São São Jerônimo Escritor Caravaggio

Tamanho: px
Começar a partir da página:

Download "São São Jerônimo Escritor Caravaggio"

Transcrição

1 São São Jerônimo Escritor Caravaggio

2 FÍSICA PARA ENGENHARIA ELÉTRICA José Fernando Fragalli Departamento de Física Udesc/Joinville RADIAÇÃO DE CORPO NEGRO Consideramos, porém este é o ponto mais importante de todo o cálculo que a energia dos osciladores é a soma de um número inteiro de partes iguais Max Planck

3 1. Introdução 2. Resultados Experimentais 3. Modelo de Wien 4. Modelo de Rayleigh-Jeans 5. Modelo de Planck

4 1. INTRODUÇÃO Importância da Radiação Térmica para a Engenharia Existem situações práticas para um engenheiro onde ele se depara com a chamada radiação de corpo negro. Uma delas é saber como se mede a temperatura, por exemplo, de um alto-forno. Pirômetro óptico em ação

5 O pirômetro óptico RADIAÇÃO DE CORPO NEGRO 1. INTRODUÇÃO Para tal situação existe um equipamento chamado pirômetro óptico capaz de fornecer a temperatura de um alto forno por medidas indiretas. Esquema básico da constituição de um pirômetro óptico

6 1. INTRODUÇÃO Funcionamento do pirômetro óptico A temperatura da fonte (por exemplo, o alto-forno) é determinada por comparação, variando a potência da radiação emitida pela lâmpada. Para comparação utiliza-se um filtro que seleciona a cor através do comprimento de onda (λ = 650 nm vermelho). Imagem observada no visor do pirômetro óptico Esquema básico de um pirômetro óptico

7 1. INTRODUÇÃO Visão do filamento do pirômetro óptico Se o filamento de tungstênio estiver a uma temperatura menor do que a da fonte, o fundo estará mais brilhante que o filamento (posição LOW). Se o filamento de tungstênio estiver a uma temperatura maior do que a da fonte (alto-forno), o filamento estará mais brilhante que o fundo (posição HIGH). Esquema básico de um pirômetro óptico Imagem observada no visor do pirômetro óptico

8 1. INTRODUÇÃO O ajuste da cor do filamento no pirômetro óptico Se o filamento e a fonte estiverem à mesma temperatura, não se distingue as imagens (posição NULL). Quando a imagem do filamento desaparece a corrente elétrica que passa pela lâmpada indica a temperatura da fonte. A temperatura do filamento é previamente conhecida por calibração. Esquema básico de um pirômetro óptico Imagem no visor do pirômetro óptico

9 1. INTRODUÇÃO A Física do comportamento do pirômetro óptico Em uma boa aproximação o filamento de tungstênio comporta-se como um corpo negro, cuja curva de calibração para a intensidade emissiva R λ (λ) é mostrada abaixo. 2 CN 2π h c 1 Rλ ( λ) = Já para o corpo cuja 5 λ h c exp 1 temperatura queremos λ kb T h = 6, Js: constante de Planck c = 2, m/s: velocidade da luz no vácuo medir a curva de calibração depende da emissividade do corpo e(λ). R λ ( λ) = e( λ) 2π h c 5 λ 2 1 h c exp λ kb T 1 λ: comprimento de onda da radiação emitida k B = 1, J/K: constante de Boltzmann T: temperatura do corpo

10 1. INTRODUÇÃO A determinação da temperatura do corpo No comprimento de onda do filtro (λ = 650 nm) os valores das potências luminosas emitidas pelo filamento de tungstênio e pelo corpo são as mesmas. Através desta igualdade, obtemos a equação abaixo. 1 T C = T 1 FT + k B h c λ filtro ln [ ( )] e λ filtro T FT : temperatura do filamento de tungstênio Sabendo-se o valor da emissividade do corpo e(λ filtro ) para o comprimento de onda do filtro usado, determina-se facilmente a temperatura do corpo.

11 1. Introdução 2. Resultados Experimentais 3. Modelo de Wien 4. Modelo de Rayleigh-Jeans 5. Modelo de Planck

12 2. RESULTADOS EXPERIMENTAIS Emissão de radiação por corpos aquecidos Um corpo aquecido emite radiação eletromagnética em um espectro contínuo, com maior intensidade na região do infravermelho (IR). Imagem reconstruída a partir da emissão IR de um homem Distinção entre dois corpos a temperaturas distintas Matéria e radiação interagem e atingem o equilíbrio termodinâmico através de trocas de energia.

13 Algumas definições RADIAÇÃO DE CORPO NEGRO 2. RESULTADOS EXPERIMENTAIS Definimos a intensidade emissiva (e) de um corpo como sendo a energia emitida por unidade de área e por unidade de tempo. Definimos a absorvidade ou absorbância (a) como sendo a fração da energia incidente sobre a superfície de um corpo que é absorvida por ele. Corpos a diferentes temperaturas com emissividades distintas A absorbância de um corpo e o seu processo de medida

14 2. RESULTADOS EXPERIMENTAIS Propriedades mecânicas da radiação Abaixo listamos algumas propriedades importantes para o campo de radiação, além das relações entre elas. a) Energia (U) e densidade de energia (u); b) intensidade (I); c) momento linear (p); d) pressão de radiação (P); e) pressão de radiação de cavidade (P RC ); I = u c p = U c P RC = 3 1 u

15 Mais definições RADIAÇÃO DE CORPO NEGRO 2. RESULTADOS EXPERIMENTAIS Definimos radiância (R) como sendo a quantidade de energia irradiada pelo elemento de área ds que contém um ponto P, por unidade de tempo, por unidade de área, pelo corpo aquecido a uma temperatura T. R ( P) = d 2 U Intensidade!!! ds dt Radiação emitida por um ponto P a uma temperatura T [ ] 2 2 R = J / m s = W / m SI R = R( T )

16 2. RESULTADOS EXPERIMENTAIS Radiância de uma cavidade Assim como definimos a pressão de radiação para uma cavidade, também podemos definir a radiância de uma cavidade R C. Obtemos também uma relação entre a radiância de uma cavidade R C e a densidade de energia u existente dentro dela. R C = 4 1 u c Radiância de uma cavidade

17 2. RESULTADOS EXPERIMENTAIS Definições de termos específicos para a radiação Definimos radiância espectral R λ (em termos do comprimento de onda) tal que a quantidade R λ dλ seja a taxa temporal com que a energia de um corpo aquecido é irradiada, por unidade de área, nos comprimentos de onda entre λ e λ + dλ. ( ) dr R λ = [ ] 2 3 R W m m W m SI λ λ = / = / dλ

18 2. RESULTADOS EXPERIMENTAIS Mais definições específicas Definimos radiância espectral R (em termos da frequência) tal que a quantidade R d seja a taxa temporal com que a energia de um corpo aquecido é irradiada, por unidade de área, nas frequências entre e + d. ( ) dr R = [ ] 2 2 R = W / m Hz = W s / m SI d

19 A radiância R(T) e as radiâncias espectrais R ou R λ estão relacionadas pela equação mostrada abaixo. ( ) ( ) = = 0 0 λ λ λ d R d R R λ λ R c R c R = = RESULTADOS EXPERIMENTAIS RADIAÇÃO DE CORPO NEGRO Relação entre estas radiâncias espectrais

20 Analogamente, definimos a densidade espectral de energia u λ (λ) em termos do comprimento de onda. ( λ) 2. RESULTADOS EXPERIMENTAIS Densidades espectrais de energia du u = u = ( λ) λ d λ Da mesma forma, definimos a densidade espectral de energia u () em termos da frequência. ( ) du 0 u λ λ d u = u = ( ) d 0 u d

21 As densidades espectrais de energia u () e u λ (λ) estão relacionadas com as respectivas radiâncias espectrais R () e R λ (λ) através das equações mostradas abaixo. R λ RADIAÇÃO DE CORPO NEGRO 1 ( λ) = u ( λ) c 4 2. RESULTADOS EXPERIMENTAIS Propriedades das densidades espectrais de energia λ R Por sua vez, as densidades espectrais de energia u () e u λ (λ) estão relacionadas entre si através de uma relação similar àquela para as radiâncias espectrais R () e R λ (λ). 1 ( ) = u ( ) c u λ 4 c 2 λ 2 c ( λ) = u ( ) = u ( ) = c λ

22 2. RESULTADOS EXPERIMENTAIS Primeiros (e antigos) resultados experimentais Em 1853 William Ritchie usou um termômetro diferencial e obteve o resultado mostrado abaixo. Termômetro Diferencial de Leslie e 1 = a 1 e a 2 2

23 4. A RADIAÇÃO DE CORPO NEGRO Conclusões e definições a partir do resultado de Ritchie Vamos considerar a situação em que um corpo (por exemplo o corpo 2 N), absorva totalmente a radiação que incide sobre ele, ou seja, a N = 1. a = a =1 2 N N é CORPO NEGRO e N = e a 1 1 Como por definição temos que a 1 implica que e N > e 1. < 1, então este fato a 1 1 < 1 e N > e O corpo N (corpo negro) tem a maior absorbância e a maior emissividade possível entre todos os corpos!!!

