d AB y a x b x a x a

Tamanho: px
Começar a partir da página:

Download "d AB y a x b x a x a"

Transcrição

1 Introdução A Geometria Analítica é uma parte da Matemática, que através de processos particulares, estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo, uma reta, uma circunferência ou uma figura podem ter suas propriedades estudadas através de métodos algébricos. Os estudos iniciais da Geometria Analítica se deram no século XVII, e devem-se ao filósofo e matemático francês René Descartes ( ), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas ia%20analitica' ncia.htm a.htm#ga0 O PPLLAANNO CCAARRTTEESSIIAANNO Y ( eixo das ORDENADAS ) Bissetriz dos quadrantes pares Bissetriz dos quadrantes ímpares 2º QUADRANTE ( -, + ) º QUADRANTE ( +, + ) x ( eixo das ABSCISSAS ) 3º QUADRANTE ( -, - ) 4º QUADRANTE ( +, - ) DDIISSTTÂÂNNCCIIAA EENNTTRREE DDOIISS PPONNTTOSS y b y a A d AB B y b - y a x b x a x a x b Dados dois pontos distintos do plano cartesiano, chama-se distância entre eles a medida do segmento de reta que tem os dois pontos por extremidade. Sendo A(xa, ya) e B(xb, yb), aplicando Pitágoras temos: d AB ( x x ) + ( y y ) 2 = ou = ( x) 2 + ( y) 2 B A 2 B A d AB

2 EEXXEERRCCÍ ÍÍCCI IIOSS 0. Sejam os ponto A(-3, ) e B(4, 3). A distância entre eles é a) 0 b) 5 c) 53 d)) 2 e)6 02. (UFRGS) A distância entre os pontos A(-2, y) e B(6, 7) é 0. O valor de y é: a) b) 0 c) ou 3 d) - ou 0 e) 2 ou Qual o ponto do eixo das ordenadas que eqüidista dos pontos A(2, -) e B(6, 3)? a) (0,5) b) (5,0) c) (2,3) d) (6,2) e) (-,0) 04. O comprimento da circunferência de diâmetro CD, sendo C(2, ) e D(0, 7) é: a) 5π b) 0π c) 20π d) 7π e) 29π PONTO MÉDIO DE UM SEGMENTO Dados os pontos A (x, y ) e B (x 2, y 2 ), o ponto médio é aquele que divide o segmento em dois segmentos cujas medidas são iguais á metade da medida do segmento AB. Na figura a seguir, M(xm, ym) é o ponto médio do segmento AB. Pela semelhança dos triângulos ABB' e AMM' podemos escrever: AM / AB = AM' / AB' ==> / 2 = (x m - x ) / (x 2 - x ) ==> 2x m - 2x = x 2 - x ==> 2x m = x 2 + x ==> x m = (x 2 + x )/2. Pela semelhança dos triângulos BAB' e BMM' tira-se BM / BA = BM' / BB' ==> / 2 = (y 2 - y m ) / (y 2 - y ) de onde se conclui y m = (y 2 + y )/2. Portanto, o ponto médio do segmento AB, com A (x, y ) e B (x 2, y 2 ), é M[(x + x 2 )/2, (y + y 2 )/2]. Exercício - Sendo W o comprimento da mediana relativa ao lado BC do triângulo ABC onde A(0,0), B(4,6) e C(2,4), então W 2 é igual a: a)25 b)32 c)34 d)44 e) 6 2- Calcule a medida da mediana relativa ao vértice C do triângulo de vértices A (3, 2, ), B (5, -3) e C (0, -4) 3-.Sendo A(-5, 2) uma das extremidades do segmento de reta AB e M(-2, 4) o seu ponto médio, o ponto B vale: a) (, 6) b)(2, 2) c)(-5, 4) d)(-2, 2) e)(0, ) 4-O comprimento da mediana relativa ao lado BC do triângulo ABC, sendo A(-, 2), B(2, 3) e C(4, 7), é a) 4 b)3 c) 5 d) 6 e) ÁREA DE UM TRIIÂNGULO

