Raciocínio Quantitativo Prova ANPAD - Fevereiro 2007
|
|
|
- Flávio Alcântara Branco
- 9 Há anos
- Visualizações:
Transcrição
1 Raciocínio Quantitativo Prova ANPAD - Fevereiro Realizou-se uma pesquisa com 57 estudantes, cuja pergunta central era: Se você tivesse camiseta, tênis ou boné, qual (is) peça(s) você usaria para sair à noite?. Analisando as respostas, constatou-se que: - 15 pessoas usariam tênis; - 18 usariam boné; - 3 usariam camiseta e tênis; - 6 usariam tênis e boné; - 4 usariam boné e camiseta; - 1 usaria as três peças; e - 15 pessoas não usariam nenhuma dessas três peças. Quantos estudantes usariam somente camiseta, sem boné e sem tênis? A) 21 B) 18 C) 15 D) 12 E) 9 2- A matriz X, composta por números reais, de ordem 3 x 3, é igual a a a 2. Para quais valores de a não se pode determinar a inversa dessa matriz X? A) a = 2 e a = 1 B) a = -1 e a = -2 C) a = 0 e a = -1 D) a = -1 e a = 2 E) a = 2 e a = Um grupo de sete pessoas é formado por dois irmãos, dois casais e um padre. Esse grupo deseja tirar uma foto, obedecendo às seguintes regras: - todos os membros do grupo devem se posicionar lado a lado (perfilados); - o padre deve se posicionar em um extremo, no lado direito ou no lado esquerdo; - cada casal deve permanecer junto. Considerando essas regras, quantas fotos distintas pode ser tiradas pelo grupo, ou seja, quanta combinações de posicionamento dos membros do grupo podem ser geradas para tirar diferentes fotos? A) 84 B) 92 C) 96 D) 192 E)
2 4- O custo fixo mensal para produzir até unidades de um determinado produto é de R$300, 00, e o custo variável para produzir cada unidade do mesmo produto é de R$2,00. O custo fixo mensal existirá independentemente da quantidade produzida no mês, desde que não ultrapasse o limite de unidades. O custo variável unitário, por sua vez, existirá apenas para cada unidade produzida, desde que o limite de unidades também não seja ultrapassado. Sabendo-se que cada unidade do referido produto é vendida por R$3,00, o número mínimo de unidades que devem ser produzidas e vendidas para que todos os custos sejam pagos é de A) 700 peças B) 600 peças C) 500 peças D) 400 peças E) 300 peças 5- Se as arestas de um sólido de um dado material M, em forma de cubo, aumentam em 50% devido à dilatação desse material, pode-se dizer que o volume desse cubo aumentará em A) 50,5% B) 75,5% C) 126,5% D) 150,5% E) 237,5% 6- O número de anagramas que podem ser feitos com a palavra ADMINISTRADOR, de modo que as consoantes sejam mantidas em suas respectivas posições, é A) 120. B) 56. C) 30. D) 20. E) 10. 2
3 7- Em uma empresa trabalham pessoas, todas com curso superior. Nenhuma dessas pessoas tem mais do que dois cursos superiores, e são apenas engenheiros, são contadores, são advogados, são apenas bacharéis em computação, são administradores, - 50 são administradores e contadores, - 60 são advogados e administradores, - 30 são contadores e advogados, e - 60 têm outras profissões. A probabilidade de, uma escolha aleatória, a pessoas escolhida ser somente administrador é de A) 0,3. B) 0,25. C) 0,24. D) 0,20. E) 0, Os pontos nos quais a função f(x) = x 2 4x 12 toca o eixo x e o vértice desta parábola formam um triângulo. A área do triângulo formado, em unidades de área (u.a.), é A) 128 u.a. B) 64 u.a. C) 32 u.a. D) 16 u.a E) 8 u.a. 9- Um baralho tem quarto naipes, sendo que cada naipe tem 12 cartas. A probabilidade de se retirar, sem reposição, três carta do mesmo naipe desse baralho é 55 A) B) C) D) E)
