v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final.

Tamanho: px
Começar a partir da página:

Download "v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final."

Transcrição

1 I. Introução 1. Grfo Orinto É um grfo "G" om um onjunto V vértis (nós) um onjunto U ros pono sr inio por G=(V,U). C um os ros stá ssoio um pr orno vértis sno o primiro xtrmi iniil o ro o outro su xtrmi finl. O grfo prsnto n figur é Orinto, sno o onjunto V = {,,, } o onjunto U = {,,,, }. O ro po sr inio plo pr orno (, ) m qu é o xtrmo iniil é o xtrmo finl. Grfo Orinto 2. Grfo Não Orinto É o grfo m qu ligção ntr quisqur ois os sus vértis 1 não tm orintção. Nst tipo grfo s ligçõs signm-s por rsts. O grfo prsnto n figur é Não Orinto, sno o onjunto 2 3 V = {,,, } o onjunto A = { 1, 2, 3 }. Grfo Não Orinto Pom usr-s Grfos pr rprsntr: rlçõs prntso um grupo soil rs rooviáris, frroviáris,érs, létris, t. irulção informção num sistm squêni lógi xução s trfs um projto t. 3. Vérti Isolo Um vérti iz-s Isolo quno não é xtrmo ro ou rst. No grfo figur o vérti é Isolo. 4. Vérti Suspnso Um vérti iz-s Suspnso s não é xtrmo iniil um ro. No grfo figur o vérti é Suspnso. 5. Lt (Anl) Um ro m qu s xtrmis iniil finl são oinints hm-s Lt ou Anl. N figur o ro (, ) é um lt (nl). INVESTIGAÇÃO OPERACIONAL (MS) I-1

2 6. Grfo Pril Um grfo G 1 = (V,U 1 ) é grfo Pril G=(V,U) s U 1 U. Grfo G=(V,U) Grfo Pril G 1 =(V,U 1 ) 7. Sugrfo Um grfo G 1 = (V 1, U 1 ) é Sugrfo G=(V,U) s V 1 V U 1 é o onjunto toos os ros G om xtrmos nos vértis o onjunto V 1. Grfo G=(V,U) Sugrfo G 1 =(V 1,U 1 ) 8. Grfo Complto Um grfo G=(V,U) iz-s Complto s qulqur pr vértis v i v j stá ligo plo mnos num os sntios (rlxno orintção s ligçõs, há um rst ntr pr vértis). O grfo G 1 =(V 1, U 1 ) figur ntrior é um grfo omplto; o grfo G=(V,U) não é omplto pois não há ligção ntr. 9. Grfo Simétrio O grfo G=(V,U) iz-s Simétrio s xistino o ro (v i, v j ) xist o ro (v j, v i ). Um grfo não orinto é smpr simétrio. 10. Grfo Anti-Simétrio O grfo G=(V,U) iz-s Anti-simétrio s xistino o ro (v i, v j ) não xist o ro (v j, v i ). I-2 INVESTIGAÇÃO OPERACIONAL (MS)

3 11. Grfo Fortmnt Conxo O grfo G=(V,U) é fortmnt onxo s há minho (sussão ros m qu xtrmi finl um ro é xtrmi iniil o ro sguint) ntr qulqur pr os sus vértis. Grfo fortmnt onxo 12. Grfo Conxo Um grfo é Conxo s há um i ntr qulqur pr os sus vértis. Grfo onxo 13. Grfo Simpls Um grfo G=(V,U) iz-s Simpls s não tm Lts ligçõs prlls ntr vértis. 14. Ajêni Os vértis v i v j são Ajnts s são xtrmos o msmo ro. No grfo G os vértis são jnts porqu são xtrmos o msmo ro. Os ros u i u j são Ajnts s têm um xtrmo omum. No grfo figur os ros são jnts porqu é xtrmo omum. Grfo simpls 15. Iniêni Aros m Vértis O ro (v i, v j ) iz-s Inint pr o Extrior m v i porqu st vérti é o su xtrmo iniil; iz-s Inint pr o Intrior m v j porqu st vérti é o su xtrmo finl. No grfo G figur ntrior o ro é Inint pr o Extrior m (xtrmo iniil) Inint pr o Intrior m (xtrmo finl). 16. Iniêni Aros num Conjunto Vértis S X é um onjunto vértis, um ro (v i, v j ) é Inint pr o Intrior m X s v i X v j X. No grfo G figur ntrior, s onsirrmos o onjunto vértis X={, } o ro é Inint pr o Intrior X por tr xtrmo iniil m não prtnnt X xtrmo finl m prtnnt X. O ro é Inint pr o Extrior X por tr xtrmo iniil m prtnnt X xtrmo finl m não prtnnt X. INVESTIGAÇÃO OPERACIONAL (MS) I-3