3 Consideramos um triângulo de vértices A(xA, ya), B(xB, yb) e C(xC, yc) a sua área é dada por: B(xB, yb) A(xA, ya) C(xC, yc) A =. 2 Xa Xb Xc Ya Yb Yc EXERCÍCIO 0- Calcule a área e o perímetro do triângulo ABC se A(3, 2),B (5,-3) e C(0,-4) Calcular a área do trapézio cujos vértices são: A (0, 0), B (7, ), C (6, 5)e D = ( 8, 3) Calcule a área do triângulo formado pelos pontos médios dos lados do triângulo ABC sendo A = (3, 2, ), B = (5, 4, ) e C = (9, 0). 04-Calcular a área do triângulo de vértices A(,3), B(4,) e C(6,5). a) 6 b) 4 c) 0 d) 2 e) 8 05-Calcular a área do triângulo de vértices A(,), B(7,8) e C(,0). a) 27 b) 54 c) 32 d) 9 e) Determine o valor de y tal que o Triângulo ABC, de vértice A(4,4), B(4,y) e C(,) tenha área 9 u.a resposta 0 ou -2 Baricentro(ou centro de gravidade) de um triângulo Sabemos da Geometria plana, que o baricentro de um triângulo ABC é o ponto de encontro das 3 medianas. Sendo G o baricentro, temos que AG = 2. GM onde M é o ponto médio do lado oposto ao vértice A (AM é uma das 3 medianas do triângulo). Nestas condições, as coordenadas do baricentro G(x g, y g ) do triângulo ABC onde A(x a, y a ), B(x b, y b ) e C(x c, y c ) é dado por : Chamamos de baricentro (G) o ponto de intersecção das medianas de um triângulo

4 Exercício -Assim, por exemplo, o baricentro (também conhecido como centro de gravidade) do triângulo ABC onde A(3,5), B(4, -) e C(, 8) será o ponto G(6, 4). Verifique com o uso direto das fórmulas. 2-Conhecendo-se o baricentro B(3,5), do triângulo XYZ onde X(2,5), Y(-4,6), qual o comprimento do segmento BZ? Resposta BZ = 65 /2 u.c. (u.c. = unidades de comprimento). 3-Os pontos A(m, 7), B(0, n) e C(3, ) são os vértices de um triângulo cujo baricentro é o ponto G(6, ). Calcule o valor de m 2 + n 2. Resp: A soma das coordenadas do baricentro do triângulo ABC, sendo A (0, 0), B (4, ) e C (2, 8) é: a) - b) c) 5 d) 5 e) CCONNDDIIÇÇÃÃO DDEE AALLIINNHAAMEENNTTO DDEE TTRRÊÊSS PPONNTTOSS Sendo A(xA, ya), B(xB, yb) e C(xC, yc) três pontos distintos dois a dois, são colineares ou estão alinhados, se e somente se: A(xA, ya) B(xB, yb) C(xC, yc) Xa Ya. Xb Yb = 0 Xc Yc EEXXEERRCCÍ ÍCCI IOOSS 0-O valor de x para que os pontos A(x,0), B(3,) e C(-4,2) sejam colineares é: a) 0 b) 0 c) 3 d) 2 e) Os pontos (,3), (2,7) e (4,k) do plano cartesiano estão alinhados se, e somente se: a) k = b)k = 2 c)k = 3 d)k = 4 e) k = 5 Exercício desafio ) Determinar os valores de x para os quais a distância entre os pontos A(x+2,-3) e B(3,x-3) seja 5 a) -4 e 3 b) 2 e 4 c) 3e -4 d) 4 e 6 2)Os pontos A(3,4) e B(,-2) são eqüidistantes de P(0,y). Determine y a) /2 b) 4/3 c) 5/3 d)4 3)Mostre que o triângulo de vértices D(0,9) E(3,2) e F(-4,-) é retângulo; Qual sua área a) 30 b) 20 c) 29 d)58 4)O ponto M(3,-) é ponto médio do segmento AB, onde A(5,2). Determine ponto B a) B(3,2) b) B(-,4) c) B(,-4) d)b(-4,-6) 5)Os pontos P(,3) e Q(-3,-3) são extremidades de um diâmetro da circunferência.e o comprimento dessa circunferência.c=2. π. r a) 2 3. π b) 3 5. π c) 4 3. π d)26 6)No plano cartesiano, os pontos F(0,0) H(3,3) e M(7,-) são vértices de um retângulo. Qual o 4º vértice desse retângulo a)(-4,4) b) (4,-4) c) (3,-3) d) (4,2)