24 2. RESULTADOS EXPERIMENTAIS Modelo de corpo negro Para obtermos resultados teóricos sobre o tema, construímos um modelo para o Corpo Negro. Este modelo deve ser tal que ele absorva toda radiação que incide sobre ele (a N = 1) CORPO NEGRO É O ORIFÍCIO!! Cavidades com pequeno orifício que representam o corpo negro

25 2. RESULTADOS EXPERIMENTAIS A dependência da emissividade com a temperatura Um dos primeiros cientistas a tratar quantitativamente da emissão de radiação de corpos aquecidos foi Gustav Robert Kirchoff ( ). A chamada Lei de Kirchhoff da Radiação Térmica declara que em equilíbrio térmico, a emissividade de um corpo (ou superfície) é igual à sua absorbância. Gustav Kirchoff A partir desta formulação Kirchoff concluiu que a emissividade de um corpo negro é uma função universal independente da forma, tamanho e composição química do corpo.

26 2. RESULTADOS EXPERIMENTAIS Resultados quantitativos obtidos por Tyndall Em 1864, John Tyndall ( ) realizou experimento envolvendo a radiação emitida por um fio de platina em duas temperaturas diferentes. ( ) = 11,4 e( T ) e T T 1 = 525 C T 1 = 798 K T 2 = 1200 C T 2 = 1473 K 2 1 Fio de platina John Tyndall

27 2. RESULTADOS EXPERIMENTAIS Resultados sistematizados por Stefan Em 1879, Joseph Stefan ( ) escreveu um trabalho no qual usou os dados de Tyndall. Joseph Stefan Dados de Tyndall T 1 = 525 C T 1 = 798 K T 2 = 1200 C T 2 = 1473 K Cálculo de Stefan ( ) log 11,4 n = = 4, log 798 Proposta de Stefan R ( ) n T = σ T Fórmula de Stefan R ( ) 4 T = σ T σ = 5, W/m 2 K 4

28 2. RESULTADOS EXPERIMENTAIS Comprovação teórica obtida por Boltzmann Em 1884, Ludwig Boltzmann ( ) demonstrou rigorosamente esta expressão, com base na existência da pressão de radiação dentro da cavidade (corpo negro). Boltzmann considerou a radiação como uma máquina térmica, sujeita às leis da termodinâmica. Ludwig σ 4 Boltzmann R = T σ = 5, W/m 2 K 4 : constante de Stefan-Boltzmann

29 2. RESULTADOS EXPERIMENTAIS Curvas para a radiância espectral R λ Ao lado mostramos resultados experimentais obtidos por Otto Lummer ( ) e Ernst Pringsheim ( ) em Este resultado foi obtido no Physicalisch-Technische Reichsanstall, hoje conhecido como Max Planck Institute. Espectro de corpo negro obtido por Lummer e Pringsheim Otto Lummer Ernst Pringsheim

30 2. RESULTADOS EXPERIMENTAIS A Lei de Deslocamento Um resultado numérico muito importante é conhecido como Lei de Deslocamento. Esta lei foi verificada experimentalmente inúmeras vezes. A confirmação mais cuidadosa desta lei foi obtida por Friedrich Paschen ( ) também em Friedrich Paschen λ T = MAX Lei de Deslocamento b

31 2. RESULTADOS EXPERIMENTAIS Determinação da constante da Lei de Deslocamento Abaixo mostramos uma comparação entre o resultado obtido por Lummer e Pringsheim com aquele obtido a partir de medidas atuais mais precisas. b L&P = 2, mk Espectro de corpo negro obtido por Lummer e Pringsheim λ T = MAX b A = 2, mk b

32 1. Introdução 2. Resultados Experimentais 3. Modelo de Wien 4. Modelo de Rayleigh-Jeans 5. Modelo de Planck

33 3. O MODELO DE WIEN A busca de Wien pela solução do problema De 1893 a 1896 Wilhelm Carl Werner Otto Fritz Wien ( ) se dedicou a estudos teóricos e empíricos para obter uma expressão para a densidade espectral de energia u (). Wilhelm Wien Prêmio Nobel de Física de 1911 pelas descobertas das leis de irradiação do calor Medalha concedida aos agraciados com o Prêmio Nobel de Física

34 As hipóteses de Wien 3. O MODELO DE WIEN Inicialmente Wien obteve uma relação geral, conhecida como Fórmula de Wien apenas relacionando a densidade espectral de energia com a frequência e a temperatura. Para isto, Wien considerou o Efeito Doppler que a radiação (onda eletromagnética) sofre ao incidir sobre uma parede espelhada em movimento. Wien simulou o movimento de um pistão dentro do cilindro, atribuindo á radiação uma característica mecânica. Wien, a seguir, generalizou o raciocínio de Boltzmann, aplicando as leis da Termodinâmica à radiação contida em cada intervalo de frequência entre e + d.

35 3. O MODELO DE WIEN O primeiro resultado de Wien obtido em 1893 Após um cálculo exaustivo, Wien então obteve a relação mostrada abaixo. u ( ) = 3 f T u 1 λ ( λ, T ) = g( λ T ) λ 5 Problema: nem os princípios e relações básicas da Termodinâmica, nem do Eletromagnetismo permitem determinar a forma funcional da função f(/t). Para determinar a forma funcional de f(/t) Wien fez então uma conjectura.

36 Uma conjectura é uma ideia, fórmula ou frase, a qual não foi provada ser verdadeira, baseada em suposições ou idéias com fundamento não verificado. Conjectura de Wien: a densidade espectral de energia deve ser do tipo daquela proposta por Maxwell para a distribuição de velocidades de moléculas de um gás. n RADIAÇÃO DE CORPO NEGRO A conjectura de Wien mv ( v) e kb T 3. O MODELO DE WIEN 2 f T e β T

37 As palavras de Wien 3. O MODELO DE WIEN Abaixo, reproduzimos as próprias palavras de Wien em um dos seus artigos científicos....uma visão atualmente aceita é que as cargas elétricas das moléculas podem excitar ondas eletromagnéticas... e como o comprimento de onda λ da radiação emitida por uma dada molécula é uma função da velocidade v, esta velocidade também é uma função de λ.

38 Esta conjectura permitiu que Wien formulasse a seguinte proposta para a densidade espectral de energia u (). u ( ) = α 3 exp β T Wien usou então as relações entre u () e R λ (λ) e obteve o resultado mostrado abaixo. R λ RADIAÇÃO DE CORPO NEGRO 3. O MODELO DE WIEN O resultado final obtido por Wien ( ) β λ = α 5 c exp λ 5 c λ T

39 3. O MODELO DE WIEN Análise do resultado final obtido por Wien A equação obtida por Wien não é correta para todo o espectro eletromagnético. Por outro lado, esta equação concorda muito bem para altas frequências (comprimentos de onda pequenos), mas é ruim para baixas frequências (comprimentos de onda elevados). R 1 3 ( ) = α c exp β 4 T Espectro em frequência

40 1. Introdução 2. Resultados Experimentais 3. Modelo de Wien 4. Modelo de Rayleigh-Jeans 5. Modelo de Planck

41 4. O MODELO DE RAYLEIGH-JEANS A contribuição de Sir Rayleigh No final do Século XIX o físico inglês John William Strutt ( ) tomou conhecimento dos resultados de Wien. Prêmio Nobel de Física de 1904 pelas investigações sobre as densidades dos gases e pela descoberta do Argônio Medalha concedida aos agraciados com o Prêmio Nobel de Física John William Strutt Sir Rayleigh

42 4. O MODELO DE RAYLEIGH-JEANS Sir Rayleigh e as características clássicas da radiação Ele também sabia das limitações do resultado de Wien no que diz respeito ao comportamento ruim da densidade de energia espectral para baixas frequências. Sir Rayleigh passou a estudar então o fenômeno da radiação de corpo negro, fixando o seu olhar apenas nas características da radiação. Em consequência destes estudos, em Junho de 1900 Sir Rayleigh obteve uma nova expressão para u ().

