20 - EXERCÍCIOS FUNÇÃO DO PRIMEIRO GRAU
|
|
|
- Theodoro Barateiro Monteiro
- 9 Há anos
- Visualizações:
Transcrição
1 EXERCÍCIOS FUNÇÃO DO PRIMEIRO GRAU 1) (UFMG) Suponha-se que o número f(x) de funcionários para distribuir, em um dia, contas de luz entre x por cento de moradores, numa determinada cidade, seja dado pela função f(x) = 300 x/150 - x. Se o número de funcionários necessários para distribuir, em um dia, as contas de luz foi 75, a porcentagem de moradores que as receberam é: a) 25 b) 30 c) 40 d) 45 e) 50 2) (UFMG) Para alimentar seus pássaros, um criador compra, mensalmente, ração e milho num total de 1000kg. A ração custa Cr$ 400,00 o quilograma e o milho, Cr$ 250,00. Se x representa a quantidade, em quilogramas, de ração comprada, pode-se afirmar que a função-gasto, em cruzeiros, é dada por: a) g(x) = 150x, 0 < x < 1000 b) g(x) = 400x, 0 < x < 1000 c) g(x) 150x , 0 < x < 1000 d) g(x) = 250x , 0 < x < 1000 e) g(x) = 400x , 0 < x < ) (MACK) A função f é definida por f(x) = ax + b. Sabe-se que f(-1) = 3 e f(1) = 1. O valor de f(3) é: a) 0 b) 2 c) 5 d) 3 e) 1 4) (PUC) Uma função do 1º grau é tal que f(-1) = 5 e f(3) = -3. Então f(0) é igual a: a) 0 b) 2 c) 3 d) 4 e) 1 5) (UFPI) A função real de variável real, definida por f(x) = (3 2a) x + 2, é crescente quando: a) a > 0 b) a < 3/2 c) a = 3/2 d) a > 3/2 e) NDA 6) (U.E. Londrina) Seja a função f, tal que f(x) = ax + b. Se os pontos (0, -3) e (2,0) pertencem ao gráfico de f, então a + b é igual a: a) 9/2 b) 3 c) 3/2 d) 3/2 e) 1 7) (FGV) O gráfico da função f(x) = mx + n passa pelos pontos (-1,3) e (2, 7). O valor de m é: a) 5/3 b) 4/3 c) 1 d) 3/4 e) 3/5 8) (UFMG) Sendo a < 0 e b > 0, a única representação gráfica correta para a função f(x) = ax + b é: y a) y b) y c) y d) y e) x x x x x 9) (ufmg-1197) Para a função f(x) = 5x + 3 e um número b, tem-se f(f(b)) = -2. O valor de b é: a)-1 b)-4/5 c)-17/25 d)-1/5
2 2 10) (ufmg-1998) Observe o gráfico, em que o segmento AB é paralelo ao eixo das abscissas. Esse gráfico representa a relação entre a ingestão de certo composto, em mg/dia, e sua absorção pelo organismo, também em mg/dia. A única alternativa FALSA relativa ao gráfico é: A) Para ingestões de até 20 mg/dia, a absorção é proporcional à quantidade ingerida. B) A razão entre a quantidade absorvida e a quantidade ingerida é constante C) Para ingestões acima de 20 mg/dia, quanto maior a ingestão, menor a porcentagem absorvida do composto ingerido. D) A absorção resultante de ingestão de mais de 20 mg/dia é igual à absorção resultante da ingestão de 20 mg/dia. 11) (ufmg-1999) Observe as figuras. Nessas figuras, estão representados os gráficos das funções y = F(x) e y = G(x), definidas no intervalo [0,1]. O gráfico de y = G(x) é formado por segmentos de reta.assinale a única afirmativa FALSA em relação a essa situação. 12) (ufmg-2000) Observe a figura. Ela representa o gráfico da função y = f ( x ), que está definida no intervalo [ - 3, 6 ]. A respeito dessa função, é INCORRETO afirmar que: A) f ( 3 ) > f ( 4 ). B) f ( f ( 2 ) ) > 1,5. C) f ( x ) < 5,5 para todo x no intervalo [ - 3, 6 ]. D) o conjunto { - 3 < x< 6 f ( x ) = 1,6 } contém exatamente dois elementos.