4 10- Hoje, o agiota Furtado concedeu um empréstimo de R$500,00 ao Sr. Inocêncio e adotou o sistema de juros compostos a uma taxa de 10% a.m. Sabendo-se que o Sr. Inocêncio paga R$200,00 a cada mês (desde o primeiro mês), e que esse valor é abatido do montante da dívida, pode-se afirmar que, após três meses, A) o Sr. Inocêncio ainda deve R$3,50 ao agiota. B) o Sr. Inocêncio ainda deve R$ 42,30 ao agiota. C) o Sr. Inocêncio ainda deve R$ 38,00 ao agiota. D) o agiota deve R$35,00 ao Sr. Inocêncio. E) a dívida está liquidada. 11- Analise a veracidade das seguintes proposições. 7π I. O valor de cos é 1 2 II. A imagem da função y = 2 senx é o intervalo [ 2,2]. III. O gráfico das funções y = Inx e y = e x são simétricos em relação à reta x = y. Sobre a veracidade dessas proposições, pode-se afirmar que são verdadeiras as afirmações A) II, apenas. B) III, apenas. C) I e III, apenas. D) II e III, apenas. E) I, II e III. 12- Foi realizado um levantamento em relação ao peso de 10 estudantes universitários do curso de administração. Obteve-se o seguinte resultado (em kg): 61, 66, 66, 67, 71, 72, 72, 72,77, 78. Assim, a mediana e a média aritmética desse conjunto são, respectivamente, A) 71,5 e 70,2. B) 71,5 e 71,5. C) 71 e 70,2. D) 70,2 e 71,5. E) 72 e 70,2. 4
5 13- Em um fábrica, três costureiras, em oito horas de trabalho, produzem 48 calças. Como aumentou a demanda pelos produtos dessa fábrica, foram contratadas mais três costureiras, que apresentaram o mesmo desempenho das funcionárias veteranas. Se o último pedido é de 120 calças, qual o tempo necessário de trabalho para que as seis costureiras produzam tal quantidade? A) 8 horas. B) 10 horas. C) 12 horas. D) 16 horas. E) 24 horas. 14- Em uma lanchonete, são gastos R$6,00 para se comprar três pastéis, dois copos de refrigerante e uma porção de batatas fritas. Sabe-se que a mesma quantia de dinheiro é gasta para se comprar dois pastéis, um copo de refrigerante e três porções de batatas fritas. Logo, pode-se concluir que A) um pastel mais um copo de refrigerante custam o mesmo que duas porções de batatas fritas. B) um pastel, um copo de refrigerante e uma porção de batatas fritas custam R$4,00 C) um pastel, um copo de refrigerante e uma porção de batatas fritas custam R$6,00 D) um pastel custa R$2,00 e um copo de refrigerante custa R$1,50 E) todos custam menos de R$1, Um comerciante pretende fazer um investimento na modernização de sua loja no valor de X reais. Esse investimento permitirá uma redução nos custos operacionais de sua loja no valor mensal de Y reais por um período de n meses. Essa redução começa exatamente um mês após o investimento. Considerando-se que, nesses n meses, a taxa de juros é de 1,5% a.m., a relação que mostra como o comerciante pode avaliar se vale a pena efetuar o investimento na modernização da sua loja é n A) X i= l n B) Y i= l 1 (1,015) 1 (1,015) i i Y. X. C) ny> X (1,015) n+1. D) ny >X (1,015) n. E) nx >Y (1,015) n. 5