43 4. O MODELO DE RAYLEIGH-JEANS A contribuição de Jeans Ao longo do desenvolvimento de seu modelo, Sir Rayleigh cometeu um pequeno erro de natureza geométrica. Este erro foi observado e corrigido em 1905 pelo físico inglês James Hopwood Jeans ( ). Por esta correção, a teoria clássica da radiação de corpo negro é conhecida como Modelo de Rayleigh-Jeans. James Hopwood Jeans

44 4. O MODELO DE RAYLEIGH-JEANS As trocas de energia na radiação de corpo negro A hipótese fundamental deste modelo é que o campo de radiação está em equilíbrio termodinâmico com o corpo negro que o emite. Com esta hipótese, Sir Rayleigh considerou a troca de energia entre o corpo aquecido a uma temperatura T e os modos de oscilação do campo eletromagnético existentes dentro da cavidade (corpo negro). Desta forma, Sir Rayleigh pôde aplicar o Teorema da Equipartição da Energia ao problema da radiação de corpo negro.

45 4. O MODELO DE RAYLEIGH-JEANS O Teorema da Equipartição da Energia Abaixo enunciamos o Teorema da Equipartição de Energia. Em um sistema termodinâmico em equilíbrio térmico a uma temperatura T, com N graus de liberdade, cada um deles contribui para o sistema com a mesma quantidade de energia elementar k B T. k B = 1, J/K: constante de Boltzmann U = N k B T Assim, a energia total de um sistema com N graus de liberdade é igual a N k B T.

46 4. O MODELO DE RAYLEIGH-JEANS Aplicação deste teorema ao problema da radiação Desta forma, a energia total contida no campo de radiação com frequência entre e + é dada pela equação mostrada abaixo. U = k T n B Nesta equação n é o número de modos normais de oscilação (graus de liberdade) do campo de radiação com frequência entre e +.

47 4. O MODELO DE RAYLEIGH-JEANS Características do campo eletromagnético na cavidade O problema então passa a ser construir um modelo para o cálculo da quantidade n. Para este cálculo, Sir Rayleigh considerou a radiação de corpo negro como sendo o campo eletromagnético dentro de uma cavidade a uma dada temperatura T. Sir Rayleigh levou em conta ainda que a cavidade era feita com material condutor. Desta forma, o campo elétrico na superfície da cavidade deve ser nulo!!! Cavidade cúbica de aresta a e volume a 3

48 4. O MODELO DE RAYLEIGH-JEANS Os modos normais de oscilação do campo de radiação Após um cálculo exaustivo, e levando em conta a contribuição dada por Jeans, Sir Rayleigh obteve uma expressão para o número de modos de oscilação do campo eletromagnético na cavidade. n = 8 π a c Cavidade cúbica de aresta a e volume a 3

49 4. O MODELO DE RAYLEIGH-JEANS De volta ao Teorema da Equipartição da Energia Após ter calculado o número total de modos de oscilação do campo eletromagnético, Sir Rayleigh pôde então determinar a energia do campo de radiação U. Lembremos que no modelo clássico proposto por Sir Rayleigh a energia do campo de radiação é proporcional a k B T e dada pela equação mostrada abaixo. U = k T n B U = 3 a 8π k T 3 B c 2

50 4. O MODELO DE RAYLEIGH-JEANS A obtenção de uma fórmula para a radiância espectral Como a frequência do campo eletromagnético é uma variável contínua, Sir Rayleigh obteve a energia do campo de radiação du com frequências entre e +d. 3 a 2 du = 8π kb T d 3 c Com este resultado, Sir Rayleigh pôde determinar a densidade espectral de energia do campo de radiação u (). u 8 π ( ) 2 = k T c 3 B R 2 π ( ) 2 = k T c 2 B

51 4. O MODELO DE RAYLEIGH-JEANS Os problemas do modelo clássico de Rayleigh-Jeans Usamos então as relações entre u () e R λ (λ) para obtermos a expressão para a radiância espectral mostrado abaixo. R 2π 2 c ( ) 2 = k T Vamos agora fazer a comparação entre o resultado teórico obtido por Sir Rayleigh (usando apenas argumentos clássicos) com os resultados experimentais. Comparação entre o resultado de Sir Rayleigh e os dados experimentais B

52 4. O MODELO DE RAYLEIGH-JEANS A catástrofe do ultravioleta Para evidenciar ainda mais a falha no resultado obtido por Lord Rayleigh vamos calcular a energia total do campo eletromagnético contido na cavidade. U = a 3 0 u d 0 3 π a 2 U = a k T d U 3 B c 3 8 Ao aparecimento deste absurdo e impossível infinito no resultado, dá-se o nome de catástrofe do ultravioleta. É importante frisar que o absurdo da catástrofe do ultravioleta era do conhecimento de Lord Rayleigh.

53 4. O MODELO DE RAYLEIGH-JEANS A necessidade de um novo modelo O quadro abaixo mostra a situação encontrada por Max Planck quando ele resolveu atacar o problema da radiação de corpo negro a partir dos primeiros princípios da Física. CATÁSTROFE DO ULTRAVIOLETA NECESSIDADE DE UM NOVO MODELO PARA DESCREVER AS TROCAS DE ENERGIA ENTRE A RADIAÇÃO E A MATÉRIA MODELO CLÁSSICO É INADEQUADO FALHA AO USAR O TEOREMA DA EQUIPARTIÇÃO DA ENERGIA

54 1. Introdução 2. Resultados Experimentais 3. Modelo de Wien 4. Modelo de Rayleigh-Jeans 5. Modelo de Planck

55 Abordagem histórica 5. O MODELO DE PLANCK Max Karl Ernst Ludwig Planck ( ) era professor na Universidade Friedrich Wilhelm em Berlim no ano de 1900, sucedendo a Gustav Kirchoff na cadeira de Física Teórica, quando desenvolveu a teoria sobre a radiação de corpo negro. Prêmio Nobel de Física de 1918 por trabalhos no desenvolvimento da Física e pela descoberta dos quanta de energia Max Planck Medalha concedida aos agraciados com o Prêmio Nobel de Física

56 Um pouco mais de história 5. O MODELO DE PLANCK Por residir em Berlim, Planck tinha contato permanente com os pesquisadores do Physicalisch-Technische Reichsanstall, tais como Lummer, Pringsheim, Rubens e Kurlbaum. Ao longo do ano de 1900, de Fevereiro a Outubro, estes cientistas haviam obtido uma curva experimental para a radiação emitida por um corpo negro. Espectro de corpo negro Como já vimos, estes resultados contradiziam o modelo teórico apresentado por Wien em 1896.

57 Mais história RADIAÇÃO DE CORPO NEGRO 5. O MODELO DE PLANCK Planck decidiu então abordar o problema da radiação de corpo negro, já que havia um desafio em obter um modelo teórico que explicasse o resultado experimental. Em Outubro de 1900, Planck encontrou uma fórmula que fornecia um excelente ajuste a todos os resultados experimentais conhecidos. Nos três meses seguintes, Planck buscou ume justificativa teórica para a sua fórmula.

58 A abordagem de Planck 5. O MODELO DE PLANCK Para chegar ao resultado final, Planck utilizou argumentos da Teoria Eletromagnética, da Termodinâmica e da Mecânica Estatística. Como vemos, Planck procurou por um modelo teórico que levasse em conta todos as grandes teorias existentes na sua época. Por desenvolver seu modelo no mesmo ano, Planck, ao que parece, não conhecia ou não deu importância aos resultados obtidos por Sir Rayleigh.

59 5. O MODELO DE PLANCK A origem da radiação nos corpos aquecidos Planck considerou que o emissor de radiação eram as cargas elétricas presentes na superfície do corpo negro. Assim, estas cargas elétricas comportavam-se como osciladores radiantes. Segundo Planck, as cargas elétricas oscilavam excitadas pela temperatura do corpo aquecido. Desta forma, para Planck era muito importante utilizar os conceitos da Teoria Eletromagnética.