5 7)Os pontos B(5,0) D(-3,-2) e C(0,y) são vértices do triângulo cuja área é 7 unidades de área. Determine o valor de y a) 2 b) -5 c) 3 d) 8) Determine x pertencente ao ponto no eixo Ox, que dista 5 unidades do ponto Q(6,3) a ) 3 e 5 b) 0 e 2 c) 0 e 5 d) - e 3 9) Qual a área do quadrilátero representado por A(-2,-4) B(,) C(2,-3) e D(,3) a ) 4 u 2 b) 5 u 2 c) 8 u 2 d) 6 u 2 0. Um criador de coelhos pretende aproveitar uma parte de seu terreno irregular para fazer um cercado cujo formato está representado pelo quadrilátero ABCD abaixo, onde as dimensões estão em metros e em média é conveniente criar cada coelho em 0,5m 2. Então quantos coelhos no máximo podem ser criados nesse cercado? A) 0 b) 2 c) 8 d) 5 Na figura abaixo os pontos A, B, C e D representam a localização de 4 pessoas: Danilo, Diego, Sayuri e Vitor, respectivamente, onde suas distâncias são medidas em metros. Nessas condições, determine a distância entre Sayuri e Vitor. Sabendo-se que Sayuri está eqüidistante de Danilo e Diego. y B(-6, 3) A(, 4) C C D D x Exercícios de Geometria Analítica (estudo do ponto) 0- Calcule a área e o Baricentro do triângulo ABC se A(, 2),B (5,-) e C(-,-4). 02- O ponto M(3,4) é ponto médio do segmento AB, onde B(-2,3). Determine ponto A 03- Os pontos A(3,4) e B(,2) são eqüidistantes de P(0,y). Determine y 04- Qual a área do quadrilátero ABCD representado por A(-2,-4) B(,) C(2,-3) e D(,3) 05- Determine o comprimento da mediana relativa ao lado AC do triângulo ABC, sendo A(-, 2), B(2, 3) e C(4, 7) 06- O valor de x para que os pontos A(x,0), B(3,) e C(-4,2) sejam colineares é: 07- Os pontos P(,3) e Q(-3,-3) são extremidades de um diâmetro da circunferência.e o comprimento dessa circunferência.c=2. π. r a) 2 3. π b) 3 5. π c) 4 3. π d) Determinar os valores de x para os quais a distância entre os pontos A(x+2,-3) e B(3,x-3) seja 5 a) -4 e 3 b) 2 e 4 c) 3e -4 d) 4 e 6

Geometria Analítica:

Geometria Analítica: Geometria Analítica: DISCIPLINA : Geometria Analítica - II PROFESSOR:: Erandi Alves de Lima Moraújo CE Janeiro - 2018-1 - GEOMETRIA ANALÍTICA 1.. O PLANO CARTESIIANO Y ( eixo das ORDENADAS ) Bissetriz

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

COORDENADAS CARTESIANAS

COORDENADAS CARTESIANAS Aula 32 Geometria Analítica COORDENADAS CARTESIANAS Consideremos o plano determinado por dois eixos perpendiculares em O. Considere um ponto P qualquer do plano, e trace por ele as paralelas aos eixos,

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática [email protected]

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Nenhum obstáculo é tão grande se a sua vontade de vencer for maior.