4 17. Gru um Vérti Dsign-s por Gru o Vérti v i, δ (v i ), o númro ros (rsts) qu v i é xtrmo. No grfo G=(V,U) o vérti tm gr, δ ( )=2, o vérti tm gr, δ ( )=3. A som os grus toos os vértis um grfo é pr ( notr qu ro ou rst é ont us vzs - um no gru um xtrmo outr no gru o outro xtrmo). Rsult ssim qu s num grfo há vértis om gru ímpr sts são m númro pr. Grfo G=(V,U) 18. Smigrus um Vérti (grfo orinto) O númro ros qu v i é xtrmo iniil nomin-s Smigru Extrior v i (v ); o númro ros qu v i é xtrmo finl nomin-s Smigru Intrior v i ( ). No grfo G=(V,U) figur ntrior no vérti tm-s v4 = 1 v4 = Grfo Rgulr O grfo G=(V,U) é Rgulr s toos os vértis têm o msmo gru. 20. Grfo Psuo-Simétrio (grfo orinto) + v i + i + O grfo G=(V,U) é Psuo-simétrio quno m toos os sus vértis v i s vrifi v i = v i 21. Cminho (grfo orinto) Um Cminho é um sussão ros m qu xtrmi finl um ro é xtrmi iniil o ro sguint. Po sr finito ou infinito sno inio pl sussão ros ou plos vértis qu lig. N figur ntrior sussão, é um minho qu lig. O msmo minho po inir-s pl sussão os sus vértis,,. 22. Ciruito Um Ciruito é um minho finito m qu s xtrmis iniil finl oinim. O iruito po inir-s plos sus ros ou vértis o minho. No grfo figur são xmplos iruitos:,,, ;,,,,,, ;,, ;,, ; 23. Comprimnto um Cminho (ou um Ciruito) O númro ros um minho ou iruito é o omprimnto o msmo. O omprimnto um minho é igul o númro vértis mnos um. No grfo figur ntrior o minho,,, tm omprimnto 3. I-4 INVESTIGAÇÃO OPERACIONAL (MS)

5 24. Cminho (Ciruito) Elmntr Um minho (iruito) iz-s Elmntr s toos os vértis são istintos (xptu-s o vérti iniil finl o iruito porqu são oinints). N figur ntrior o minho,, é Elmntr nqunto o minho,,,, o não é. Os iruitos,,,,, são Elmntrs. 25. Cminho Simpls Composto Um minho iz-s Simpls s toos os ros são istintos; no so ontrário iz-s Composto. N figur ntrior os minhos,,,,,,, são Simpls pois toos os ros são "prorrios" um só um vz. O minho,,,,,, é um Composto pois us o ro (, ) mis o qu um vz. 26. Ci (grfo não orinto) Um i é um sussão rsts ( 1, 2, ) m qu rst k stá lig à rst k-1 por um xtrmo à rst k+1 plo outro xtrmo. Em rgr i é ini plos vértis qu ontém pono sr finit ou infinit. N figur:,, é um i lmntr (não rpt vértis),,,, é um i não lmntr (rpt ),,,, é um i simpls (rsts istints),,,,,, é um i ompost (rpt rst) Not: pr finir um i no grfo orinto os ros xistnts são onsiros rsts (sm sntio). 27. Cilo (grfo não orinto) Um Cilo é um i finit qu tm iníio fim no msmo vérti. N figur ntrior,,,, é um ilo lmntr porqu vérti é uso só um vz (xpto o vérti qu é origm finl i). 28. Cilo Hmilton 1 (o prolm o ixiro vijnt) Em mos o séulo XIX, Hmilton prsntou o sguint h prolm: "No oro finir um ilo lmntr (não rpt vértis) ontno toos os vértis". l j i f q k r o n g t p m s 1 Sir Willim Rown Hmilton ( ) profssor univrsi Dulin. INVESTIGAÇÃO OPERACIONAL (MS) I-5