60 5. O MODELO DE PLANCK O papel da entropia da radiação Por sua vez, Planck dominava como poucos os conceitos da Termodinâmica. Ele percebeu que o conceito de entropia deveria desempenhar um papel importante no processo de troca de energia entre o corpo negro aquecido (matéria) e a radiação. Por fim, como havia um número muito grande de osciladores presentes na matéria, Planck considerou importante usar os conceitos da Mecânica Estatística.

61 5. O MODELO DE PLANCK Uma primeira abordagem de Planck No artigo Sobre um aperfeiçoamento da fórmula de Wien publicado em 1900, Planck mostrou que a fórmula de Wien não era válida para todas as frequências emitidas pelo corpo negro. A fórmula de Wien ela era apenas aproximadamente correta como caso limite para grandes frequências. Como vimos, Planck partiu do princípio que a radiação emitida por um corpo aquecido era proveniente das cargas das paredes da cavidade, aceleradas pela temperatura.

62 5. O MODELO DE PLANCK Os osciladores carregados como emissores de radiação Planck considerou a situação mais simples, na qual as cargas aceleradas executam um movimento harmônico simples com frequência. Estas cargas em movimento harmônico simples constituem-se em osciladores carregados.

63 5. O MODELO DE PLANCK O papel do equilíbrio termodinâmico Em primeiro lugar Planck procurou escrever uma expressão para a densidade de energia espectral u do campo eletromagnético em termos da energia média do oscilador. Para isto, Planck considerou que os osciladores das paredes das cavidades estavam em equilíbrio termodinâmico com a radiação eletromagnética estabelecida em seu interior. Assim, a perda de energia de cada oscilador seria compensada pela absorção da energia da radiação.

64 O Teorema de Planck 5. O MODELO DE PLANCK Assim, impondo o equilíbrio termodinâmico entre osciladores e radiação em 1899 Planck obteve o conhecido Teorema de Planck, cujo resultado é mostrado abaixo. R = 2 c π 2 2 U Esta expressão mostra que a radiância espectral da radiação é determinada pela energia média do conjunto dos osciladores carregados.

65 5. O MODELO DE PLANCK O primeiro trabalho de Planck: o ajuste de curvas Planck, por sua vez, preferiu realizar uma abordagem termodinâmica para o cálculo da energia média dos osciladores. Ele levou em conta a relação entre a entropia de um único oscilador e a sua energia média, mantido o volume da cavidade constante. Planck tomou como base o modelo empírico de Wien, que ele sabia que apresentava bom comportamento para altas frequências mas ruim para baixas frequências.

66 Após fazer um pequeno ajuste na fórmula de Wien, Planck obteve a expressão para a energia média dos osciladores, mostrada abaixo. U R = ( ) B B exp 1 AT = 2π 2 c RADIAÇÃO DE CORPO NEGRO 2 exp 5. O MODELO DE PLANCK O ajuste de curvas via correção na fórmula de Wien B B AT Planck substituiu esta expressão em seu teorema e obteve o resultado mostrado abaixo. 1 Espectro de corpo negro

67 5. O MODELO DE PLANCK A obtenção do resultado correto!!! Mas, e as constantes A e B? Como Planck as determinou? Para determinar a constante B Planck seguiu o argumento de Wien tal que u () = 3 f(/t) (correto!!!). Para satisfazer o argumento de Wien, esta condição, necessariamente a constante B deve ser proporcional à frequência. B R ( ) = c 1 = 2π c 2 c 1 exp 3 c1 AT 1 Espectro de corpo negro

68 5. O MODELO DE PLANCK O ajuste perfeito com a curva experimental Assim, Planck obteve a expressão para a radiância espectral, mostrada abaixo. R ( ) = 2π c 2 c 1 3 c1 exp 1 AT Este resultado ajusta-se completamente com os dados obtidos experimentalmente, dependendo apenas dos valores das constantes c 1 e A!!! Espectro de corpo negro

69 A surpresa (??!!!) de Planck 5. O MODELO DE PLANCK Este resultado foi publicado em 1900 no artigo Sobre um aperfeiçoamento da equação de Wien para o espectro, já citado anteriormente. Nas palavras de Planck: como demonstrado por exemplos numéricos, tal fórmula se ajusta muito bem aos dados experimentais existentes (com valores convenientes das constantes c 1 e A). Gostaria então de chamar a nossa atenção para essa fórmula que considero a mais simples possível, além da de Wien, sob o ponto de vista da teoria eletromagnética da radiação. R ( ) = 2π c 2 c 1 exp 3 c1 A 1 T Espectro de corpo negro

70 A fórmula obtida pelo ajuste de curvas ainda é EMPÍRICA, isto é, NÃO existe um modelo físico que a justifique. R ( ) 2π c = 2 c 1 RADIAÇÃO DE CORPO NEGRO A falta de um modelo físico 3 c1 exp AT 5. O MODELO DE PLANCK 1 FÓRMULA EMPÍRICA Precisa de uma teoria que a justifique!!! O próprio Planck não ficou totalmente satisfeito com a dedução da fórmula acima, pois ele sabia que tal fórmula carecia de fundamentação física. Assim, Planck procurou (e encontrou em alguns meses!!!) por um modelo que justificasse a equação encontrada empiricamente.

71 5. O MODELO DE PLANCK O segundo trabalho de Planck: o modelo físico Ao procurar dar um conteúdo físico para sua fórmula, Planck se deu conta que a entropia dos osciladores teria que ser determinada por argumentos probabilísticos. Para tal, Planck utilizou-se dos conceitos da Mecânica Estatística, recém desenvolvida por Boltzmann. Planck aplicou a análise combinatória de Boltzmann, dividindo a energia total U de um conjunto de N osciladores idênticos e distinguíveis, tal que a sua energia média é dada pela equação ao lado. U = U N

72 Uma abordagem estatística 5. O MODELO DE PLANCK Por outro lado, Planck admitiu que poderiam existir M células indistinguíveis tal que a energia E de um único oscilador pode ser facilmente calculado. E = U M Desta forma, Planck distribuiu os N osciladores pelas M células e calculou o número total de estados possíveis G desta distribuição. G = ( N + M ) M! ( N 1 )! 1! ( N + M ) M! N!! N e M são números muito grandes

73 5. O MODELO DE PLANCK O papel da entropia da radiação Pela Mecânica Estatística, a entropia de um sistema está associada ao número de estados possíveis G existentes dentro dele através da relação obtida por Boltzmann. S = k G B ln Assim, a entropia do sistema de N osciladores distribuídos por M células é facilmente determinada. S = k B ln ( N + M )! M! ( N )!

74 5. O MODELO DE PLANCK A obtenção da energia média dos osciladores Após um exaustivo cálculo, Planck chegou então ao resultado mostrado ao lado. 1 T k E = B ln 1 + E U A partir daí, Planck foi capaz de calcular a energia média dos osciladores como mostrado abaixo. U = exp k E E T B 1 E é a energia de um único oscilador

75 5. O MODELO DE PLANCK A energia de um único oscilador Planck propôs então que a energia de um único oscilador E fosse proporcional à frequência. E = h h é uma constante a ser determinada (constante de Planck) Esta proposição de Planck é coerente com os argumentos (corretos!!!) de Wien que tenhamos u () = 3 f(/t) e leva ao resultado mostrado ao lado. U = exp h h k B T 1

76 5. O MODELO DE PLANCK A determinação da radiância espectral Depois de calcular a energia média dos osciladores, Planck utilizou o seu teorema e determinou a radiância espectral. R ( ) = 2π h 2 c exp 3 h 1 AT Espectro de corpo negro

77 5. O MODELO DE PLANCK Um questionamento de Planck Porém, após chegar com sucesso ao resultado correto para o espectro de radiação de um corpo negro, uma questão ainda precisou ser respondida por Planck. U = exp???? h k h B T 1 Qual comportamento deve ter a interação da radiação com a matéria para que um oscilador com energia h produza uma energia média do conjunto de osciladores igual ao resultado obtido por ele?