6 16. Alberto mora em um terreno quadrado de 40 metros de frente. Sua casa fica bem no centro do terreno, cercada por um gramado. Ele dispõe de uma máquina de cortar grama que possui um cabo elétrico original com 12 metros de comprimento. A máquina é ligada na única esquina da casa que apresenta tomada externa. A residência, por sua vez, tem uma base quadrada de 8 metros de lado, como está exposto neste desenho: Esquina onde se tem a tomada Máquina 8 m Sabendo-se que cada m 2 de grama cortada pesa 100 gramas, quantos quilogramas são obtidos após o uso dessa máquina para cortar toda a grama possível utilizando apenas seu cabo elétrico original? (Utilize π = 3) A) 34,8 kg B) 43,2 kg C) 64 kg D) 348 kg E) 432 kg Gramado 40 m 17- Uma caixa d água tem um escoamento constante de 200 litros de água por hora. Sabe-se que quando o nível da caixa atinge 100 litros, um reabastecimento com vazão constante de 205 litros de água por hora é acionado automaticamente até que a caixa atinja seu nível máximo. Se a capacidade total da caixa é de 600 litros e o reabastecimento foi acionado nesse momento, ele será acionado novamente daqui a A) 2 horas e 30 minutos. B) 2 horas e 24 minutos. C) 4 dias e 4 horas. D) 4 dias, 6 horas e 30 minutos. E) 4 dias, 6 horas e 50 minutos. 6
7 18- Dada a seqüência de números 1, 20, 6, 15, 11, 10,..., o décimo primeiro e o décimo segundo termos (dessa seqüência) são, respectivamente, A) 60 e 30. B) 31 e -10. C) 26 e -5. D) 16 e 5. E) 21 e Dois postos de gasolina, A e B, apresentavam o mesmo preço de combustível. Devido ao aumento de preços repassado pelos distribuidores, ambos os postos reajustaram seus preços ao consumidores finais. Cada posto realizou os aumentos de uma forma particular. O posto A reajustou três vezes os seus preços: 6% logo de imediato, 4% após dois meses e 5% após quatro meses. O posto B, por sua vez, reajustou seus preços duas vezes: o primeiro reajuste foi de 8% e coincidiu com a data do primeiro reajuste do posto A, o segundo reajuste foi de 15% e ocorreu após três meses. Sabendo-se que a gasolina em ambos os postos sempre apresenta mesma qualidade, a seqüência que indica o posto com o preço mais vantajoso para o consumidor final em cada um desses seis meses é: A) Posto A, Posto A, Posto B, Posto A, Postos A, Posto B. B) Posto A, Posto B, Posto A, Posto B, Postos A, Posto B. C) Posto A, Posto A, Posto B, Posto A, Postos B, Posto B. D) Posto A, Posto A, Posto A, Posto A, Postos A, Posto A. E) Posto A, Posto A, Posto B, Posto A, Postos A, Posto A. 7
8 20- O mapa abaixo representa três quadras da cidade Imaginópolis, onde as ruas A, B, C e D são paralelas entre si, assim como as ruas E e F. Essas ruas delimitam quadras de mesma dimensão. Supondo-se que as unidade nos eixos horizontal e vertical estão em metros, que os vértices da quadra Q 1 são os pontos (40,10), (82,20), (40,60) e (82,70) e que cada m 2 está avaliado em R$25,00, então o preço cobrado pelas três quadras é A) R$ ,00. B) R$ ,00. C) R$ ,00. D) R$ ,00. E) R$ ,00. GABARITO: C B D E E C E B B A D A B A B A D C E C 8
Quantos estudantes usariam somente camiseta, sem boné e sem tênis? Para quais valores de a não se pode determinar a inversa
RQ fev - 07 Prof. Aurimenes 01. Realizou-se uma pesquisa com 57 estudantes, cuja pergunta central era: Se você tivesse camiseta, tênis ou boné, qual(is) peça(as) você usaria para sair à noite?. Analisando
5 são flamenguistas. A metade dos restantes é
Simulado de matemática Professor Quilelli Academia do Concurso Público 1) Joana comeu metade das balas que haviam em um saco. Marina comeu a terça parte das balas do saco. Eulália comeu as 5 balas restantes.
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos
Função do 2º Grau. 2 =, onde 2. b 4ac. , é um número REAL que pode ser: positivo, nulo ou negativo.