6 Ns figurs sguints prsntm-s o grfo o oro um Cilo Hmilton: f o t n m s g h p i q r j k f o t n m s g h p i q r j k l l No grfo, o Cilo Hmilton ontém toos os vértis um só um vz. 29. Cilo Eulr 1. O prolm s Ponts Königsrg O primiro oumnto sor Tori os Grfos t 1736 sno utor Lonhr Eulr. Nst oumnto é fit prsntção grl tori inluí isussão o onhio prolm s ponts Königsrg. A figur A rprsnt o rio Prgl om us ilhs ligs ntr si às mrgns por um onjunto 7 ponts. No grfo (figur B) os vértis rprsntm s ilhs s us mrgns; s rsts rprsntm s ponts rfris. O vlho prolm nliso por Eulr r o sguint: "Srá possívl iniir um pssio m qulqur s mrgns ou ilhs, trvssr tos s ponts um úni vz rgrssr o ponto prti?". Em tori os grfos trt-s lulr um ilo simpls qu inlu tos s rsts vértis nomino "Cilo Eulr". Pr monstrr qu tl pssio não r possívl, Eulr omçou por miti-lo omo possívl izno qu pr tingir qulqur vérti utiliz-s um rst (pont) pr ontinur o pssio r nssário utilizr outr rst (pont) ifrnt ntrior rsultno ssim qu prsnç m qulqur os vértis impli o uso um númro pr rsts (ponts) ifrnts. O vérti nº 1 o grfo (vr figur) tm gr, plo qu quno tingio nono firá um pont não trvss o qu ontriz hipóts iniilmnt vnç. Aliás o msmo s pss om toos os vértis pois têm gru ímpr. Dst situção rsultou o sguint Torm Eulr: "Um grfo G mit um ilo Eulr s só s for onxo só tivr vértis om gru pr". 1 Vr no Anxo 1 um pqun iogrfi Lonhr Eulr; onsultr o Anxo 2 pr situr Eulr n históri Mtmáti. I-6 INVESTIGAÇÃO OPERACIONAL (MS)

7 É igulmnt vriro firmr qu "s o grfo G mit um ilo Eulr ntão é um grfo onxo toos os sus vértis têm gru pr". Vj-s o xmplo sguint: O grfo figur é Conxo (há i ntr qulqur pr vértis) toos os vértis têm gru pr plo qu mit ilo(s) Eulr: v 8,, v 8, v 7, v 6,,, v 5,, v 8, v 6, v 5, v 7, (snh o grfo om st squêni vrifiqu qu o v 7 onsgu fzr sm lvntr o lápis o ppl) Tos s rsts stão inluís sno utilizs um só v 6 um vz (onsquntmnt toos os vértis stão v 5 inluíos porqu o grfo é onxo). É intrss vrifir qu um grfo omplto om "n" vértis tm ilo Eulr s só s "n" é ímpr: Grfo omplto; númro pr vértis; há vértis gru ímpr; não há ilo Eulr Grfo omplto; númro ímpr vértis; só vértis gru pr; há ilo Eulr Grfo omplto; númro pr vértis; há vértis gru ímpr; não há ilo Eulr Grfo omplto; númro ímpr vértis; só vértis gru pr; há ilo Eulr Not: tn-s qu os grfos ntriors não são orintos (ligçõs são rsts). O grfo orinto há iruito Eulr s só s for fortmnt onxo psuo simétrio. É intrss rorr qu nqunto o ilo Eulr nglo tos s rsts um só um vz, o ilo Hmilton xig o msmo rltivmnt os vértis. A similitu é prnt pois num grfo po hvr mos (iguis ou ifrnts), hvr pns um ls ou não hvr nnhum ls. Vjm-s os xmplos sguints: f g Cilo Eulr :,,,,,,, g, f,, (p.xº) Cilo Hmilton :,,,, g, f,, (p.xº) No msmo grfo os ilos são ifrnts. Cilo Eulr :,,,,,, (p.xº) Não há ilo Hmilton INVESTIGAÇÃO OPERACIONAL (MS) I-7

