensino Médio
Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA
Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:
Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2
Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por
Unidade I. Prof. Luiz Felix
Unidade I MATEMÁTICA APLICADA Prof. Luiz Felix Conjuntos Designa-se conjunto uma representação de objetos, podendo ser representado de três modos: representação ordinária A = 0, 1, 2, 3, 4 representação
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado( candidato(: Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:
COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3
POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz
Lista de exercícios do teorema de Tales &
Valor 2,0 Componente Curricular: Professor(a): Turno: Data: Matemática Matutino / /2013 luno(a): Nº do luno: Série: Turma: 8ª (81)(82)(83) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
Professor Mascena Cordeiro
www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)
SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1
SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,
QUESTÃO 16 A moldura de um quadro de um excêntrico pintor moderno é formada por 5 trapézios, todos com altura igual a 5 cm.
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM 016 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 A moldura de um quadro de um excêntrico pintor
CONHECIMENTOS ESPECÍFICOS
De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
Primeira Lista de Exercícios
Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine
3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo
Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil
Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:
Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e
CPV O Cursinho que Mais Aprova na GV
CPV O Cursino que Mais Aprova na GV FGV ADM Objetiva Prova A 09/dez/0 MATEMÁTICA 0. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de abitantes. Se, em um determinado
Função Polinomial do 1º Grau
Função Polinomial do 1º Grau 01) José Antônio viajarão em seus carros com as respectivas famílias para a cidade de Serra Branca. Com a intenção de seguir viagem juntos, combinam um encontro no marco inicial
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
Prof: Danilo Dacar
Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS
1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
FUNÇAO DO 2 GRAU. é igual a:
1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,
Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1
PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 9º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Na figura abaixo, temos um quadrado AEDF e AC=4 e AB=6. Qual é o valor do lado
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
Módulo 4 Ajuste de Curvas
Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma
a < 0 / > 0 a < 0 / = 0 a < 0 / < 0
FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função
Texto 10. Texto 11. Impressionista
Texto 10 Texto 11 Impressionista Uma ocasião, meu pai pintou a casa toda de alaranjado brilhante. Por muito tempo moramos numa casa, como ele mesmo dizia, constantemente amanhecendo. (Adélia Prado) (Décio