3 3 13) (ufmg-2002) O número real x satisfaz 4x 3/( x+ 1) > 2 é : a) 5 b) 1 c) 0 d) -1 14) (ufmg-2004) O gráfico da função p(x) = x 3 + ( a +3)x 2 5x +b contém os pontos ( 1, 0) e (2, 0).Assim sendo, o valor de p(0) é: A) 1. B) 6. C) 1. D) 6. 15) (ufmg-2004) Considere a função f(x) = 2x + 2 / x 3. O conjunto dos valores de x para os quais (x) E y E R : 0 < y 4 é: a) x 7 b) x < -1 ou x 7 c)-1< x 7 d) x< -1 16) (ufmg-2005) Em 2000, a porcentagem de indivíduos brancos na população dos Estados Unidos era de 70% e outras etnias latinos, negros, asiáticos e outros constituíam os 30% restantes. Projeções do órgão do Governo norte-americano encarregado do censo indicam que, em 2020, a porcentagem de brancos deverá ser de 62%. FONTE: Newsweek International, 29 abr Admitese que essas porcentagens variam linearmente com o tempo. Com base nessas informações, é CORRETO afirmar que os brancos serão minoria na população norte-americana a partir de: A) B) C) D) ) (FUVEST 2008) Por recomendação médica, uma pessoa deve fazer, durante um curto período, dieta alimentar que lhe garanta um mínimo diário de 7 miligramas de vitamina A e 60 microgramas de vitamina D, alimentando-se exclusivamente de um iogurte especial e de uma mistura de cereais, acomodada em pacotes. Cada litro do iogurte fornece 1 miligrama de vitamina A e 20 microgramas de vitamina D. Cada pacote de cereais fornece 3 miligramas de vitamina A e 15 microgramas de vitamina D. Consumindo x litros de iogurte e y pacotes de cereais diariamente, a pessoa terá certeza de estar cumprindo a dieta se: 18) Seja f uma função real, de variável real, definida por f(x) = x 3 1.Assim, pode-se afirmar que: a) f(-1)= 0 b) f(2)= 8 c) f(0)= 1 d) f(5)= 125 e) f(1) = 0 19) (FUVEST 2004) Um estacionamento cobra R$ 6,00 pela primeira hora de uso, R$ 3,00 por hora adicional e tem uma despesa diária de R$ 320,00. Considere-se um dia em que sejam cobradas, no total, 80 horas de estacionamento. O número mínimo de usuários necessário para que o estacionamento obtenha lucro nesse dia é: a) 25 b) 26 c) 27 d) 28 e) 29 20) (FUVEST 2001) O conjunto dos pontos (x, y) do plano cartesiano,cujas coordenadas satisfazem a equação (x 2 + y 2 + 1)(2x + 3y 1)(3x 2y + 3) = 0, pode ser representado, graficamente, por:
4 4 21) (UFMG 2009) Nesta figura, está representado o gráfico da função y = f (x): Com base nas informações desse gráfico, assinale a alternativa cuja figura melhor representa o gráfico da função g (x) = f (1 x). 22) (UFMG 2010) Considere a função:
5 5 Então, é CORRETO afirmar que o maior elemento do conjunto é: a) f(7/31) b) f(1) c) f(3,14) d) f de raiz de 24 sobre raiz de 2 23) (UFMG 2010) Considere a função: Assinale a alternativa em que o gráfico dessa função está CORRETO: Gabarito 1-b 2-c 3-e 4-c 5-b 6-d 7-d 8-E 9-a 10-b 11-d 12-d 13-a 14-b 15-b 16-a 17-a 18-e 19-c 20-d 21-d 22-c 23-b
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS
Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém
Aula 3 Função do 1º Grau
1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
O número mínimo de usuários para que haja lucro é 27.