8 Não há ilo Eulr Hmilton,, é ilo Eulr Hmilton Não há ilo Eulr. Há ilo Hmilton :,,,,, ( º) Não há onição nssári /ou sufiint vrifição simpls, omo no so o ilo Eulr, qu prmit firmr s xist ou não ilo Hmilton no grfo G, hvno situçõs simpls m qu tl onlusão é possívl omo mostr o xmplo sguint. Um ilo Hmilton no grfo figur tm 5 vértis 5 rsts qulqur vérti trá gr. O grfo tm 6 rsts plo qu um ls não prtn o ilo. Por outro lo, omo os vértis "" "" trão gr, no ilo, não prtnrão st 2 rsts. Or isto onuz qu rstm pns 4 rsts o qu é infrior o númro rsts o ilo. Conlui-s ssim qu nst grfo não é possívl finir um ilo Hmilton. O prolm o ixiro vijnt (vr Progrmção Linr Intir) stá intimmnt ssoio à tção um ilo Hmilton om "nrgo totl" mínimo. I-8 INVESTIGAÇÃO OPERACIONAL (MS)

9 30. Auto-tst. Consir o grfo orinto G=(V,U) figur. v 5 No quro ssinl om "X" o rsulto nális um s situçõs proposts: Dsrição Elmntr Não Elmntr Simpls Composto Cminho 1,2,3,4,5 Cminho 1,2,1,4,5 Cminho 1,2,3,1,2 Cminho 1,2,2,3,4 Ciruito 2,2 Ciruito 2,3,1,2,1,2 Ciruito 3,1,4,5 Ciruito 4,5,1,2,2,3,4. Consir o grfo não orinto figur. v 5 No quro ssinl om "Sim/Não" o rsulto nális um s situçõs proposts: Dsrição Ci Elmntr Cilo Cilo Elmntr 2,2 2,3,4,1,2,5,4,3,2 1,4,3,2,5 2,3,4,5,2,2 INVESTIGAÇÃO OPERACIONAL (MS) I-9

10 . Dsnh o grfo proposto ou justifiqu s tl grfo não xistir: (1) 3 vértis gr Dsrição o grfo (2) 4 rsts ; 4 vértis om gr,2,3,4 (3) Grfo Simpls ; 5 vértis om gr,4,4,2,2. Comnt sguint firmção: "S num grfo G (não orinto) há um ilo qu inlu tos s rsts é um ilo Eulr". I-10 INVESTIGAÇÃO OPERACIONAL (MS)

11 31. Solução o Auto-tst. Dsrição Elmntr Não Elmntr Simpls Composto Cminho 1,2,3,4,5 X X Cminho 1,2,1,4,5 X X Cminho 1,2,3,1,2 X X Cminho 1,2,2,3,4 X X Ciruito 2,2 X X Ciruito 2,3,1,2,1,2 X X Ciruito 3,1,4,5 X X Ciruito 4,5,1,2,2,3,4 X X. Dsrição Ci Elmntr Cilo Cilo Elmntr 2,2 Não Sim Sim 2,3,4,1,2,5,4,3,2 Não Sim Não 1,4,3,2,5 Sim Não Não 2,3,4,5,2,2 Não Sim Não. (1) Não xist. Totl vértis gru ímpr é smpr pr. (2) Não xist. Mt o totl grus é 5 não 4 (3) Não xist. S mitir qu,, têm gr, ntâo: stá ligo,,, v 5 stá ligo,,, v 5 stá ligo,,, v 5 plo qu v 5 têm plo mnos gr. Flso. O grfo G v sr onxo. Vj-s, título xmplo, qu no grfo sguint xist o ilo,,, qu não é um ilo Eulr pois não inlui tos s rsts vértis. INVESTIGAÇÃO OPERACIONAL (MS) I-11

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

Otimização em Grafos

Otimização em Grafos Otimizção m Grfos Luii G. Simontti PESC/COPPE 2017 Luii Simontti (PESC) EEL857 2017 1 / 25 Grfo (não iriono): G = (V, E) V - onjunto vértis - V = {1, 2, 3, 4, 5, 6, 7} E - onjunto rsts - E = {[1, 2], [1,

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução Núlo Computção Eltrôni Univrsi Frl o Rio Jniro Grfos: Introução Grfos Um grfo não orinto G é um pr (V, E), on V é um onjunto vértis E é um onjunto rsts; rst é um pr não orno vértis. Sj (v, w) E; v w são

Leia mais

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5.