Função do º Grau Equação do segundo grau: Chama-se equação do º grau toda sentença da forma: a b c + + = 0, com abc,, R ea 0 Fórmula resolvente (BHÁSKARA): ± b b 4ac =, onde a b 4ac = Observe que b 4ac,
b b 4ac =, onde 2 , é um número REAL que pode ser: positivo, nulo ou negativo.
Função do º Grau Equação do segundo grau: Chama-se equação do º grau toda sentença da forma: a, b, c R e a 0 a b c + + = 0, com Fórmula resolvente (BHÁSKARA): ± b b 4ac =, onde a = b 4ac Observe que b
Função do 1 Grau - AFA
Função do 1 Grau - AFA 1. (AFA 2009) Considere as funções reais f : IR IR dada por f(x) = x + a, g : IR IR dada por g(x) = x a, h : IR IR dada por h(x) = x a Sabendo-se que a < 0, é INCORRETO afirmar que
CADERNO DE EXERCÍCIOS 1A
CADERNO DE EXERCÍCIOS 1A Ensino Fundamental Matemática Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Área de figuras planas H21 2 Multiplicação Divisão Unidades de medida H6 H35 3 Frações H13 4 Frações
2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y
EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,
QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 3 8 + 30 = a) 8 b) 9 c) 8 d) 9 e) 58 5 5 3 3 8
Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.
Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono
Seja a função: y = x 2 2x 3. O vértice V e o conjunto imagem da função são dados, respectivamente, por: d) V = (1, 4), Im = {y y 4}.
MATEMÁTICA b Seja a função: y = x 2 2x. O vértice V e o conjunto imagem da função são dados, respectivamente, por: a) V = (, 4), Im = {y y 4}. b) V = (, 4), Im = {y y 4}. c) V = (, 4), Im = {y y 4}. d)
UNIGRANRIO
1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3
PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com
PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR 1) (Concurso Petrobras 2011 Administrador Junior) Considere uma sequência infinita de retângulos, cada um deles com base medindo 1cm e tais que o
MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: x : módulo do número x i : unidade imaginária sen x : seno de x cos x : cosseno de x log x : logaritmo
QUESTÕES DE PROVAS FGV CONCURSOS LISTA II
QUESTÕES DE PROVAS FGV CONCURSOS LISTA II 1. (Pref. de Paulínia SP 2015) Em um supermercado, um pacote com 8 sabonetes iguais custa R$ 10,00. Mantendo a proporção, um outro pacote com duas dúzias e meia
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO 1. (Epcar (Afa) 016) Para fazer uma instalação elétrica em sua residência, Otávio contatou dois eletricistas. O Sr. Luiz, que cobra uma parte fixa
MATEMÁTICA PROVA 2º BIMESTRE 9º ANO
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 2º BIMESTRE 9º ANO 2010 QUESTÃO 1 π é o nome dado ao quociente
Lista 4 Introdução à Programação Entregar até 07/05/2012
Lista 4 Introdução à Programação Entregar até 07/05/2012 1. Um vendedor necessita de um algoritmo que calcule o preço total devido por um cliente. O algoritmo deve receber o código de um produto e a quantidade
Matemática. A probabilidade pedida é p =
a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma
Disciplina de Matemática Professora Valéria Espíndola Lessa. Atividades de Revisão 1º ano do EM 1º bimestre de 2011. Nome: Data:
Disciplina de Matemática Professora Valéria Espíndola Lessa tividades de Revisão 1º ano do EM 1º bimestre de 011. Nome: Data: a) I b) I e II c) II d) III e) II e III. Num curso de espanhol, a distribuição
SIMULADO MATEMÁTICA. 3) Com os algarismos 2, 5, 7, e 8, quantos números naturais de três algarismos distintos podem ser escritos?
NOME: DATA DE ENTREGA: / / SIMULADO MATEMÁTICA 1) Uma sorveteria oferece uma taça de sorvete que pode vir coberta com calda de chocolate, ou de morango ou de caramelo. O sorvete pode ser escolhido entre
MATEMÁTICA PROVA 3º BIMESTRE
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há
RESOLUÇÃO. O número inteiro mais próximo é 8.