Nenhum obstáculo é tão grande se a sua vontade de vencer for maior. COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES LISTA 1: PONTO E RETA MATEMÁTICA 3ª SÉRIE TURMA: II UNIDADE ------ CAMAÇARI - BA PROFESSOR: HENRIQUE PLÍNIO ALUNO (A): DATA: / /2016 Nenhum obstáculo é tão grande

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO 1) Um ponto P é da forma P(2a + 4, a 6). Determine P nos seguintes casos: a) P pertence ao eixo das abscissas. b) P pertence ao eixo das ordenadas. c)

Leia mais

Matemática capítulo 2

Matemática capítulo 2 Matemática capítulo Eercícios propostos. Marque os seguintes pontos no plano cartesiano: (,), (,), (-,), D(-,-), E(,-), F(-,), G(,) θ. Determine os valores de a que satisfazem as condições dadas: a) O

Leia mais

Lista 22 - GEOMETRIA ANALÍTICA - I

Lista 22 - GEOMETRIA ANALÍTICA - I Lista 22 - GEOMETRIA ANALÍTICA - I 1) Um sistema cartesiano ortogonal é associado à planta de uma cidade plana de modo que o eixo Ox é orientado de oeste para leste, o eixo Oy é orientado de sul para norte

Leia mais

Sistema de coordenadas cartesiano

Sistema de coordenadas cartesiano Sistema de coordenadas cartesiano Geometria Analítica Prof. Rossini Bezerra Definição Sistema de Coordenadas no plano cartesiano ou espaço cartesiano ou plano cartesiano Um esquema reticulado necessário

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Matemática 3ª série Roteiro 01. Geometria Analítica Estudo do ponto

Matemática 3ª série Roteiro 01. Geometria Analítica Estudo do ponto Matemática 3ª série Roteiro 01 Profª Helena Geometria Analítica Estudo do ponto Atividade em Dupla Material necessário: lápis, borracha, régua, uma folha de papel sulfite (use esta!), um aparelho celular

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 13 EXERCÍCIOS 1) A representação cartesiana da função y = ax 2 + bx + c é a parábola abaixo. Tendo em vista

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Referenciais Cartesianos

Referenciais Cartesianos Referenciais Cartesianos René Descartes (1596-1650) Filósofo e Matemático Francês. Do seu trabalho enquanto Matemático, destaca-se o estabelecimento da relação entre a Álgebra e a Geometria. Nasceu assim

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOMETRIA ANALÍTICA ESTUDO DA RETA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOMETRIA ANALÍTICA ESTUDO DA RETA EQUAÇÃO GERAL DA RETA... EQUAÇÃO REDUZIDA DA RETA... 8 EQUAÇÃO SEGMENTÁRIA DA RETA... 4 EQUAÇÃO PARAMÉTRICA... 5 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO... 8 CONDIÇÃO DE PARALELISMO... 6 CONDIÇÃO DE

Leia mais

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica Cogito, ergo sum. Tarefa: 002 PLANO DE TRABALHO 2 Cursista:

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 MAT 112 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 LISTA 1 1. Ache a soma dos vetores indicados na figura, nos casos: 2. Ache a soma dos vetores indicados em cada caso, sabendo-se que (a) ABCDEFGH

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA

MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA y Ya d =? A Yb B Xb Xa x y Ya d =? A Yb B Xb Xa x y Ya d =? A Ya - Yb Yb B Xb Xa - Xb Xa x y Ya A Ym =? M Yb B Xb Xm=? Xa x y Ya A Ym =? M T Yb B R Xb

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Observe que o segmento orientado AB é caracterizado por três aspectos bastante definidos:

Observe que o segmento orientado AB é caracterizado por três aspectos bastante definidos: . ÁLGEBRA LINEAR 1 O VETOR Considere o segmento orientado AB na figura abaixo. Observe que o segmento orientado AB é caracterizado por três aspectos bastante definidos: comprimento (denominado módulo)

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 SUMÁRIO Apresentação ---------------------------------------------- 3 Capítulo 5 ---------------------------------------------------4

Leia mais

LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL

LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL LISTA DE REVISÃO DE GEOMETRIA ºANO PROF. JADIEL 1. (Eear) Sejam A(, ), B(, 1), C(5, ) e D( 1, ) vértices de um quadrilátero conveo. A medida de uma de suas diagonais é a) 15 b) 1 c) 1 d) 10. (Upe-ssa )