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5. PCS 5 Funmntos Engnhri Computção II Aul Molos R Algoritmo o Fluxo Máximo Contúo 5. Molos r lgoritmo o fluxo máximo 5. Molos r 5. Algoritmo o fluxo máximo Líri Sto Profssor Rsponsávl vrsão:. (st 00) Gomi,

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328 MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não 13 - Gros Plnrs Nst ul qurmos rsponr à suint qustão: Do um ro G, é possívl nontrr um rprsntção rái pr o ro tl qu não hj ruzmnto rsts? Consir por xmplo o ro K 4 rprsnto rimnt ns iurs i1, i2 i3.: i. 1 i.

Leia mais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais PCS Funmntos Engnhri Computção II Contúo. Grfos Auls - Grfos Líri Sto Profssor Rsponsávl. Cilos Hmiltoninos o prolm o ixiro vijnt. Algoritmo minho mínimo vrsão:. (st ) Gomi, Rli, Sto Sihmn, Auls PCS -

Leia mais

Problemas Hamiltonianos

Problemas Hamiltonianos Prolms Hmiltoninos Dfinição: Um iruito hmiltonino m um grfo onxo G é finio omo um minho lmntr, fho pssno m vérti G xtmnt um vz. Um grfo qu mit um iruito hmiltonino é um grfo hmiltonino. Evintmnt nm too

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore Fonts Biliográis Estruturs Dos Aul 15: Árvors 24/05/2009 Livros: Introução Estruturs Dos (Cls, Crquir Rngl): Cpítulo 13; Projto Algoritmos (Nivio Zivini): Cpítulo 5; Estruturs Dos sus Algoritmos (Szwritr,

Leia mais

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão)

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão) Disiplin: Progrmção 1 Profssor: Pulo Césr Frnns Olivir, BS, PhD List Exríios JvSript 8 (rvisão) 1. O qu ont o s xutr progrm ixo? jvsript: - funtion utorizr(snh){ if(snh == "luno"){ lrt("bm-vino!"); ls{

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova.

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova. +1/1/60+ PROVA EXTRAMUROS - 018 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruçõs (i) O tmpo stino st prov é 5 hors. (ii) A Prt I (us qustõs issrttivs) orrspon 5% pontução totl prov. (iii) C qustão

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA GRAFOS Pro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo Dijkstr. Pro. Ynr Mlono Goms Cost Pro. Ynr Mlono 2 Dinição: G (V, E), on: V é um

Leia mais

GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra.

GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra. UNIVERSIAE ESTAUAL E EARTAMENTO E INFORMÁTICA ro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo ijkstr. ro. Ynr Mlono Goms Cost ro. Ynr Mlono 2 inição: G (V, E), on: V é um onjunto vértis (ou noos);

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos PCS 2215 Funmntos Ennri Computção II Contúo 4. Rprsntção ros, Gros isomoros plnrs Auls 4-5 Gros Líri Sto Prossor Rsponsávl vrsão: 1.2 (osto 2002) 1 Gomi, Rli, Sto Simn, 2002 Auls 4-5 PCS 2215 - Fun. En.

