Probabilidade. Definições e Conceitos
|
|
|
- João Victor Azambuja Farinha
- 9 Há anos
- Visualizações:
Transcrição
1 Probabilidade Definições e Conceitos
2 Definições Probabilidade Medida das incertezas relacionadas a um evento chances de ocorrência de um evento Exemplos: Probabilidade de jogar um dado e cair o número 2 Chance de ser assaltado ao sair de casa Probabilidade de ganhar no poker
3 Definições Conceito Clássico de Probabilidade Se há n possibilidades igualmente prováveis, das quais uma deve ocorrer e, destas, s são consideradas como um sucesso, então a probabilidade do resultado ser um sucesso é de s/n. Observações sobre esta definição Supõe-se que todos os eventos tenham a mesma chance de ocorrer (equiprováveis) s eventos de interesse que podem ocorrer n eventos possíveis que podem ocorrer
4 Exemplo 1 Qual a probabilidade de se extrair um ás de baralho bem misturado de 52 cartas? Bem misturado significa qualquer carta tem a mesma chance de ser extraída. Como temos 4 ases em 52 cartas: 4/52 = 1/13 Observações: problema clássico de probabilidade, uma vez que todas as cartas tem a mesma chance de ocorrer s sucesso - total de eventos de interesse: 4 ases n total de possíveis retiradas: 52 cartas
5 Exemplo 2 Qual a probabilidade de obter um 3 ou um 4 em uma jogada de um dado equilibrado. Probabilidade = 2/6 = 1/3 Observações: problema clássico de probabilidade, uma vez que o dado está equilibrado. s = resultado de interesse = 2 (3 ou 4) n = resultados possíveis = 6 (1,2,3,4,5,6)
6 Exemplo 3 Se H representa cara (head) e T representa coroa (tail), os quatro resultados possíveis de duas jogadas de uma moeda são: HH HT TH TT Admitindo resultados igualmente prováveis, qual a probabilidade de obtermos: zero caras: s=1; n=4 => s/n=1/4 uma cara: s=2; n=4 => s/n=2/4=1/2 duas caras: s=1; n=4 => s/n=1/4
7 Exemplo 4 Qual a probabilidade de obtermos 7 jogando duas vezes um dado? s: resultados de interesse = n: resultados possíveis = Probabilidade s/n = 6/36 = 1/6
8 Exemplo 5 Numa gaveta, há dez pares distintos de meias. Em um dos pares, ambos os pés estão furados. Se tiramos um pé de meia por vez, ao acaso, qual a probabilidade de tirarmos dois pés de meia, do mesmo par, NÃO furados, em duas retiradas?
9 Resposta Evento de interesse, R: "retirar 2 pés de meias, do mesmo par, não furados, em duas retiradas. Características do problema: Ambos os pés de um mesmo par furados. Existem 18 pés bons e 2 pés furados. Número de resultados possíveis: N = Maneiras de tirarmos 2 pés de meia em duas retiradas = 20 pés da primeira vez x 19 pés da segunda vez (um já foi retirado) = 380. Número de resultados favoráveis: n(r) = O primeiro pé não furado pode ser escolhido de 18 maneiras. Na segunda retirada, só há um pé de meia que combina com o já retirado. Então, n(r) = 18 x 1 = 18. Cálculo da probabilidade do evento de interesse: P(R) = n(r) / N = 18 / 380 = 0,0474 = 4,74%
10 Limitação do conceito clássico A limitada aplicabilidade Não há tantas situações em que várias possibilidades, ou eventos, podem ser considerados como igualmente prováveis Exemplo: Probabilidade de chover amanhã. Eventos possíveis: n = 2 Eventos de interesse: s = 1 Probabilidade = ½???? NÃO SE PODE AFIRMAR Os eventos não possuem a mesma chance de ocorrer.
11 Limitação do conceito clássico Outros Exemplos: Dado viciado no número 6: a probabilidade de jogar este dado e cair o número 6 será evidentemente maior que 1/6 Moeda com peso maior do lado de cara: a probabilidade de cair cara será evidentemente maior que ½ Em ambos os casos, não podemos simplesmente calcular a probabilidade pela relação s/n. Nestes casos e em diversos outros, a interpretação freqüencial encial deve ser utilizada para determinar a possibilidade de ocorrência de um evento a PROBABILIDADE
12 Definições Definição Freqüencial de Probabilidade A freqüência relativa de ocorrência de eventos em experimentos grandes determina a probabilidade de ocorrência futura deste mesmo evento P( A) = Número de ocorrências de A Número de repetições do experimento ,59-1,65 1 1,65-1, ,71-1,77 4 1,77-1,83 2 1,83-1,
13 Exemplos Exemplo 6 Há uma probabilidade de 0,78 de um jato da linha Salvador-São Paulo chegar no horário, em vista do fato de que tais vôos chegam no horário em 78% das vezes Exemplo 7 Se o serviço meteorológico indica que há 40% de chance de chover é porque, sob as condições de tempo previstas para o referido dia, há uma freqüência de chuva em 40% das vezes Em ambos os casos, não podemos garantir matematicamente as ocorrências; contudo, podemos concluir com base em dados (experimentos) passados
14 Exemplo 8 Os registros de aviação da companhia AlQaedaAir mostram que, durante um certo tempo, 468 dentre 600 de seus jatos da linha Bagdá- Nova Iorque chegaram no horário. Qual é a probabilidade de que um avião daquela linha chegue no horário? 468/600 = Probabilidade de 0,78
15 Exemplo 9 Os registros indicam que 504 dentre 813 lavadoras automáticas de pratos vendidas por grandes lojas de varejo exigiram reparos dentro da garantia de um ano. Qual a probabilidade de que uma dessas lavadoras não venham a exigir reparo dentro da garantia? = /813 = Probabilidade de 0,38.
