FIGURAS GEOMÉTRICAS. MEDIDA
|
|
|
- Ruy Aldeia Borges
- 9 Há anos
- Visualizações:
Transcrição
1 7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Quadriláteros. Soma das amplitudes dos ângulos internos/externos de um polígono Nuno Marreiros Antes de começar 1
2 Quadrilátero Um quadrilátero é um polígono com quatro lados. Quadriláteros convexos e côncavos Existem quadriláteros convexos e quadriláteros côncavos. Quadrilátero convexo Quadrilátero côncavo 2
3 Soma das amplitudes dos ângulos internos de um triângulo Vamos demonstrar que a soma das medidas dos ângulos internos de um triângulo é 180. m A a n r Como r // BC, temos m = b e n = c (alternos internos) B b c C Traçamos uma reta r, paralela ao lado BC, passando por A. Essa paralela irá formar com os lados AB e AC dois ângulos cujas medidas indicamos por m e n, respetivamente. Como a + m + n = 180 Conclui-se que a + b + c = 180 Sabendo que a soma das amplitudes dos ângulos internos de um triângulo é 180º Vamos calcular a soma das amplitudes dos ângulos internos de um quadrilátero qualquer. I II Para isso, traçamos uma das diagonais do quadrilátero. Essa diagonal decompõe o quadrilátero em dois triângulos. A soma das amplitudes dos ângulos internos do triângulo I é 180 ; e a soma das amplitudes dos ângulos internos do triângulo II é 180. Portanto, podemos concluir que a soma das amplitudes dos ângulos internos do quadrilátero é igual a 2 x 180 =
4 MATEMÁTICA, 8º Ano do Ensino Fundamental Soma dos Ângulos Internos de um Polígono Convexo Qualquer Sabendo que a soma das amplitudes dos ângulos internos de um triângulo é 180º Vamos calcular a soma das medidas dos ângulos internos de um pentágono qualquer. I II III Para isso, traçamos duas das diagonais do pentágono que partem do mesmo vértice. A soma das medidas dos ângulos internos do pentágono será igual à soma das medidas dos ângulos internos dos triângulos I, II, e III, ou seja, 3 x 180 = 540. MATEMÁTICA, 8º Ano do Ensino Fundamental Soma dos Ângulos Internos de um Polígono Convexo Qualquer Sabendo que a soma das amplitudes dos ângulos internos de um triângulo é 180º... Vamos generalizar: S 3 = 180 x 1 S 4 = 180 x 2 (3 2) (4 2) 4
5 Sabendo que a soma das amplitudes dos ângulos internos de um triângulo é 180º... Vamos generalizar: S 5 = 180 x 3 S 6 = 180 x 4 (5 2) (6 2) Sabendo que a soma das amplitudes dos ângulos internos de um triângulo é 180º... Vamos generalizar: A soma Si das medidas dos ângulos internos de um polígono convexo qualquer de n lados é dada por: Si = 180 x (n 2) 5
6 MATEMÁTICA, 8º Ano do Ensino Fundamental Soma dos Ângulos Internos de um Polígono Convexo Qualquer Soma das amplitudes dos ângulos externos de um polígono qualquer Vamos analisar a figura que mostra os ângulos internos e externos de um triângulo qualquer. A i 1 e 1 i 1 + e 1 = 180 i 2 + e 2 = 180 i 3 + e 3 = 180 S i + S e = e 2 B i 2 i 3 e 3 C S e = 540 S e = 360 Nota que, em cada vértice, a soma da medida do ângulo interno com a medida do ângulo externo é 180. Num polígono convexo, a soma dos ângulos externos com vértices distintos é sempre igual a um ângulo giro (360º). MATEMÁTICA, 8º Ano do Ensino Fundamental Soma dos Ângulos Internos de um Polígono Convexo Qualquer Relação entre os ângulos interno e externo de um polígono e 2 A B e 1 i 1 e 3 i 2 i 3 C e 4 i 1 + e 1 = 180 i 4 D Vértice A Vértice B Vértice C Vértice D i 2 + e 2 = 180 i 3 + e 3 = 180 i 4 + e 4 = 180 Em cada vértice, os ângulos interno e externo do polígono são sempre adjacentes e suplementares (180º). 6
7 Recorda As equações Determina as medidas dos ângulos internos dos quadriláteros apresentados. Página Exercícios a) b) 14. a) b) No PowerPoint Extra
8 8
9 9
10 a) b) Determina a soma das amplitude dos ângulos externo de um icoságono. a) b) Determina a amplitude de um ângulo externo de um polígono com 12 lados. 10
11 EXTRA 1. Sabe-se que a soma das amplitudes dos ângulos internos de um polígono regular é 9180º a) Determina quantos lados tem esse polígono. b) Determina, aproximadamente, a amplitude de um dos seus ângulos externos. Verifica se existe um polígono convexo cuja soma das amplitudes dos seus ângulos internos é 5500º. Verifica se existe um polígono convexo cuja soma das amplitudes dos seus ângulos externos é 500º. EXTRA 4. Sabendo que a amplitude de um dos ângulo interno de um polígono regular é 172º, determina quantos lados tem. 5. Sabendo que a amplitude de um dos ângulo externos de um polígono regular é 8º, determina quantos lados tem. 11
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta
Da linha poligonal ao polígono
Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos
Figuras geométricas planas. Joyce Danielle. e espaciais
Figuras geométricas planas Joyce Danielle e espaciais Figuras geométricas planas Joyce Danielle UNIVERSIDADE FEDERAL DE ALAGOAS 2 Apresentação Na geometria plana vamos então nos atentar ao método de cálculo
Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)
MATEMÁTICA 3º CICLO FICHA 11 Geometria Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) Polígono é uma figura plana limitada por segmentos
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:
Terceira lista de exercícios.
MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras
1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA IV 1 CLASSIFICAÇÃO De acordo com o gênero (número de lados), os polígonos podem receber as seguintes denominações: Na figura 2, o quadrilátero foi dividido em triângulos.
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. Ficha Informativa/Formativa. Poliedros, Duais e Relação de Euler
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Ficha Informativa/Formativa MATEMÁTICA - A 10º Ano 2011/2012 Poliedros, Duais e Relação de Euler Poliedro - Um Poliedro é um sólido geométrico limitado por faces que
POLÍGONOS. Definição Polígonos Convexos e não-convexos. Professor: Jarbas
POLÍGONOS Definição Polígonos Convexos e não-convexos Professor: Jarbas Existem dois tipos de linhas: As linhas formadas por CURVAS: As linhas formadas por segmentos de RETAS: Linha Poligonal Linhas Poligonais:
1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero
Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer
Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois
Construções Geométricas Usuais
Construções Geométricas Usuais Rectas. Ângulos. Circunferência e círculo. Tangentes a circunferências. Polígonos. Rectas Duas rectas dizem-se perpendiculares quando dividem o espaço em quatro partes iguais,
UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL
Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que
Polígonos e mosaicos
A UUL AL A Polígonos e mosaicos A regularidade de formas encontradas na natureza tem chamado a atenção do ser humano há muitos séculos. Ao observar e estudar essas formas, o homem tem aprendido muitas
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se
Lista 3 Figuras planas
Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa
Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.
1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:
Capítulo 6. Geometria Plana
Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior
Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro são polígonos.
Ficha formativa para o 10.º ano - Poliedros Poliedros são sólidos geométricos cujas faces são superfícies planas. Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro
Construções Geométricas
Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares.
Teste de Avaliação Escrita Duração: 90 minutos 9 de maio de 0 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 0/0 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 9%) Insuficiente (0% 9%) Suficiente
Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:
Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,
Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas
Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste
Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO
Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência
TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência
Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84
COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
II - Teorema da bissetriz
I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos
10 FGV. Na figura, a medida x do ângulo associado é
urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas
A área do triângulo OAB esboçado na figura abaixo é
Questão 01 - (UNICAMP SP) No plano cartesiano, a reta de equação = 1 intercepta os eios coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas (4, 4/) b) (, ) c) (4, 4/) d) (, ) Questão
a) 30 b) 40 c) 50 d) 60 e) 70
Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo
Geometria I Aula 3.3
Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Geometria I 90h Matemática Aula Período Data Planejamento 3.1 2. 0 28/11/2006 3ª. feira Andréa Tempo Estratégia Descrição (Produção) 18:10
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ângulo BDA é reto (porque está inscrito numa semicircunferência),
PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO
DE MATEMÁTICA 5.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números racionais
Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?
o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos e de suas propriedades. Quer ver
LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51
1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine
1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I
Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,
Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.
125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
AULAS 4 a 6. Ângulos (em polígonos e na circunferência)
www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática N Í V L 3 ULS 4 a 6 Ângulos (em polígonos e na circunferência) onceitos Relacionados Proposição 1 Se duas retas são paralelas, cada par de
Medida de ângulos. Há muitas situações em que uma pequena
A UUL AL A Medida de ângulos Há muitas situações em que uma pequena mudança de ângulo causa grandes modificações no resultado final. Veja alguns casos nos quais a precisão dos ângulos é fundamental: Introdução
Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial
Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7
Duas retas paralelas são cortadas por uma transversal formando dois ângulos
EXERCÍCIO COMPLEMENTRES - MTEMÁTIC 8º NO - ENSINO FUNDMENTL - 1ª ETP 01- ssunto: Dízima Periódica Obtenha as geratrizes das seguintes dízimas periódicas: a) 8,715715715... b) 4,722... 02- ssunto: Conjunto
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
Tecnologias no Ensino de Matemática
Tecnologias no Ensino de Matemática Profa. Andréa Cardoso ROTEIRO DA ATIVIDADE PRÁTICA 2 Data da realização: 10 de março de 2015 Objetivo da atividade: Explorar funcionalidades do GeoGebra. ATIVIDADE 01:
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Das figuras geométricas abaixo, qual delas não apresenta
Lista de GEOMETRIA 1 REVISÃO DE FÉRIAS
1. (G1 - utfpr) O valor de x no pentágono abaixo é igual a: c) 111 d) 115 e) 117 5. (G1 - utfpr) Calcule o valor de x, em graus, na figura: a) 25. b) 40. c) 250. d) 540. e) 1.000. 2. (G1 - ifsul) As medidas
Polígonos Regulares Inscritos e Circunscritos
Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é
Tema: Circunferência e Polígonos. Rotações
Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2010/2011 Ficha de Trabalho Abril 2011 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência
Polígonos semelhantes
Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / / 011 Assunto: Semelhança de figuras Lição nº e Figuras semelhantes têm a mesma forma. Duas figuras são semelhantes se são geometricamente
Aula 01 Introdução à Geometria Espacial Geometria Espacial
Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora
Lista de exercícios do teorema de Tales
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
Circunferência e círculo
54 Circunferência e círculo Ângulos na circunferência Ângulo central Ângulo central é o ângulo que tem o vértice no centro da circunferência. A medida de um ângulo central é igual à medida do arco correspondente
Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015
GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por
a) 8 b) 12 c) 16 d) 20 e) 24
0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0
Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações
1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)
EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio
EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 11/fevereiro 17/fevereiro 18/fevereiro Conteúdos Apresentação da ementa da
Planificação Anual de Matemática 5º Ano
Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:
30's Volume 8 Matemática
30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,
Como calcular sua área?