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

Uma nota sobre bissetrizes e planos bissetores

Uma nota sobre bissetrizes e planos bissetores Runs Ros Ortg Junior 83 Um not sor isstris pnos isstors Runs Ros Ortg Junior Doutor Curso Mtmáti Univrsi Tuiuti o rná Dprtmnto Mtmáti Univrsi Fr o rná Tuiuti: Ciêni Cutur n 9 FCET 4 pp 83-9 Curiti r 84

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

1 Introdução. Abel Rodolfo Garcia Lozano Universidade do Estado do Rio de Janeiro Universidade do Grande Rio

1 Introdução. Abel Rodolfo Garcia Lozano Universidade do Estado do Rio de Janeiro Universidade do Grande Rio Al Roolo Gri Lozno rglozno@trr.om.r Univrsi o Esto o Rio Jniro Univrsi o Grn Rio Anglo Sntos Siquir nglosiquir@uol.om.r Univrsi Frl o Rio Jniro Univrsi o Grn Rio Rsumo A olorção é um su-ár qu tv su iníio

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

Grafos. Histórico. Histórico. Histórico. Histórico. Definição

Grafos. Histórico. Histórico. Histórico. Histórico. Definição Aloritmos Estruturs Dos II José Auusto Brnusks Dprtmnto Físi Mtmáti FFCLRP-USP Gros Nst ul é ornio um rv histório sor tori os ros São tmém introuzios onitos sor ros loritmos qu os mnipulm uusto@lrp.usp.r

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms

Leia mais

Manual de instalação. Adaptador de LAN Daikin Altherma BRP069A61 BRP069A62. Manual de instalação Adaptador de LAN Daikin Altherma.

Manual de instalação. Adaptador de LAN Daikin Altherma BRP069A61 BRP069A62. Manual de instalação Adaptador de LAN Daikin Altherma. Mnul instlção Aptor LAN Dikin Althrm BRP069A6 BRP069A6 Mnul instlção Aptor LAN Dikin Althrm Portugus Íni Íni Ar oumntção. Ar st oumnto... Ar o prouto Ar ix. Dsmlr o ptor LAN... Prprção. Rquisitos o lol

Leia mais

Operações em Estruturas de Dados

Operações em Estruturas de Dados Oprçõs m Estruturs Dos Intligêni rtifiil José ugusto Brnusks Dprtmnto Físi Mtmáti FFCP-USP Nst ul são srits lgums oprçõs omuns m struturs os frqüntmnt utilizs m I Otimizção ursão no Finl (umulors) Ornção

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda.

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda. ORION 6 Sgun Port USB Hnry Equipmntos Eltrônios Sistms Lt. Ru Rio Piquiri, 400 - Jrim Wissópolis Cóigo Postl: 83.322-010 Pinhis - Prná - Brsil Fon: +55 41 3661-0100 INTRODUÇÃO: Pr orrto unionmnto, é nssário

Leia mais

A Classe de Grafos PI

A Classe de Grafos PI TEMA Tn. Mt. Apl. Comput., 6, No. (005), -4. Um Pulição Soi Brsilir Mtmáti Apli Computionl. A Clss Gros PI S. ALMEIDA, C.P. MELLO, A. GOMIDE, Instituto Computção, UNICAMP, 084-97 Cmpins, SP, Brsil. Rsumo.

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Universidade Federal de São Carlos Centro de Ciências Agrárias campus Araras Departamento de Recursos Naturais e Proteção Ambiental

Universidade Federal de São Carlos Centro de Ciências Agrárias campus Araras Departamento de Recursos Naturais e Proteção Ambiental 4.4. Rgrssão linr multivri onsirno irnts onjuntos os Visno vriir s s rgrssõs otis prsntvm munç no oiint trminção m unção o númro os isponívis, prou s orgnizção irnts onjuntos os pr um s tnsõs onsirs (

Leia mais

Manual de instalação. Adaptador de LAN Daikin Altherma BRP069A61 BRP069A62. Manual de instalação Adaptador de LAN Daikin Altherma.

Manual de instalação. Adaptador de LAN Daikin Altherma BRP069A61 BRP069A62. Manual de instalação Adaptador de LAN Daikin Altherma. Mnul instlção Aptor LAN Dikin Althrm BRP069A6 BRP069A6 Mnul instlção Aptor LAN Dikin Althrm Portugus Íni Íni Ar oumntção. Ar st oumnto... Ar o prouto Ar ix. Dsmlr o ptor LAN... 4 Prprção 4. Rquisitos o

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXIX Olimpíaa Brasilira Matmátia GABARITO Sguna Fas Soluçõs Nívl Sguna Fas Part A PARTE A Na part A srão atribuíos pontos para aa rsposta orrta a pontuação máxima para ssa part srá 0. NENHUM PONTO vrá

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv orrsponnt: 01)

Leia mais

Manual de instalação. Adaptador de LAN Daikin Altherma BRP069A61 BRP069A62. Manual de instalação Adaptador de LAN Daikin Altherma.

Manual de instalação. Adaptador de LAN Daikin Altherma BRP069A61 BRP069A62. Manual de instalação Adaptador de LAN Daikin Altherma. Mnul instlção Aptor LAN Dikin Althrm BRP069A6 BRP069A6 Mnul instlção Aptor LAN Dikin Althrm Portugus Íni Íni Ar oumntção. Ar st oumnto... Ar o prouto Ar ix. Dsmlr o ptor LAN... 4 Prprção 4. Rquisitos o

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

ESTRATÉGIAS DE BUSCA CEGA

ESTRATÉGIAS DE BUSCA CEGA Bus m Espço Estos Intliêni Artiiil ESTRATÉGIAS DE BUSCA CEGA Um vz o prolm m ormulo... o sto inl v sr uso Em outrs plvrs, v-s usr um métoo us pr sr orm orrt plição os oprors qu lvrá o sto iniil o inl HUEI

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -I Aula Toria dos Joos auríio Buarin otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação

Leia mais

MAPA NUMEROLÓGICO PESSOAL

MAPA NUMEROLÓGICO PESSOAL MAPA NUMEROLÓGICO PESSOAL SEU LIVRO DE NUMEROLOGIA CABALÍSTICA APRENDA SOBRE VOCÊ AQUI AUTO CONHECIMENTO Profssor Mx Eu sou Profssor VCPODEMAX, sus Mx, minh rsultdos. como? É com E utor missão przr é po

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Anexo IV Estrutura societária. Estrutura societária vigente

Anexo IV Estrutura societária. Estrutura societária vigente tdt ntrg o Anxo: (Pr uso o BNA) Bno Nionl Angol Prtiipçõs Anxo IV Estrutur soitári Estrutur soitári vignt D orm rir o umprimnto os rquisitos lgis stlios n Li s Instituiçõs Finnirs, nos trmos o Aviso nº

Leia mais

Cascas, Tensões e Deformações 8.1. Capítulo 8. tem a direcção normal à superfície média no ponto que estamos a considerar, os eixos dos x 2.

Cascas, Tensões e Deformações 8.1. Capítulo 8. tem a direcção normal à superfície média no ponto que estamos a considerar, os eixos dos x 2. Cascas, Tnsõs Dformaçõs 8. Capítulo 8 Cascas, Tnsõs Dformaçõs 8. Sistma Eios Uma strutura tipo casca fina é uma strutura para a qual uma as imnsõs é significativamnt mnor o qu as outras uas caractriza-s

Leia mais

NESS-A TOUCH SCREEN 7" C/ MODEM

NESS-A TOUCH SCREEN 7 C/ MODEM 6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

Manual de instalação. Adaptador de LAN ROTEX RBRP069A61. Manual de instalação Adaptador de LAN ROTEX. Portugues

Manual de instalação. Adaptador de LAN ROTEX RBRP069A61. Manual de instalação Adaptador de LAN ROTEX. Portugues Mnul instlção Aptor LAN ROTEX RBRP09A Mnul instlção Aptor LAN ROTEX Portugus Íni Íni Ar oumntção O ptor LAN ROTEX prmit ontrolr os sistms ROTEX om um smrtphon, pnno o molo, po sr utilizo m váris pliçõs

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

Modelos Determinísticos

Modelos Determinísticos Molos Dtrminísticos osição Instantâna; Pnúria não rmitia. (Em toas as situaçõs assum-s qu a rocura é trminística constant valor, qu não xistm scontos quantia. Nst caso assum-s qu a quantia ncomna é rcbia

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Geração de Redes de Transistores Otimizadas Utilizando uma Abordagem Baseada em Grafos