16 Comentário Observa-se que a conclusão de probabilidade de eventos futuros está toda baseada em experimentos passados. Portanto a pergunta se faz: Que garantia temos sobre a estimativa feita? Mais adiante no curso será apresentado um método que estima a precisão do resultado. Por enquanto nos bastamos com a LEI DOS GRANDES NÚMEROS
17 LEI DOS GRANDES NÚMEROS Quando maior for a repetição do experimento, maior a aproximação da probabilidade efetiva de acontecimento de um determinado evento através da freqüência relativa
18 Comentários Quando usar uma ou outra regra? A definição clássica exige que os resultados tenham todos a mesma chance de ocorrer. Alguns experimentos, mesmo que tenham os resultados todos com a mesma chance de ocorrer, são muito complexos de serem resolvidos através da abordagem clássica. Utiliza-se então a regra da aproximação de freqüências relativas Probabilidade de ganhar no jogo de paciência No caso acima há métodos de simulação para gerar experimentos a partir de poucos resultados
19 Comentários Amostras aleatórias Para gerar experimentos, os eventos devem ser escolhidos de tal maneira que toda possível amostra de n elementos da população tenha a mesma chance de ser escolhido sendo um conjunto de dados representativo, imparcial e não tendencioso.
Probabilidade. Definições e Conceitos
Probabilidade Definições e Conceitos Definições Probabilidade Medida das incertezas relacionadas a um evento Chances de ocorrência de um evento Aplicação em: Avaliação de Desempenho de Sistemas Engenharia
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira
Noções sobre Probabilidade
Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2016
Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2016 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013
Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Estatística (MAD231) Turma: IGA. Período: 2017/2
Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #01 de Probabilidade: 27/09/2017 1 Probabilidade: incerteza? como medir e gerenciar a Introdução Os jornais informaram que há uma chance de 60% de chover
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:
Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos
Estatística. Aula : Probabilidade. Prof. Ademar
Estatística Aula : Probabilidade Prof. Ademar TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento. É um ramo da matemática que cria, elabora
1.4.2 Probabilidade condicional
M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional
Métodos Quantitativos para Ciência da Computação Experimental
Métodos Quantitativos para Ciência da Computação Experimental -Aula #2a- Virgílio A. F. Almeida Março 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais Revisão de Probabilidade
Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues
Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson
Distribuições discretas de probabilidades Cap. 8 Binomial, Hipergeométrica, Poisson Definições Variável aleatória: função que associa a cada elemento do espaço amostral um número real. Exemplo: diâmetro
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
Espaços Amostrais Finitos
2 ESQUEMA DO CAPÍTULO Espaços Amostrais Finitos 1.1 ESPAÇO AMOSTRAL FINITO 1.2 RESULTADOS IGUALMENTE VEROSSÍMEIS 1.3 MÉTODOS DE ENUMERAÇÃO UFMG-ICEx-EST-032/045 Cap. 2 - Espaços Amostrais Finitos 1 2.1
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
Teoria das Probabilidades
Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das
As três definições de probabilidades
As três definições de probabilidades Prof. Ilydio Pereira de Sá UERJ -USS INTRODUÇÃO ÀS PROBABILIDADES Para iniciar, vamos considerar algumas hipóteses: Rita espera ansiosamente o nascimento de seu filho,
Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.
Probabilidade Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis Renata Souza Probabilidade É um conceito matemático que permite a quantificação
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
Prof. Janete Pereira Amador 1. 1 Introdução
Prof. Janete Pereira Amador 1 1 Introdução A ciência manteve-se até pouco tempo atrás, firmemente apegada à lei da causa e efeito. Quando o efeito esperado não se concretizava, atribuía-se o fato ou a
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
Estatística e Probabilidade. Prof Carlos
Estatística e Probabilidade Prof Carlos Médias Média Aritmética Simples Média Aritmética ( X ) - É o quociente da divisão da soma dos valores da variável pelo número deles: x x1 x 2... x n n Exemplo: Sabendo-se
TEORIA DAS PROBABILIDADES
TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da
Teoria da Probabilidade
Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos
Estatística e Probabilidade Aula 04 Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 04 Probabilidades Prof. Gabriel Bádue Motivação Objetivos Fundamento para estudar métodos estatísticos. Resolução de problemas de probabilidades. Teoria Definições Experimento
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.
PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No
MA12 - Unidade 17 Probabilidade
MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 03/14 1 / 20
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 03/14 1 / 20 Probabilidade Prof. Tarciana Liberal (UFPB) Aula 3 03/14 2 / 20 Probabilidade
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Análise e Elaboração de Projetos Apresentação Prof Dr Isnard Martins Conteúdo: Profº Dr Carlos Alberto (Caio) Dantas Profº Dr Luiz Renato G. Fontes Prof Dr Victor Hugo Lachos
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 03/14 1 / 31 Prof. Tarciana Liberal (UFPB) Aula 2 03/14
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
CAPÍTULO 3 PROBABILIDADE
CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém
Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas
Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
Lista de exercícios propostos de Distribuições Discretas Estatística I OBS: Os exercícios estão dispostos em ordem de dificuldade.
Lista de exercícios propostos de Distribuições Discretas Estatística I OBS: Os exercícios estão dispostos em ordem de dificuldade. 1. Sendo X uma variável seguindo uma distribuição Uniforme Discreta, com
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Matemática. Probabilidade Básica. Professor Dudan.
Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover
Introdução as Probabilidades e ao Cálculo Combinatório
Aula # 13 e 14 DISCIPLINA: PROBABILIDADE E ESTATÍSTICA Introdução as Probabilidades e ao Cálculo Combinatório Professor: Dr. Wilfredo Falcón Urquiaga Professor Titular Engenheiro em Telecomunicações e
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de
Aulas particulares. Conteúdo
Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo
1- INTRODUÇÃO 2. CONCEITOS BÁSICOS
1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo
Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
Princípios básicos de probabilidade e aplicação à genética
Princípios básicos de probabilidade e aplicação à genética 1ª Parte: Princípios básicos de probabilidade Probabilidade é a chance que um evento tem de ocorrer, entre dois ou mais eventos possíveis. Por
Probabilidade. Sumário Introdução Conceitos Básicos... 2
17 Sumário 17.1 Introdução....................... 2 17.2 Conceitos Básicos................... 2 1 Unidade 17 Introdução 17.1 Introdução Iniciamos, nesta unidade, o estudo de, cuja parte mais elementar
Lista 3 - Introdução à Probabilidade e Estatística
Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? (Análise Combinatória) 2 Análise combinatória É um dos tópicos que
Se a bola retirada da urna 1 for branca temos, pelo princípio da multiplicação:
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 3 Probabilidade Condicionada e Independência. 1. Probabilidade Condicionada. Definição: Definição. Dizemos que os representam uma
Regras de probabilidades
Regras de probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 16 de maio de 2018 Londrina 1 / 17 Propriedades As probabilidades sempre se referem a
Processos Estocásticos
Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Princípios de Bioestatística
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Princípios de Bioestatística Aula 5 Introdução à Probabilidade Nosso dia-a-dia está cheio de incertezas Vai
PROBABILIDADE - INTRODUÇÃO
E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO ANÁLISE COMBINATÓRIA PROBABILIDADE - INTRODUÇÃO PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net TEORIA DAS PROBABILIDADES A teoria
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
INTRODUÇÃO À PROBABILIDADE
Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano 1º Bimestre AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO INTRODUÇÃO À PROBABILIDADE TAREFA 4 Cursista: Thais Monteiro
GABARITO DAS ATIVIDADES
Seção 1 Lançando Moedas e Dados Título da Atividade: Jankenpon 1 GABARITO DAS ATIVIDADES Para cada par de dados, denotemos por (i, j) o resultado i obtido no primeiro dado e o resultado j obtido no segundo
Probabilidade. Luiz Carlos Terra
Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.
Processos Estocásticos
Processos Estocásticos Quarta Lista de Exercícios 12 de fevereiro de 2014 1 Sejam X e Y duas VAs que só podem assumir os valores 1 ou -1 e seja p(x, y) = P (X = x, Y = y), x, y { 1, 1} a função de probabilidade
Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M.
Módulo de Probabilidade Condicional Lei Binomial da Probabilidade. a série E.M. Probabilidade Condicional Lei Binomial da Probabilidade Exercícios Introdutórios Exercício. Uma moeda tem probabilidade p
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4 1. Dois dados honestos são lançados. Calcule a probabilidade condicional de que pelo menos um deles caia no 6 se os dados cairam em números diferentes.
QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE
QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3