Leia mais

Formação Continuada em Matemática. Matemática 3º ano - 3º Bimestre / Plano de Trabalho 2. Geometria Analítica

Formação Continuada em Matemática. Matemática 3º ano - 3º Bimestre / Plano de Trabalho 2. Geometria Analítica Formação Continuada em Matemática Matemática 3º ano - 3º Bimestre / 2014 Plano de Trabalho 2 Geometria Analítica Tarefa 2 Cursista: Marciele Euzébio de Oliveira Nascimento Grupo:1 Tutora:Bianca Coloneze

Leia mais

Exercícios de Matemática II 2º ano

Exercícios de Matemática II 2º ano Nome: nº Professor(a): Série: ª EM. Turma: Data: / /01 Sem limite para crescer Exercícios de Matemática II º ano 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material.

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

1 a Lista de Exercícios MAT 105 Geometria Analitica

1 a Lista de Exercícios MAT 105 Geometria Analitica 1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo

Leia mais

Figura 1: Construção criada utilizando Geogebra

Figura 1: Construção criada utilizando Geogebra Conteúdo: Geometria Analítica Atividade: Material complementar 1 Aluno(s):... N o(s) :... Aluno(s):... N o(s) :... Pontuação:... Professor: Fábio Vinícius Turma:... Data:.../.../... Valor obtido:... [X]

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

BC Geometria Analítica. Lista 4

BC Geometria Analítica. Lista 4 BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas). MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Distâncias e Conceitos Básicos

Distâncias e Conceitos Básicos GEOMETRIA ANAL TICA - N VEL B SICO Distância e Conceitos Básicos...Pag.01 Retas...Pag.05 Distância de Ponto à Reta e reas.pag.11 Circunferências....Pag.14 Posições Relativas entre Retas e Circunferências...Pag.19

Leia mais

Questão 2 Determine as equações das retas que passam pelo ponto A(2,3) e formam um ângulo de 45 com a reta de equação 3x 2y+z=0.

Questão 2 Determine as equações das retas que passam pelo ponto A(2,3) e formam um ângulo de 45 com a reta de equação 3x 2y+z=0. Estudo da reta Questão 1 Determinar a posição relativa (paralelas, coincidentes ou concorrentes) das retas 3y 2x 5 = 0 e y = 4x + 2. Se forem concorrentes, determine as coordenadas do ponto de interseção.

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA º TRIMESTRE Nome: nº: Ano:ºA E.M. Data: / / 018 Professora: Lilian Caccuri x A x B ya y Ponto médio: M ; yb ya Coeficiente angular: m x x 1) As retas x - y = 3 e

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

Exercícios de Matemática II

Exercícios de Matemática II Nome: nº Professor(a): Série: ª EM. Turma: Data: / /014 Sem limite para crescer Exercícios de Matemática II 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material. Para

Leia mais

Matemática 2 Módulo 9

Matemática 2 Módulo 9 Matemática Módulo 9 GEOMETRIA ANALÍTICA VI COMENTÁRIOS ATIVIDADES PARA SALA. Se duas circunferências são concêntricas, então os seus centros são coincidentes. Temos a circunferência λ : x + y 4x y + =

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4), B(1,1) e C(6,3).

Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4), B(1,1) e C(6,3). Sistemas de coordenadas cartesianas e distâncias Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4)1,1) e C(6,3). Questão 2 Os pontos A(2,7) 3,0) 16,5) são colineares?