Geração de Redes de Transistores Otimizadas Utilizando uma Abordagem Baseada em Grafos Grção Rs Trnsistors Otimizs Utilizno um Aorgm Bs m Grfos Julio S. Domingus Júnior, Viniius N. Possni, Rnto S. Souz, Flip S. Mrqus, Lomr S. Ros Jr. Grupo Arquitturs Ciruitos Intgros GACI Univrsi Frl Plots

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -II otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação Complta mas imprfita Informação

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano Mtril Tórico - Módulo Torm d Pitágors plicçõs plicçõs do Torm d Pitágors Nono no utor: Prof. Ulisss Lim Prnt Rvisor: Prof. ntonio min M. Nto d mio d 019 1 lgums plicçõs simpls Nsst ul, prsntrmos mis lgums

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

Capri L.138 / A.101 / P. 77,5 cm

Capri L.138 / A.101 / P. 77,5 cm BERÇO & CM Cpri L.38 /.0 / P. 77,5 m Gur ss mnul l po srvir pr futurs onsults m so vris, lmbrno qu nossos móvis tm rnti 2 nos. Pr surnç o su bbê, li om muit tnção tos s instruçõs nts iniir montm. MNUL

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas SnNCutCnvs Usno unção Etiqut siv imprimívl Voê porá rir tiquts sivs xlusivs usno su imprssor jto tint unção Rortr irto SnNCut. Pr otr inormçõs sor s oprçõs ásis o SnNCutCnvs, onsult Aju. Pr vr Aju, liqu

Leia mais

Propagação na Atmosfera Folha de exercícios nº 7

Propagação na Atmosfera Folha de exercícios nº 7 Propgção n Atmosfr Fol ríios nº 7 On solo. Num sistm omunição ponto ponto m qu propgção é sobr o mr ntn missor stá 5 m im o nívl méio s águs, nqunto ntn rptor stá 75 m im ss nívl. A istâni ntr s ntns é

Leia mais

Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3)

Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3) Miroons 3/4 Mstro m Ennhri Eltroténi Comutors Rsonsál: Prof. Afonso Brbos º Exm 4//4 urção: 3 hors Rsolr roblm m folh sr Problm Consir junção rrsnt n Fi.. Amit qu s linhs bifilrs são iis (sm rs). Tom =.

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

A atual relevância do ensino do inglês jurídico nos cursos de graduação em Direito

A atual relevância do ensino do inglês jurídico nos cursos de graduação em Direito A tul rlvânci nsino nos cursos grdução m Brv rflxão crc d ncssid s pssr lcionr o nos cursos grdução m sort mlhor prprr os futuros profissionis r pr o xrcício d dvocci mgistrtur promotori Cro migo litor:

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos 9/7/07 Eltriidd Mgntismo - IME L of r Cpitâni Dilétrios Prof. Cristi Olivir Ed. Bsilio Jft sl 0 rislpo@if.usp.r CAPACITORES 9/7/07 L of r Cpitors m Pls d Ciruito Usdos m todo tipo d iruito létrio: Armznmnto

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA:

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA: NOME: TURMA: DATA: 1. GRANDEZAS FÍSICAS 1.1. Grndzs Esclrs São totlmnt dfinids somnt por um lor numérico ssocido um unidd d mdid. Exmplos: Tmpo mss comprimnto tmprtur nrgi crg létric potncil létrico corrnt

Leia mais

Anexo I Participação. Aquisição ou aumento de participação financeira e não financeira

Anexo I Participação. Aquisição ou aumento de participação financeira e não financeira Dt ntrg o Anxo: (Pr uso o BNA) Bno Nionl Angol Prtiipçõs Anxo I Prtiipção Aquisição ou umnto prtiipção finnir não finnir D form frir o umprimnto os rquisitos lgis stlios n Li s Instituiçõs Finnirs,, nos

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica Stmro 2014 www.tgut.om.r 1/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi Stmro 2014 www.tgut.om.r 2/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi A TguT stá rpginno lin T-olr pr pstils râmi. O tul

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5 Eltrôni Digitl Morn VHDL Volni A. Proni, Elsvir, 200 Trução (om rvisão, tulizção mplição) Digitl Eltronis n Dsign with VHDL Elsvir / Morgn Kufmnn, USA, 2008 Soluçõs os Exríios Ímprs os Cpítulos 5 Cpítulo

Leia mais