MATEMÁTICA d Um reservatório, com 0 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 8% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que
ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
MATRIZ - FORMAÇÃO E IGUALDADE
MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO 1. (Epcar (Afa) 016) Para fazer uma instalação elétrica em sua residência, Otávio contatou dois eletricistas. O Sr. Luiz, que cobra uma parte fixa
FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.
PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65
FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos
Exercícios de Matemática Funções Função Logarítmica
Exercícios de Matemática Funções Função Logarítmica 3. (Ufsm) Se x > 0 e x 1, então a expressão TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos.
Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro
Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:
b) 1, 0. d) 2, 0. Página 1 de 10
Retas: Paralelas, Perpendiculares, Inequações de retas, Sistema de inequações de retas, Distância entre ponto e reta e Distância entre duas retas paralelas. 1. (Insper 014) No plano cartesiano da figura,
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;
Aula 4 Função do 2º Grau
1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função
Exercícios de Matemática Equações de Terceiro Grau
Exercícios de Matemática Equações de Terceiro Grau 1. (Unesp 89) Com elementos obtidos a partir do gráfico adiante, determine aproximadamente as raízes das equações a) f(x) = 0 b) f(x) -2x = 0 6. (Uel
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
DISCIPLINA: Matemática. Lista de Revisão 3º Bimestre. A arte da vida consiste em fazer da vida uma obra de arte...
ALUNO (A): PROFESSSOR (A): Carlos Alison DISCIPLINA: Matemática DATA: / / Lista de Revisão 3º Bimestre A arte da vida consiste em fazer da vida uma obra de arte... - Mahatma Gandhi 1. (Ufla) Uma loja vende
Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é
Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa
1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar
Função do 1 Grau - AFA
Função do 1 Grau - AFA 1. (AFA 2009) Considere as funções reais f : IR IR dada por f(x) = x + a, g : IR IR dada por g(x) = x a, h : IR IR dada por h(x) = x a Sabendo-se que a < 0, é INCORRETO afirmar que
MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: x : módulo do número x i : unidade imaginária sen x : seno de x cos x : cosseno de x log x : logaritmo
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância
A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi
FUNÇÃO QUADRÁTICA. Resumo
01 / 08 / 12 FUNÇÃO QUADRÁTICA 1. Definição Resumo Função do 2º grau ou função quadrática é a função f: R R definida por f(x) = ax² + bx + c, com a, b, c reais e a 0. Em que a é o coeficiente de x²; b
PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32. Sejam a, b e c números reais e positivos tais que. c. Então, é CORRETO afirmar que. A) a 2 = b 2 + c 2
PROVA DE MATEMÁTICA QUESTÃO 3 Sejam a, b e c números reais e positivos tais que. c Então, é CORRETO afirmar que A) a 2 = b 2 + c 2 B) b = a + c C) b 2 = a 2 + c 2 D) a = b + c QUESTÃO 32 Um carro, que
MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x
MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
C Qual será a receita média mensal da edição de bolso nesse período de cinco anos? Resolução. A Edição de Bolso Edição Capa Dura
1 A Editora Século 22 pretende lançar no mercado, a partir de janeiro de 2014, duas edições do livro Fauna do Pantanal : uma edição de bolso e uma edição em capa dura. Um estudo feito pelo departamento
2 36) pertence ao. a) { 5, 1, 7, 25} b) { 3, 1, 6, 20} c) { 5, 2, 7, 25} d) { 5, 1, 25} f (1) 9. Calcule f (2). 10. (UFRN) Seja f : D R,
0. Para que valores de k o ponto eio das abscissas? k 3 b) k k ou k 4 k 0 ou k e) k ou k A (k, 4k 36) pertence ao 06. Seja g a função de domínio A,, 0,,, 3 e contradomínio R tal que de g. {,, 7, } b) {
É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A
4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa
1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx
apenas uma = 28+26+24 = 78 pessoas 2. DETERMINE o número de pessoas que freqüentam, pelo menos, duas livrarias. pelo menos uma = x+y+z+8 = 87 pessoas
UFMG Matemática Questão 1 (Constituída de três itens.) Uma pesquisa foi feita com um grupo de pessoas que freqüentam, pelo menos, uma das três livrarias, A, B e C. Foram obtidos os seguintes dados:. das
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =
UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,
Soluções de Questões de Vestibular UFF
Soluções de Questões de Vestibular UFF 6 de dezembro 00 Este arquivo contém soluções comentadas das questões de matemática das provas da Universidade Federal Fluminense - UFF Universidade Federal Fluminense
MATEMÁTICA POLINÔMIOS
MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:
EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos
Equações Trigonométricas
Equações Trigonométricas. (Insper 04) A figura mostra o gráfico da função f, dada pela lei 4 4 f(x) (sen x cos x) (sen x cos x) O valor de a, indicado no eixo das abscissas, é igual a a) 5. b) 4. c). d)
Solução Comentada Prova de Matemática
18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Ludmilla Rangel Cardoso Silva Kamila Gomes Carmem Lúcia Vieira Rodrigues Azevedo
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 2º Ano Turma B - C.C.H. de Ciências e Tecnologias - Teste de Avaliação de Matemática A V Duração: 90 min 03 Fev. 200 Prof.: Na folha de respostas, indicar de forma legível
Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada
Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA
CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA Conforme Silva (1999), seja U uma utilidade (bem ou serviço) cujo preço de venda por unidade seja um preço
MODELO 1 RESOLUÇÃO RESOLUÇÃO V1 V2 T2 330 K = V2 = V1 V1 V2 = 1,1.V1 T1 T2 T1 300 K
MODELO 1 1) Suponha que um gás ideal tenha sofrido uma transformação isobárica, na qual sua temperatura varia de 27 C para 57 C. Qual seria a porcentagem de variação que o volume do gás iria experimentar?
MATEMÁTICA PROVA 3º BIMESTRE
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa
1 1. (Fgv 2001) a) No plano cartesiano, considere a circunferência de equação x +y -4x=0 e o ponto P(3,Ë3). Verificar se P é interior, exterior ou pertencente à circunferência. b) Dada a circunferência
FUNÇÕES DE 1º GRAU FUNÇÕES DE 2º GRAU
Matemática Matemática Avançada 2 os anos João mar/12 Nome: FUNÇÕES DE 1º GRAU Uma função de 1º grau é caracterizada pela seguinte lei: f(x) = ax + b Observações: Se a for positivo, a função é crescente;
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
Matemática. A probabilidade pedida é p =
a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
FUNÇAO DO 2 GRAU. é igual a:
1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,
PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com
PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR 1) (Concurso Petrobras 2011 Administrador Junior) Considere uma sequência infinita de retângulos, cada um deles com base medindo 1cm e tais que o
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA.
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA. Professor Joselias www.concurseiros.org Março de 2008. Um dos indicadores de saúde comumente utilizados
COMPORTAMENTO DOS GASES - EXERCÍCIOS DE FIXAÇÃO E TESTES DE VESTIBULARES
www.agraçadaquímica.com.br COMPORTAMENTO DOS GASES - EXERCÍCIOS DE FIXAÇÃO E TESTES DE VESTIBULARES 1. (UNIPAC-96) Um mol de gás Ideal, sob pressão de 2 atm, e temperatura de 27ºC, é aquecido até que a
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2
b b 4ac =, onde 2 , é um número REAL que pode ser: positivo, nulo ou negativo.
Função do º Grau Equação do segundo grau: Chama-se equação do º grau toda sentença da forma: a, b, c R e a 0 a b c + + = 0, com Fórmula resolvente (BHÁSKARA): ± b b 4ac =, onde a = b 4ac Observe que b
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
O Plano. Equação Geral do Plano:
O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor
Função de 1º grau. 1) Definição
1) Definição Função de 1º grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0.