1 Marta quer comprar um tecido para forrar uma superfície de 10m. Quantos metros, aproximadamente, ela deve comprar de uma peça que tem 1,5m de largura e que, ao lavar, encolhe cerca de 4% na largura e
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS
Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x
MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida
Lista de exercício nº 1 Juros simples e compostos*
Lista de exercício nº 1 Juros simples e compostos* 1. Um investidor aplicou $1.000,00 numa instituição financeira que remunera seus depósitos a uma taxa de 5 % ao trimestre, no regime de juros simples.
RESOLUÇÃO CARGOS DE NÍVEL MÉDIO
RESOLUÇÃO CARGOS DE NÍVEL MÉDIO Caro aluno, Disponibilizo abaixo a resolução resumida das 5 questões de Matemática da prova de nível médio da Petrobrás, bem como das questões de conhecimentos específicos
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das 10 questões de Matemática da prova de Escrevente do Tribunal de Justiça de São Paulo. Em
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)
MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade
Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160
Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três
Aula 4 Função do 2º Grau
1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função
MATEMÁTICA. Questão 01
MATEMÁTICA (Cada questão desta prova vale até cinco pontos) Questão 01 De acordo com a medida Provisória nº 2.148-1, de 22 de maio de 2001, e resoluções editadas pela Câmara de Gestão da Crise Energética,
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE
00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO À 1ª SÉRIE DO ENSINO MÉDIO 00/004 5 DE OUTUBRO DE 00 INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova:
A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE
Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção
MATEMÁTICA. Comparando as duas modalidades de pagamento quanto ao custo para o cliente, é correto afirmar que
MATEMÁTICA 49 Um estacionamento para automóveis oferece duas modalidades de pagamento pelos seus serviços: a primeira, em que o cliente paga R$ 5, por dia de utilização, e a segunda, em que ele adquire
O número mínimo de usuários para que haja lucro é 27.
MATEMÁTICA d Um reservatório, com 0 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 8% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que
Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais
Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.
Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase
Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em
6. Duas pessoas A e B decidem se encontrar em 1. Sendo (x + 2, 2y - 4) = (8x, 3y - 10), determine o valor de x e de y. um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³,
II - Teorema da bissetriz
I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos
Lista extra de exercícios
7º ANO Lista extra de exercícios 1. A proporção 10 30 3 6 é verdadeira?. A proporção 15 6 5 é verdadeira? 3. Apresente a razão entre as grandezas dadas e interprete o significado do resultado. a) Um carro
MATRIZ - FORMAÇÃO E IGUALDADE
MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
COLÉGIO GERAÇÃO. Revisão Enem 2014. Kmara
COLÉGIO GERAÇÃO Revisão Enem 014 Kmara 1) Uma empreiteira contratou 10 pessoas para pavimentar uma estrada com 300 km em 1 ano. Após 4 meses de serviço, apenas 75 km estavam pavimentados. Quantos empregados
Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas?
Matemática Aplicada 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito em uma rodovia. A partir dos dados, é possível estimar que, por exemplo, entre 12:00 horas e 18:00 horas
3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos
P R O V A DE MATE M Á TICA I
1 P R O V A DE MATE M Á TICA I QUESTÃO 01 Uma pessoa tem 36 moedas. Um quarto dessas moedas é de 25 centavos, um terço é de 5 centavos, e as restantes são de 10 centavos. Essas moedas totalizam a quantia
LISTA DE EXERCÍCIOS DE PROGRESSÃO GEOMÉTRICA. 2. Determine o 12ª elemento de uma progressão geométrica onde o primeiro elemento é 1 e a razão é 2.