78 5. O MODELO DE PLANCK A resposta de Planck ao seu questionamento Planck admitiu que a interação entre o campo de radiação e o corpo aquecido se dava através de trocas de energias discretas (não-contínuas)!!! O modelo de Planck está baseado no postulado fundamental de que a troca de energia entre os osciladores e o campo de radiação NÃO é uma grandeza contínua, mas só pode se dar através de valores discretos e múltiplos de uma quantidade elementar.

79 5. O MODELO DE PLANCK As trocas de energia no modelo de Planck Como as trocas de energia se dão de forma discreta, nesta situação a energia dos osciladores U também pode admitir apenas valores discretos, múltiplos do QUANTUM DE ENERGIA. Assim, Planck propôs que a energia dos osciladores só pode ser múltiplo inteiro de uma quantidade elementar U 0. n é um número inteiro U = U = n n U 0 U 0 é o QUANTUM DE ENERGIA

80 U c R = π ( ) ( ) = = 1 exp T k h c h u c R B π Assim, a proposição de Planck de que as trocas de energia entre a matéria (osciladores!!!) e a radiação são quantizadas leva ao resultado esperado para a radiância espectral para a radiação de corpo negro. U 0 n U = O resultado final e correto!!! 5. O MODELO DE PLANCK RADIAÇÃO DE CORPO NEGRO

81 5. O MODELO DE PLANCK Modelo de Wien e Modelo de Rayleigh-Jeans como casos particulares do Modelo de Planck Partindo da fórmula de Planck, que é aquela que traduz com exatidão os resultados experimentais, podemos fazer uma comparação entre todos os modelos estudados. Com esta equação podemos estudar as situações limites para baixas freqüências (comprimentos de onda elevados) e altas frequências (comprimentos de onda baixos).

82 Estes resultados podem ser sintetizados no gráfico abaixo. ( ) 4 2 λ π λ λ T k c h R B = ( ) = T k c h c h R B λ λ π λ λ exp ( ) = 1 exp T k c h c h R B λ λ π λ λ W R-J P Um olhar sobre as três equações relativas a cada modelo 5. O MODELO DE PLANCK RADIAÇÃO DE CORPO NEGRO

83 5. O MODELO DE PLANCK O legado de Max Planck para a Física É possível afirmar sem medo de errar que a Física tomou outro rumo após a contribuição de Planck para a compreensão da radiação emitida por um corpo aquecido. Ao invocar ideias da Mecânica Estatística para obter sua fórmula, Planck só conseguiu este objetivo introduzindo conceitos totalmente contraditórios à Física Clássica. Nas palavras do próprio Planck: Consideramos, porém este é o ponto mais importante de todo o cálculo que a energia dos osciladores é a soma de um número inteiro de partes iguais.

84 5. O MODELO DE PLANCK Planck, o revolucionário relutante Apesar de sua contribuição revolucionária, ironicamente Planck era, por formação, um físico muito conservador, convicto da validade da Física Clássica. Por muitos anos Planck procurou conciliar as concepções clássicas com a ideia da quantização, ao ponto de, em 1931 afirmar que seu rompimento com a Física Clássica foi um ato de desespero. Por causa disso o físico e historiador da Ciência Abraham Pais caracterizou Planck como um revolucionário relutante.

85 5. O MODELO DE PLANCK Planck e o quantum de energia A rigor, o nome quantum de energia foi dado por Einstein em 1905 em seu trabalho sobre o Efeito Fotoelétrico. Einstein foi o primeiro físico e por cerca de 25 anos, o único a perceber as consequências revolucionárias dos resultados de Planck sobre a natureza da radiação, baseando-se nelas para introduzir o conceito de fóton. A formulação quantitativa da Mecânica Quântica só ocorreu a partir de 1925 com os trabalhos de Heisenberg, Schroedinger, Dirac e Born.

86 5. O MODELO DE PLANCK A radiação de corpo negro e o Big-Bang Agora vamos expor rapidamente uma contribuição de Planck para a Física Contemporânea. Uma das verificações experimentais mais belas e precisas da fórmula de Planck é a determinação do espectro da radiação térmica cosmológica de fundo, remanescente da origem do Universo (Big Bang). Os dados mais atuais (que dão grande suporte ao modelo do Big Bang) foram obtidos a partir de 2003 pelo satélite WMAP (Wilkinson Microwave Anisotropy Probe).

87 Mais Big-Bang RADIAÇÃO DE CORPO NEGRO 5. O MODELO DE PLANCK Pelos dados da WMAP, a expansão do Universo resfriou a radiação cósmica de fundo até a sua temperatura atual de 2,73 K com intensidade máxima na região de micro-ondas (λ MAX = 1,059 mm).

88 5. O MODELO DE PLANCK O legado de Max Planck para a humanidade Afora a sua grande contribuição para o avanço da Ciência, Planck foi também um grande humanista. Planck permaneceu na Alemanha durante a 2 a Guerra Mundial, e segundo relato de Heisenberg tentou convencer Hitler a não expulsar os cientistas judeus das universidades alemãs. Planck também sofreu muito com as duas Grandes Guerras Mundiais: na primeira morreu seu filho mais velho e na segunda seu outro filho foi covardemente assassinado pela Gestapo.

89 RADIAÇÃO DE CORPO NEGRO - BIBLIOGRAFIA Bibliografia 1) EISBERG, R. e RESNICK, R.; Física Quântica; Editora Campus; Rio de Janeiro, 1986; páginas ) CARUSO, F. e OGURI, V.; Física Moderna; Elsevier Editora; São Paulo, 2006; páginas ) BEISER, A.; Conceitos de Física Moderna; Editora Polígono; São Paulo, 1969; páginas ) NUSSENZVEIG, H. M.; Física Básica, Volume 4; Editora Edgard Blücher; São Paulo, 2006; páginas

90 A RADIAÇÃO DE CORPO NEGRO - BIBLIOGRAFIA Bibliografia 5) HALLIDAY, D., RESNICK, R. e WALKER, J.; Fundamentos de Física Volume 4 4 a Edição; Livros Técnicos e Científicos Editora S.A.; 1995; páginas ) SEARS, W., ZEMANSKY, F., YOUNG, H. D., FREEDMAN, R. A.; Física IV; 10 a Edição; Pearson Education do Brasil; São Paulo, 2004; páginas ) TIPLER, P. A. e LLEWELLYN, R. A.; Física Moderna; Livros Técnicos e Científicos Editora; Rio de Janeiro, 2001; páginas

91 A Ceia em Emaús Caravaggio

Parte 1. Licenciatura em Química Física III

Parte 1. Licenciatura em Química Física III Parte 1 Licenciatura em Química Física III Radiação Térmica A superfície de um corpo qualquer, a uma temperatura maior que o zero absoluto (T > 0 K), emite energia na forma de radiação térmica, devido

Leia mais

Mecânica Quântica. Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck

Mecânica Quântica. Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck Mecânica Quântica Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck...numa reunião em 14/12/1900, Max Planck apresentou seu artigo Sobre a teoria

Leia mais

ESPECTROSCOPIA: 734EE. Como podemos estudar a Teoria de Planck em um laboratório didático?

ESPECTROSCOPIA: 734EE. Como podemos estudar a Teoria de Planck em um laboratório didático? 1 Imprimir Complementações sobre a Teoria de Planck: Como podemos estudar a Teoria de Planck em um laboratório didático? LÂMPADA DE FILAMENTO Em geral podemos estudar a lei de Stefan-Boltzmann e a Lei

Leia mais

A radiação do corpo negro

A radiação do corpo negro A radiação do corpo negro Um corpo em qualquer temperatura emite radiações eletromagnéticas. Por estarem relacionadas com a temperatura em que o corpo se encontra, freqüentemente são chamadas radiações

Leia mais

Radiação térmica e a constante de Planck

Radiação térmica e a constante de Planck Material complementar de física 4 Professores: Márcia e Fabris Radiação térmica e a constante de Planck Em 14 de dezembro de 19, Max Planck apresentou a Sociedade Alemã de Física o seu artigo sobre a eoria

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva A radiação do corpo negro e as hipóteses de Planck Um corpo, em qualquer temperatura emite radiação, algumas vezes denominada radiação térmica. O estudo minucioso

Leia mais

Instituto de Física USP. Física V - Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 09. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 09 Professora: Mazé Bechara Material para leitura complementar ao Tópico II na Xerox do IF 1. Produção e Transformação de Luz; Albert Einstein (1905); Artigo 5 do