EXERCÍCIOS FUNÇÃO AFIM
Primeiramente Bom dia! EXERCÍCIOS FUNÇÃO AFIM Questão 0 - (UNIRIO RJ/00) Um automóvel bicombustível (álcool/gasolin traz as seguintes informações sobre consumo (em quilômetros por litro) em seu manual:
FICHA DE ATIVIDADE - FÍSICA: MRU E MRV
Alexandre Santos (Xandão) 9º FICHA DE ATIVIDADE - FÍSICA: MRU E MRV 1 Assinale na coluna I as afirmativas verdadeiras e, na coluna II as falsas. A velocidade da partícula varia de acordo com o gráfico
A área do triângulo OAB esboçado na figura abaixo é
Questão 01 - (UNICAMP SP) No plano cartesiano, a reta de equação = 1 intercepta os eios coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas (4, 4/) b) (, ) c) (4, 4/) d) (, ) Questão
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4
MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de
2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y
EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,
Funções reais de variável real
Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta
Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.
1 3 2 12 01) (UFPI) O valor de x na equação x. b) 4 c) x 5 2 12
Aulas e 6 Equação do º grau 0) (UFPI) O valor de x na equação x 4 é: a) b) 4 c) 9 d) e) 4 x 4 x 6 6 x x = 4 S = {4} x 4 x 4 x x x x 0) (FGV) A equação 0 a) maior que b) menor que c) par d) primo e) divisor
AULA 04 FUNÇÃO DO 1º GRAU 1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0)
1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0) 1 c) f 3 1 d) f - 2 2. Dada a função afim f(x) = 2x + 3, determine os valores de x para que: a) f(x) = 1 b) f(x) = 0 c) f(x) = 3 1 3. Dada
Raciocínio Quantitativo Prova ANPAD - Fevereiro 2007
Raciocínio Quantitativo Prova ANPAD - Fevereiro 2007 1- Realizou-se uma pesquisa com 57 estudantes, cuja pergunta central era: Se você tivesse camiseta, tênis ou boné, qual (is) peça(s) você usaria para
UNIGRANRIO
1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3
FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 2. Por Professora Maria Antônia Conceição Gouveia
FUVEST VESTIBULAR 6 RESOLUÇÃO DA PROVA DA FASE Por Professora Maria Antônia Conceição Gouveia QUESTÃO Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja,
Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais
Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
Função Polinomial do Primeiro Grau e Radiciação
Função Polinomial do Primeiro Grau e Radiciação Função Polinomial do Primeiro Grau e Radiciação FUNÇÃO POLINOMIAL DO 1º GRAU RADICIAÇÃO Exercícios de Aula FUNÇÃO POLINOMIAL DO 1º GRAU 1. (Unesp) Considere
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
5 são flamenguistas. A metade dos restantes é
Simulado de matemática Professor Quilelli Academia do Concurso Público 1) Joana comeu metade das balas que haviam em um saco. Marina comeu a terça parte das balas do saco. Eulália comeu as 5 balas restantes.
5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede:
Relações Métricas nos Triângulos Retângulos Professor lístenes unha 1-(Mack SP-97) Num triângulo, retângulo, um cateto é o dobro do outro. Então a razão entre o maior e o menor dos segmentos determinados
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01
Matemática I Capítulo 08 Função Inversa
Nome: Nº Curso: Mineração Interado Disciplina: Matemática I Ano Prof. Leonardo Data: / /06 Matemática I Capítulo 08 Função Inversa 8. Função Inversa Consideremos os conjuntos A = {0,, 4, 6, 8} e B = {,
Quantos estudantes usariam somente camiseta, sem boné e sem tênis? Para quais valores de a não se pode determinar a inversa
RQ fev - 07 Prof. Aurimenes 01. Realizou-se uma pesquisa com 57 estudantes, cuja pergunta central era: Se você tivesse camiseta, tênis ou boné, qual(is) peça(as) você usaria para sair à noite?. Analisando
A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:
1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em
Projeto Jovem Nota 10 Porcentagem Lista 2 Professor Marco Costa
1. (Fuvest 2004) O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5, 3, 1, 4, 0 e 2. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total
Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes.
Roteiro da aula MA091 Matemática básica Aula 1... Francisco A. M. Gomes UNICAMP - IMECC Março de 016 1 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 8 Francisco A.