COLÉGIO ESTADUAL SÃO JUDAS TADEU - ENSINO FUNDAMENTAL E MÉDIO Nome: SIMULADO MATEMÁTICA Bimestre: 3º Data: / /2013. Valor: 1,0 Nota: Professor (a): JOELMA A. BACH PONCHEKI Ass. Responsável: LISTA DE EXERCÍCIOS
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Ludmilla Rangel Cardoso Silva Kamila Gomes Carmem Lúcia Vieira Rodrigues Azevedo
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12
UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,
a) Qual a sentença matemática que define a função que relaciona o salário mensal do professor de musculação e do professor de aeróbica?
01) Indique o gráfico que melhor representa a distância (d) percorrida por um caminhante, em função do tempo (t), num passeio em que ele atravessa uma região plana, sobe uma montanha, dá uma parada a fim
RESOLUÇÃO DAS QUESTÕES
RESOLUÇÃO DAS QUESTÕES Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova de Perito Criminal da Polícia Científica de Goiás 2015. Note que as 3 primeiras
CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA
CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA Conforme Silva (1999), seja U uma utilidade (bem ou serviço) cujo preço de venda por unidade seja um preço
SOLUÇÃO DA PROVA DE MATEMÁTICA DO OFICIAL DE JUSTIÇA-SP-2009. Professor Joselias Outubro de 2009.
SOLUÇÃO DA PROVA DE MATEMÁTICA DO OFICIAL DE JUSTIÇA-SP-009. 1- Uma dívida será paga em 0 parcelas mensais fixas e iguais, sendo que, o valor de cada parcela representa 1/4 do salário líquido mensal do
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98 / 99 MÚLTIPLA ESCOLHA
1 MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Sabendo que A = Conjunto dos números no triângulo equilátero B = Conjunto dos números no triângulo
PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm
PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo
Receita Federal. Estudo das Convenções.
Estudo das Convenções. 01. Calcule o montante da aplicação de R$ 10.000,00 por quatro meses e vinte dias, à taxa composta de 6% ao mês. Questões de Concursos 01. (Contador RJ) Um capital de R$ 200,00 foi
ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 9º ANO. Aluno: Turma: Data:
ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 9º ANO Aluno: Turma: Data: 1) No mapa abaixo, encontram-se representadas as ruas do bairro onde mora Mariana. Mariana informou que mora numa rua entre
Função de 1º grau. 1) Definição
1) Definição Função de 1º grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0.
Aula 3 Função do 1º Grau
1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
C Qual será a receita média mensal da edição de bolso nesse período de cinco anos? Resolução. A Edição de Bolso Edição Capa Dura
1 A Editora Século 22 pretende lançar no mercado, a partir de janeiro de 2014, duas edições do livro Fauna do Pantanal : uma edição de bolso e uma edição em capa dura. Um estudo feito pelo departamento
Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010
Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas
SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.
Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um
5. A turma do Carlos organizou uma rifa. O gráfico mostra quantos alunos compraram um mesmo
1. Guilherme está medindo o comprimento de um selo com um pedaço de uma régua, graduada em centímetros, como mostra a figura. Qual é o comprimento do selo? (A) 3 cm (B) 3,4 cm (C) 3,6 cm (D) 4 cm (E) 4,4
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA
QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.
Teste 1. (a) 0.33 (b) 0.50 (c) 0.30 (d) 0.20
Teste 1 1. Das 4 afirmações seguintes qual a que é falsa? a) O primeiro quartil é o valor da observação tal que existem 25% de observações menores o iguais a ela; b) A mediana é sempre igual ao percentil
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro
Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA.
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA. Professor Joselias www.concurseiros.org Março de 2008. Um dos indicadores de saúde comumente utilizados
FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 2. Por Professora Maria Antônia Conceição Gouveia
FUVEST VESTIBULAR 6 RESOLUÇÃO DA PROVA DA FASE Por Professora Maria Antônia Conceição Gouveia QUESTÃO Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja,
Nome: N.º: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Joana cortou uma folha de papel em 10 partes.
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 015-16 GABARITO DAS QUESTÕES DE MATEMÁTICA Sendo
Resposta: Não. Por exemplo, em 1998 houve um aumento.