Leia mais

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO Introdução à Astrofísica INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO Lição 8 O Problema do Corpo Negro A maior parte de toda a física do século XIX estava bem descrita através da mecânica

Leia mais

Notas de Aula de Física Quântica (BCK0103)

Notas de Aula de Física Quântica (BCK0103) Física Quântica 1 Notas de Aula de Física Quântica (BCK13) Prof. Dr. Marcelo Augusto Leigui de Oliveira Radiação de Corpo Negro I. LEIS DA RADIAÇÃO TÉRMICA Todos os corpos com temperatura acima do zero

Leia mais

A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos

A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos Universidade de São Paulo Instituto de Física de São Carlos A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos Nome: Mirian Denise Stringasci Disciplina: Mecânica Quântica Aplicada

Leia mais

Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz Laboratório de Física Moderna Radiação de Corpo Negro Aula 01 Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o

Leia mais

Instituto de Física USP. Física V - Aula 08. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 08. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 08 Professora: Mazé Bechara Aula 08 Uma determinação da radiança espectral do corpo negro no contexto da Física Clássica. A quantização de Planck e a radiança espectral

Leia mais

Instituto de Física USP. Física Moderna I. Aula 07. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 07. Professora: Mazé Bechara Instituto de Física USP Física Moderna I Aula 07 Professora: Mazé Bechara Material para leitura na Xerox do IF 1. Produção e Transformação de Luz - Albert Einstein (1905) Artigo 5 do Livro O ano Miraculoso

Leia mais

Laboratório de Física Moderna Radiação de Corpo Negro. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Radiação de Corpo Negro. Marcelo Gameiro Munhoz Laboratório de Física Moderna Radiação de Corpo Negro Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de

Leia mais

POSTULADOS DA MECÂNICA QUÂNTICA

POSTULADOS DA MECÂNICA QUÂNTICA UNIVERSIDADE FEDERAL DO ABC POSTULADOS DA MECÂNICA QUÂNTICA FERNANDA MARIA RODRIGUEZ ABRIL/2015 Resumo da Apresentação O que é Mecânica Quântica? Cenário no fim do século XIX; Radiação do corpo negro;

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísica Lição 9 O Espectro da Luz INTRODUÇÃO À ASTROFÍSICA LIÇÃO 10 O ESPECTRO CONTÍNUO DA LUZ A medição do brilho das estrelas está diretamente ligada à medida de distância. A medida

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-

Leia mais

Instituto de Física USP Física V Aula 7. Professora: Mazé Bechara

Instituto de Física USP Física V Aula 7. Professora: Mazé Bechara Instituto de Física USP Física V - 4300311 Aula 7 Professora: Mazé Bechara Material para leitura na Xerox do IF 1. Produção e Transformação de Luz; Albert Einstein (1905); Artigo 5 do Livro O ano Miraculoso

Leia mais

Aula 1 Evidências experimentais da teoria quântica : radiação do Corpo Negro.

Aula 1 Evidências experimentais da teoria quântica : radiação do Corpo Negro. UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 1 Evidências experimentais da teoria quântica : radiação do Corpo Negro. Cosmic microwave background Planck Satellite 1 Motivações para

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Início da Física Moderna Vários fenômenos, não podiam ser compreendidos nos quadros da física clássica a radiação do corpo negro o efeito fotoelétrico a emissão de

Leia mais

Físicos reescrevem a estória bíblica da criação na forma

Físicos reescrevem a estória bíblica da criação na forma INÍCIO DO SÉCULO XX Pilares Mecânica (Newton) Eletromagnetismo (Maxwell) Físicos reescrevem a estória bíblica da criação na forma No início Ele criou os céus e a terra - F = G mm r 2 = ma e Ele disse,

Leia mais

Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ)

Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Manaus, 27 de julho de 2015 A Óptica Geométrica Fenômenos

Leia mais

Termo-Estatística Licenciatura: 22ª Aula (05/06/2013) RADIAÇÃO TÉRMICA. (ver livro Física Quântica de Eisberg e Resnick)

Termo-Estatística Licenciatura: 22ª Aula (05/06/2013) RADIAÇÃO TÉRMICA. (ver livro Física Quântica de Eisberg e Resnick) ermo-estatística Licenciatura: ª Aula (5/6/13) Prof. Alvaro Vannucci RADIAÇÃO ÉRMICA (ver livro Física Quântica de Eisberg e Resnick) Experimentalmente observa-se que os corpos em geral e principalmente

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE FÍSICA - DFIS PLANO DE ENSINO

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE FÍSICA - DFIS PLANO DE ENSINO DEPARTAMENTO: Física PLANO DE ENSINO DISCIPLINA: Física Moderna I CARGA HORÁRIA: 72 horas-aula SIGLA: FMO1001 Pré-requisito: FGE4001 CURSO: Licenciatura em Física SEMESTRE/ANO: 02/2014 EMENTA: História

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Primeira Edição junho de 2005 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Introdução 2.2- Corpo

Leia mais

Física Moderna I Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940

Física Moderna I Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940 Física Moderna I Aula 03 Marcelo G Munhoz Pelletron, sala 245, ramal 6940 munhoz@if.usp.br 1 Radiação Térmica Ondas eletromagnéticas emitidas por todos os objetos com temperatura acima do zero absoluto

Leia mais

Aula 21 Fótons e ondas de matéria I. Física Geral IV FIS503

Aula 21 Fótons e ondas de matéria I. Física Geral IV FIS503 Aula 21 Fótons e ondas de matéria I Física Geral IV FIS503 1 Correção da aula passada: Energia relativística: uma nova interpretação m p = 1, 007276 u m 4 He = 4, 002603 u ΔE = (mhe 4m p )c 2 = 0, 026501

Leia mais

Instituto de Física USP Física V Aula 08. Professora: Mazé Bechara

Instituto de Física USP Física V Aula 08. Professora: Mazé Bechara Instituto de Física USP Física V - 4300311 Aula 08 Professora: Mazé Bechara Aula 08 Oscilações nos sólidos e A Radiação do Corpo Negro i. O Calor específico molar a volume constante dos sólidos condutores

Leia mais

2. Propriedades Corpusculares das Ondas

2. Propriedades Corpusculares das Ondas 2. Propriedades Corpusculares das Ondas Sumário Revisão sobre ondas eletromagnéticas Radiação térmica Hipótese dos quanta de Planck Efeito Fotoelétrico Geração de raios-x Absorção de raios-x Ondas eletromagnéticas

Leia mais

Professor: André Luiz de Oliveira. PLANO DE ENSINO-Disponível em:

Professor: André Luiz de Oliveira. PLANO DE ENSINO-Disponível em: Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Departamento de Física PLANO DE ENSINO-Disponível em: http://www.joinville.udesc.br/portal/professores/andre 1. Identificação Curso:

Leia mais

FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM

FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: 0053- A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM 1 Introdução à Física Moderna 2 Objetivos do Aprendizado Explicar a absorção e emissão da

Leia mais

Radiação do Corpo Negro

Radiação do Corpo Negro Aula-8 Fótons I Radiação do Corpo Negro Radiação Térmica Até agora estudamos fenômenos em que a luz é era considerada como onda. Porém, há casos em que a explicação convencional da teoria eletromagnética

Leia mais

Radiação de Corpo Negro

Radiação de Corpo Negro Radiação de Corpo Negro Monica Bahiana Instituto de Física Universidade Federal do Rio de Janeiro O espectro de radiação térmica de matéria condensada é um desses problemas que mostram, de forma simples,

Leia mais

Radiação do corpo negro

Radiação do corpo negro Radiação do corpo negro Radiação térmica. Um corpo a temperatura ambiente emite radiação na região infravermelha do espectro eletromagnético e portanto, não é detectável pelo olho humano. Com o aumento

Leia mais

Radiação de corpo negro, f.e.m. termoelétrica, dependência da resistência com a temperatura.