Leia mais

30's Volume 22 Matemática

30's Volume 22 Matemática 30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

ANÁLISE GRÁFICA E ANALÍTICA DA RETA DE EULER E TRÊS PONTOS NOTÁVEIS, EM TRIÂNGULOS NO ESPAÇO R 2

ANÁLISE GRÁFICA E ANALÍTICA DA RETA DE EULER E TRÊS PONTOS NOTÁVEIS, EM TRIÂNGULOS NO ESPAÇO R 2 ANÁLISE GRÁFICA E ANALÍTICA DA RETA DE EULER E TRÊS PONTOS NOTÁVEIS, EM TRIÂNGULOS NO ESPAÇO R 2 P.C. SZENDRODI, J. ABRANTES, R.M. GRANADO, D. D. SOBRAL FILHA Resumo Este artigo faz análises gráfica e

Leia mais

MA23 - Geometria Anaĺıtica

MA23 - Geometria Anaĺıtica MA23 - Geometria Anaĺıtica Unidade 1 - Coordenadas e vetores no plano João Xavier PROFMAT - SBM 8 de agosto de 2013 Coordenadas René Descartes, matemático e filósofo, nasceu em La Have, França, em 31 de

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

ENEM 2013 A) (65; 35) B) (53; 30) C) (45; 35) D) (50; 20) E) (50; 30) ENEM 2011

ENEM 2013 A) (65; 35) B) (53; 30) C) (45; 35) D) (50; 20) E) (50; 30) ENEM 2011 ENEM 2013 1 - Nos últimos anos, a televisão tem passado por uma verdadeira revolução, em termos de qualidade de imagem, som e interatividade com o telespectador. Essa transformação se deve à conversão

Leia mais

singular Lista de Exercícios - Ponto e reta Ensino Médio tarde - 2C17/27/37 Profª Liana

singular Lista de Exercícios - Ponto e reta Ensino Médio tarde - 2C17/27/37 Profª Liana singular Lista de Exercícios - Ponto e reta Ensino Médio tarde - C17/7/7 Profª Liana 01 - (UFJF MG) Dado o triângulo de vértices A = (1,1), B = (,) e C = (4, ). Considere as seguintes afirmações: I. O

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

(19) MATEMÁTICA PONTO, RETA E DISTÂNCIAS

(19) MATEMÁTICA PONTO, RETA E DISTÂNCIAS Nível Embasamento 0 Calcular a distância entre os seguintes pontos: a) A(,) e B(,) b) P( 6,8) e a origem do sistema cartesiano c) A(a, b+) e B(a+, b 8) 0 Calcular o perímetro do triângulo ABC, sendo dados

Leia mais

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a. APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff

Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre

Leia mais

Média, Mediana e Distância entre dois pontos

Média, Mediana e Distância entre dois pontos Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs

Leia mais

Lista 1 - Mat 2- Geometria Analítica

Lista 1 - Mat 2- Geometria Analítica Lista 1 - Mat 2- Geometria Analítica - 2018 Conceitos básicos e equação da reta 1. (Eear 2017) Seja ABC um triângulo tal que A(1, 1), B(3, 1) e C(5, 3). O ponto é o baricentro desse triângulo. a) (2, 1).

Leia mais

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são p: João Alvaro w: www.matemaniacos.com.br e: [email protected] ( ) 4t 1. Para que valores 5 + 1, 2t 4 pertence ao eixo das ordenadas? A linguagem das funções Sistema de coordenadas Conceito de função

Leia mais

T.D. - Resolução Comentada

T.D. - Resolução Comentada T.D. - Resolução Comentada Matéria: Série: Turmas: Professor: Matemática º Ano A, B, C, D e Olímpica Wilkson Linhares Bimestre: 3º Assunto: Geometria Analítica Questão: 01 Resposta: Item: c) O ponto P

Leia mais

Tema III Geometria analítica

Tema III Geometria analítica Tema III Geometria analítica Unidade 1 Geometria analítica no plano Páginas 154 a 181 1. a) A(1, ) B( 3, 1) d(a, B) = ( 3 1) + (1 ( )) = ( 4) + 3 = 16 + 9 = 5 = 5 b) C ( 3, 3) O(0, 0) d(c, O) = (0 3 )

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

LISTA DE EXERCÍCIOS 3º ANO

LISTA DE EXERCÍCIOS 3º ANO Questão 0 a) Soma dos ângulos internos de um pentágono: 180 ( 5 ) = 540 Sendo o ângulo FPG = α, temos: α + 90 + 10 + 90 = 360 => α = 60. Como os lados adjacentes ao ângulo α são os lados de quadrados congruentes,

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0 Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica

Leia mais