COLÉGIO PEDRO II - MEC 1aSÉRIE DO ENSINO MÉDIO MATEMÁTICA - 2007 DIURNO QUESTÃO 1 1 (VALOR: 1,5) Enquanto o número total de cheques utilizados no Brasil caiu nos últimos oito anos, o uso de cartões de
Prof Alexandre Assis [email protected]
1 1. Um bloco retangular (isto é, um paralelepípedo reto-retângulo) de base quadrada de lado 4 cm e altura 20Ë3 cm, com 2/3 de seu volume cheio de água, está inclinado sobre uma das arestas da base, formando
(b) Escreva a expressão numérica que tem como resultado a idade de Ana, considerando que a idade de Júlia, hoje, seja 10 anos.
QUESTÃO (VALOR:,5) Minha amiga Ana nunca revela a sua idade. Hoje, quando lhe perguntei, ela respondeu: Tenho o triplo da soma das idades de meus netos. Os netos de Ana são Júlia e Lucas. Júlia é a mais
Análise Combinatória. Quantos números de três algarismos distintos existem no sistema decimal?
1. Questão Análise Combinatória Numa promoção feita por uma conhecida empresa fabricante de refrigerantes, em cada tampinha vinha um prognóstico com relação ao primeiro, segundo e terceiro colocados, respectivamente,
20 - EXERCÍCIOS FUNÇÃO DO PRIMEIRO GRAU
1 20 - EXERCÍCIOS FUNÇÃO DO PRIMEIRO GRAU 1) (UFMG) Suponha-se que o número f(x) de funcionários para distribuir, em um dia, contas de luz entre x por cento de moradores, numa determinada cidade, seja
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
CONTABILIDADE GERENCIAL. Aula 5. Prof.: Marcelo Valverde
CONTABILIDADE GERENCIAL Aula 5 Prof.: Marcelo Valverde Plano de Ensino da Disciplina: CONTABILIDADE GERENCIAL UNIDADE 03 Relação Custo X Volume X Lucro 3. Ponto Equilíbrio Contábil 3.1.1 Métodos de apuração
VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA
GERAL DOS PROFESSORES DO CURSO POSITIVO VESTIBULAR UFPR 009 (ª FASE) PROVA DE MATEMÁTICA Estamos diante de um exemplo de prova! A afirmação acima, feita pelo prof. Adilson, sintetiza a nossa impressão
A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi
8. (FGV) Se João emagrecesse 10 kg, ele passaria a ter 75% do seu peso atual. Então, qual é seu peso atual?
1. Dos carros que vêm de A, 45% viram à esquerda, o mesmo ocorrendo com 35% dos que vêm de B e 30% dos que vêm de C. Qual o percentual de carros que passando por A entram em E? A B C 2. Um terreno tem
Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura.
1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. A aresta VA é perpendicular ao plano da base e tem a mesma medida do segmento AD. O seguimento AB mede 6 cm. Determine o volume
Exercícios: 01) Escreva cada fração centesimal abaixo na forma de taxa percentual. 02) Transforme cada fração centesimal em taxa unitária 250
EXERCÍCIOS DE MATEMÁTICA Prof. Mário e-mail: [email protected] 07- Porcentagem 07.01- Taxa Percentual, Taxa Unitária e forma irredutível. 01) Representar sob forma de taxa unitária cada uma das taxas
CAPÍTULO 1 MATEMÁTICA Revisão de Conceitos Básicos
CAPÍTULO 1 MATEMÁTICA Revisão de Conceitos Básicos Exercício 1.1.: Achar o valor de X: 3 (2X 4) = 2 (X + 2) Exercício 1.2.: Achar o valor de X: 3X 3 = 8 4 Matemática Financeira 1 Exercício 1.3.: Comprei
Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.
Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém
XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
MS 317 - Matemática Financeira
MS 317 - Matemática Financeira Lista 1 1) O Reitor da Unicamp concede reajuste mensal aos seus funcionários com base na variação do ICMS e atualmente recebe mensalmente 2,3% do ICMS arrecadado no Estado,