Radiação de corpo negro, f.e.m. termoelétrica, dependência da resistência com a temperatura. 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física - UFRJ Tópicos Relacionados Radiação de corpo negro, f.e.m. termoelétrica, dependência

Leia mais

Graça Meireles. Física -10º ano. Física -10º ano 2

Graça Meireles. Física -10º ano. Física -10º ano 2 Escola Secundária D. Afonso Sanches Energia do Sol para a Terra Graça Meireles Física -10º ano 1 Variação da Temperatura com a Altitude Física -10º ano 2 1 Sistemas Termodinâmicos Propriedades a ter em

Leia mais

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton

Leia mais

Quantidades Básicas da Radiação

Quantidades Básicas da Radiação Quantidades Básicas da Radiação Luminosidade e Brilho Luminosidade = energia emitida por unidade de tempo. Brilho = fluxo de energia(energia por unidade de tempo e por unidade de superfície) Luminosidade

Leia mais

Física Quântica. Para nós: Física das escalas atômicas e sub-atômicas

Física Quântica. Para nós: Física das escalas atômicas e sub-atômicas Física Quântica Def. segundo o Instituto Liberal: Doutrinação comunista disfarçada de ciência que harmoniza com o uso de drogas, com a ideia de que o indivíduo é uma ilusão, criando uma justificativa para

Leia mais

Princípios de Mecânica Quântica

Princípios de Mecânica Quântica 1 Princípios de Mecânica Quântica 2 1 Alguns personagens Albert Einstein Max Planck Erwin Schrodinger Ernest Rutherford Werner Heisenberg Niels Bohr Louis de Broglie 3 Fins do Século XIX As leis da Mecânica

Leia mais

Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ)

Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro, 07 de outubro de 2017 Óptica Geométrica

Leia mais

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão 1) Relatividade: Do Tempo: (dilatação temporal) Das

Leia mais

Aula 12 - Capítulo 38 Fótons e Ondas de Matéria

Aula 12 - Capítulo 38 Fótons e Ondas de Matéria Aula 12 - Capítulo 38 Fótons e Ondas de Matéria Física 4 Ref. Halliday Volume4 Sumário Introdução O Fóton (quantum de luz) Radiação térmica O Efeito Fotoelétrico Os Fótons possuem Momento A luz como uma

Leia mais

Luz & Radiação. Roberto Ortiz EACH USP

Luz & Radiação. Roberto Ortiz EACH USP Luz & Radiação Roberto Ortiz EACH USP A luz é uma onda eletromagnética A figura acima ilustra os campos elétrico (E) e magnético (B) que compõem a luz Eles são perpendiculares entre si e perpendiculares

Leia mais

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 hbarbosa@if.usp.br http://www.fap.if.usp.br/~hbarbosa Na primeira semana... Fizeram o gráfico dilog de PXT e PX(T-T 0 ), só que essa

Leia mais

Cálculo da energia média classicamente

Cálculo da energia média classicamente Cálculo da energia média classicamente Probabilidade de encontrar um ente com uma energia entre ε e ε +dε em um sistema em equilíbrio térmico à temperatura T : P ε = e ε Distribuição de Boltzmann (K =

Leia mais

Introdução à Química Moderna

Introdução à Química Moderna Introdução à Química Moderna Prof. Alex Fabiano C. Campos, Dr Radiação de Corpo Negro Objeto com T 0K:emite radiação eletromagnética. T 0K Física Clássica: vibração térmica dos átomos e moléculas, provoca

Leia mais

ATIVIDADE DE FÍSICA MODERNA LER E RESUMIR RESPONDER LISTA

ATIVIDADE DE FÍSICA MODERNA LER E RESUMIR RESPONDER LISTA SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS VERIFICAÇÃO

Leia mais

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 18 Professora: Mazé Bechara Aula 28 Discussão da 1ª prova e Apresentação do Tópico III 1. Soluções das questões da prova com comentários. Critérios de correção.

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 0 4. LEIS DA EMISSÃO

Leia mais

Lei de Planck. Lei de Stefan

Lei de Planck. Lei de Stefan ei de Planck UNIVERSIDADE FEDERA DO RIO GRANDE DO SU. Instituto de Física. Departamento de Física. Física do Século XXA (FIS156). Prof. César Augusto Zen Vasconcellos. ista (Site: www.cesarzen.com) ópicos.

Leia mais

Físicos reescrevem a estória bíblica da criação na forma

Físicos reescrevem a estória bíblica da criação na forma INÍCIO DO SÉCULO XX Pilares Mecânica (Newton) Eletromagnetismo (Maxwell) Físicos reescrevem a estória bíblica da criação na forma No início Ele criou os céus e a terra - F = G mm r 2 = ma e Ele disse,

Leia mais

Capítulo 9: Transferência de calor por radiação térmica

Capítulo 9: Transferência de calor por radiação térmica Capítulo 9: Transferência de calor por radiação térmica Radiação térmica Propriedades básicas da radiação Transferência de calor por radiação entre duas superfícies paralelas infinitas Radiação térmica

Leia mais

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2 QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta

Leia mais

Material: 1 lâmpada incandescente 1 resistor 10 Ω 2 multímetros

Material: 1 lâmpada incandescente 1 resistor 10 Ω 2 multímetros Um corpo negro trata se de um objeto que emite, na forma de radiação eletromagnética, toda energia que lhe é fornecida. Embora tal definição seja uma conveniência teórica, muitos objetos na natureza se

Leia mais

AULA 21 INTRODUÇÃO À RADIAÇÃO TÉRMICA

AULA 21 INTRODUÇÃO À RADIAÇÃO TÉRMICA Notas de aula de PME 3361 Processos de Transferência de Calor 180 AULA 1 INTRODUÇÃO À RADIAÇÃO TÉRMICA A radiação térmica é a terceira e última forma de transferência de calor existente. Das três formas,

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Radiação - Conceitos Fundamentais Consideremos um objeto que se encontra inicialmente a uma temperatura T S mais elevada que a temperatura T VIZ de sua vizinhança. A presença do vácuo impede a perda de

Leia mais

Considerações gerais sobre radiação térmica

Considerações gerais sobre radiação térmica CÁLCULO TÉRMICO E FLUIDOMECÂNICO DE GERADORES DE VAPOR Prof. Waldir A. Bizzo Faculdade de Engenharia Mecânica - UNICAMP General Considerations Considerações gerais sobre radiação térmica Radiação térmica

Leia mais

Introdução à Física Quântica

Introdução à Física Quântica 17/Abr/2015 Aula 14 Introdução à Física Quântica Radiação do corpo negro; níveis discretos de energia. Efeito foto-eléctrico: - descrições clássica e quântica - experimental. Efeito de Compton. 1 Introdução

Leia mais

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini hugo.suffredini@ufabc.edu.br Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação

Leia mais

Física Moderna 1. 2 o Semestre/2010 Aulas # 2 & 3 Radiação Térmica e Postulado de Planck (II-1 & II-2) Friday, August 13, 2010

Física Moderna 1. 2 o Semestre/2010 Aulas # 2 & 3 Radiação Térmica e Postulado de Planck (II-1 & II-2) Friday, August 13, 2010 Física Moderna 1 2 o Semestre/2010 Aulas # 2 & 3 Radiação Térmica e Postulado de Planck (II-1 & II-2) 1 2 Menezes, A matéria. uma aventura do espírito, Ed. Livraria da Física, 2006 Introdução Max Planck

Leia mais

Física D Extensivo V. 8

Física D Extensivo V. 8 Física D Extensivo V. 8 Exercícios 0) C f R X > f WZ 0) B 03) E 04) E raios X > luz Raios X são radiações eletromagnéticas com um comprimento de onda muito curto, aproximadamente de 0,06 até 0 Å. Formam-se

Leia mais

ESPECTROSCOPIA: 734EE

ESPECTROSCOPIA: 734EE 1 Imprimir T E O R I A 1. ESPECTRO CONTÍNUO E CORPO NEGRO Um dos capítulos mais intrigantes da Física é o destinado ao estudo do espectro de um corpo negro. Foi por meio do estudo deste espectro que nasceu

Leia mais

FNC375N: Lista 2. 7 de outubro de Para um oscilador clássico unidimensional em equilíbrio a uma temperatura T a Mecânica

FNC375N: Lista 2. 7 de outubro de Para um oscilador clássico unidimensional em equilíbrio a uma temperatura T a Mecânica FNC375N: Lista 2 7 de outubro de 24 Radiação Térmica - II. Para um oscilador clássico unidimensional em equilíbrio a uma temperatura T a Mecânica Estatística prevê: P (E)dE = Ae E/k BT de, Resp.: a) em

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 4. LEIS DA EMISSÃO

Leia mais

Prof. MSc. David Roza José 1/23

Prof. MSc. David Roza José 1/23 1/23 Radiação de Corpo Negro Para se avaliar a potência emissiva, irradiação, radiosidade ou o fluxo radiativo líquido de uma superfície real opaca, deve-se quantificar as seguintes intensidades espectrais

Leia mais

Prof. Joel Brito Edifício Basílio Jafet - Sala 102a Tel

Prof. Joel Brito Edifício Basílio Jafet - Sala 102a Tel Prof. Joel Brito Edifício Basílio Jafet - Sala 102a Tel. 3091-6925 jbrito@if.usp.br http://www.fap.if.usp.br/~jbrito Semana passada Exp. 3 1. Circuitos de Corrente Contínua 2. Pilha e Lâmpada 3. Potência

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Journal Club Teoria do funcional da densidade A energia do estado fundamental é um funcional

Leia mais

Marx Karl Ernest Ludwig Planck. Camila Welikson. Este documento tem nível de compartilhamento de acordo com a licença 2.5 do Creative Commons.

Marx Karl Ernest Ludwig Planck. Camila Welikson. Este documento tem nível de compartilhamento de acordo com a licença 2.5 do Creative Commons. Camila Welikson Este documento tem nível de compartilhamento de acordo com a licença 2.5 do Creative Commons. http://creativecommons.org.br http://creativecommons.org/licenses/by/2.5/br/ O pai da Mecânica

Leia mais

8.4 Termômetros de Radiação

8.4 Termômetros de Radiação 8.4 Termômetros de Radiação Todos os tipos de medidores de temperatura discutidos até aqui necessitam que o sensor estivesse em contato físico com o corpo cuja temperatura se deseja medir. Além disso,

Leia mais

2ª Prova de Seleção para as Olimpíadas Internacionais de Física 2016 Candidatos do 2º ano classificados na OBF 2015

2ª Prova de Seleção para as Olimpíadas Internacionais de Física 2016 Candidatos do 2º ano classificados na OBF 2015 Caderno de Questões Teoria I Instruções 1. Este caderno de questões contém NOVE folhas, incluindo esta com as instruções. Confira antes de começar a resolver a prova. 2. A prova é composta por QUATRO questões.

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: Física III CÓDIGO: 2DB009 VALIDADE: Início: 01/2013 Término: Eixo: Física e Química Carga Horária: Total: 50 horas / 60horas aulas Créditos: 4 Semanal: 4 aulas Modalidade: Teórica Integralização:

Leia mais

P L A N O D E E N S I N O. DISCIPLINA: Física Geral B SIGLA: FIS-B CARGA HORÁRIA TOTAL : 60 TEORIA: 60 PRÁTICA: 0

P L A N O D E E N S I N O. DISCIPLINA: Física Geral B SIGLA: FIS-B CARGA HORÁRIA TOTAL : 60 TEORIA: 60 PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Departamento de Física DISCIPLINA: Física Geral B SIGLA: FIS-B CARGA HORÁRIA TOTAL : 60 TEORIA: 60 PRÁTICA: 0 CURSO(S): Licenciatura em Física SEMESTRE/ANO: 02/2010

Leia mais

Física Experimental V. Aula 1

Física Experimental V. Aula 1 Física Experimental V Aula 1 4300313 Profa. Márcia de Almeida Rizzutto Agradecimento: Prof. Dr. José Roberto por alguns slides Horário 2a feira 14:00 17:50 3a feira 14:00 17:50 4a feira 19:10 22:50 Laboratório

Leia mais

Estrutura eletrônica da matéria - resumo

Estrutura eletrônica da matéria - resumo Estrutura eletrônica da matéria - resumo A NATUREZA ONDULATÓRIA DA LUZ COMO A RADIAÇÃO ELETROMAGNÉTICA SE MOVE À VELOCIDADE DA LUZ, O COMPRIMENTO DE ONDA E A FREQUÊNCIA ESTÃO RELACIONADOS: νλ=c ONDE ν(ni)

Leia mais

PROVA ESCRITA. identifique, de forma clara, o número da questão que está sendo respondida. QUESTÃO 3

PROVA ESCRITA. identifique, de forma clara, o número da questão que está sendo respondida. QUESTÃO 3 PROVA ESCRITA ATENÇÃO: Escolha apenas três entre as questões a seguir apresentadas. Ao iniciar sua resposta, identifique, de forma clara, o número da questão que está sendo respondida. QUESTÃO 1 Faça uma

Leia mais

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini hugo.suffredini@ufabc.edu.br Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação

Leia mais

Física estatística. Fotões e a radiação do corpo negro MEFT, IST

Física estatística. Fotões e a radiação do corpo negro MEFT, IST Física estatística Fotões e a radiação do corpo negro MEFT, IST A scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually

Leia mais

RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética

RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença

Leia mais

Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta:

Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta: 23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 1 Expansão

Leia mais

4/Abr/2018 Aula 9. Potenciais termodinâmicos Energia interna total Entalpia Energias livres de Helmholtz e de Gibbs Relações de Maxwell

4/Abr/2018 Aula 9. Potenciais termodinâmicos Energia interna total Entalpia Energias livres de Helmholtz e de Gibbs Relações de Maxwell 23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 4/Abr/2018

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Mecânica Mecânica: estuda o estado de movimento (ou repouso) de corpos sujeitos à ação

Leia mais

SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética

SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética O O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença

Leia mais

FIS-14 Mecânica I. Ronaldo Rodrigues Pela

FIS-14 Mecânica I. Ronaldo Rodrigues Pela FIS-14 Mecânica I Ronaldo Rodrigues Pela Objetivos Visão geral: Termodinâmica e Mecânica Velocidade rms Equipartição da Energia e calor específico Origem microscópica da distribuição de Maxwell-Boltzmann

Leia mais

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi (2016-2) Sólido cristalino Num modelo para um sólido cristalino podemos supor que os N átomos sejam equivalentes a 3N osciladores harmônicos

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL PPE6408 Tópicos Especiais de Física Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de

Leia mais

Seleção de comprimento de onda com filtros de interferência

Seleção de comprimento de onda com filtros de interferência Seleção de comprimento de onda com filtros de interferência O que você pode aprender... Energia do fóton Absorção de fóton Efeito fotoelétrico externo Função trabalho Fotocélula Filtro de interferência

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. 1. INTRODUÇÃO: 1.1. Um rápido olhar na relação

Leia mais

Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento. Prof. Emery Lins Curso Eng. Biomédica

Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento. Prof. Emery Lins Curso Eng. Biomédica Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento Prof. Emery Lins Curso Eng. Biomédica Introdução Breve revisão: Questões... O que é uma radiação? E uma partícula? Como elas

Leia mais

A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN

A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN Material Utilizado: - um fonte regulada de potência CC (3 A, 12 V) - uma lâmpada de Stefan-Boltzmann (PASCO TD-8553) - um sensor de radiação (PASCO TD-8555) - um milivoltímetro

Leia mais

ANO 4 - N O 20 MARÇO PÁGINA 1. DE ONDE VEM O h?

ANO 4 - N O 20 MARÇO PÁGINA 1. DE ONDE VEM O h? PÁGINA 1 1. Introdução DE ONDE VEM O h? Estamos em 1900, o último ano de um século que, ao seu final, chegou a considerar a Física pronta e acabada. Grandes cientistas e pensadores afirmavam categoricamente

Leia mais

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Journal Club Teoria do funcional da densidade A energia do estado fundamental é um funcional

Leia mais

Relação da intensidade com poder emissivo, irradiação e radiosidade

Relação da intensidade com poder emissivo, irradiação e radiosidade Relação da intensidade com poder emissivo, irradiação e radiosidade O poder emissivo espectral (W/m 2.μm) corresponde à emissão espectral em todas as direcções possíveis: 2π π 2 ( ) /, (,, ) cos sin E

Leia mais

Propagação do calor. Condução térmica

Propagação do calor. Condução térmica Propagação do calor A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a irradiação. Condução térmica A condução térmica é um processo

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

Aula 25 Radiação. UFJF/Departamento de Engenharia de Produção e Mecânica. Prof. Dr. Washington Orlando Irrazabal Bohorquez

Aula 25 Radiação. UFJF/Departamento de Engenharia de Produção e Mecânica. Prof. Dr. Washington Orlando Irrazabal Bohorquez Aula 25 Radiação UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez REVISÃO: Representa a transferência de calor devido à energia emitida pela matéria

Leia mais