TRAPÉZIO Vamos tentar preencher o trapézio com os quadradinhos. Somente 40 pequenos quadrados de 1 u.a. estão na superfície interna. Os outros estão parte dentro e parte fora. Como calcular sua área? TRAPÉZIO
PLANEJAMENTO ANUAL 2014
PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão
P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.
Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:
REVISITANDO A GEOMETRIA PLANA
REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a
Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP
Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (
SISTEMA DE EQUAÇÕES DO 2º GRAU
SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Matemática Fascículo 07 Manoel Benedito Rodrigues
Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou
Gabarito Caderno do Aluno Matemática 5 a série/6 o ano Volume 3
SITUAÇÃO DE APRENDIZAGEM 1 DEFINIR E CLASSIFICAR EXPERIMENTANDO Páginas 4-7 1. Seguem abaixo cinco características que podem ser listadas, com a respectiva correspondência nas figuras. Note que explicitamos
Ficha de Trabalho nº11
Ano lectivo 011/01 Matemática A 11º Ano / Curso de Ciências e Tecnologias Tema: Geometria Ficha de Trabalho nº11 Geometria no Espaço 1. Observa a figura onde está representado um cone recto cuja base pertence
Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32
1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 2. (Uece 2015) Considere um segmento de reta XY cuja medida do comprimento é 10 cm e P um ponto móvel no interior
UNIGRANRIO
1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3
Descobrindo medidas desconhecidas (I)
Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos
Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma
Escola Secundária Gabriel Pereira FICHA DE EXERCÍCIOS Nº MATEMÁTICA A Rectas e Planos Nome: Nº: Ano Turma 1) Determina uma equação vectorial e cartesianas da recta que passa em A,1, 4 11) paralela ao vector
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:
Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.
Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono
GOIÂNIA, / / 2015. PROFESSOR: Vinícius Camargo. ALUNO(a): LISTA DE RECUPERAÇÃO SEMESTRAL
GOIÂNIA, / / 2015 PROFESSOR: Vinícius Camargo DISCIPLINA: Matemática SÉRIE: 6º ano ALUNO(a): LISTA DE RECUPERAÇÃO SEMESTRAL No Anhanguera você é + Enem 1. Luciano nasceu em 1972 e tem um irmão 7 anos mais
EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA
1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
MATRIZ - FORMAÇÃO E IGUALDADE
MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma
CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA
CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 ANO: 6º A e B Prof: Zezinho e Admir MATEMÁTICA PROGRAMA II DATA DA PROVA: 09 / 08 / 2016 HORÁRIO: 14h GRUPO 2 - ORIGEM E EVOLUÇÃO CAPÍTULO
Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício
Prova Final de Matemática
Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 19/2012, de 5 de julho Prova 62/1.ª Fase Critérios de Classificação 10 Páginas 2015 Prova 62/1.ª F. CC Página 1/ 10 CRITÉRIOS GERAIS
ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012
Escola Martim de Freitas ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012 Disciplina de Matemática Tópico: Isometrias Ficha de Trabalho n.º 1 Data: 20 / 10 / 2011
Representação de sólidos
110 Representação de sólidos Pirâmides e prismas regulares com base(s) contida(s) em planos verticais ou de topo Desenhe as projecções de uma pirâmide quadrangular regular, situada no 1. diedro e com a
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos
GABARITO MA13 - Avaliação 1 - o semestre - 013 Questão 1. (pontuação: ) ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos do triângulo AF C.
AMEI Escolar Matemática 9º Ano Trigonometria do triângulo rectângulo
AMEI Escolar Matemática 9º Ano Trigonometria do triângulo rectângulo Conteúdos desta unidade: Razões trigonométricas de um ângulo agudo. Resolução de triângulos rectângulos; Relações entre as razões trigonométricas
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa
1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora
1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]
Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica
