Radiação de Corpo Negro

Tamanho: px
Começar a partir da página:

Download "Radiação de Corpo Negro"

Transcrição

1 Radiação de Corpo Negro Monica Bahiana Instituto de Física Universidade Federal do Rio de Janeiro O espectro de radiação térmica de matéria condensada é um desses problemas que mostram, de forma simples, a natureza quântica do mundo sub-atômico, manifestada numa escala macroscópica. A apresentação de um modelo para a descrição deste tipo de radiação por Planck, em 1900, é considerado o nascimento da Mecânica Quântica, embora ela realmente só tenha se desenvolvido cerca de 0 anos depois. De fato, como veremos a seguir, a introdução de níveis de energia discretos foi essencial para o sucesso do modelo proposto por Planck. O que é radiação térmica? É a radiação emitida por um corpo em função de sua temperatura. Todos os corpos a nossa volta estão constantemente emitindo e absorvendo radiação térmica; para temperaturas usuais a emissão se dá numa faixa de frequência de infravermelho ( Hz), que não é visível. Por isso foi possível o desenvolvimento de visores noturnos, eles detectam exatamente essa radiação no infravermelho. Como veremos adiante, quando chegamos a ver a radiação térmica emitida por um corpo, por exemplo brasas e filamentos de lâmpadas, isto significa que a temperatura desses corpos deve ser bastante elevada. Se um corpo está mais quente que sua vizinhança a emissão de radiação térmica vai predominar sobre a absorção, e se ele estiver mais frio, a absorção vai predominar. Quando um corpo está em equilíbrio térmico com sua vizinhança a emissão é igual à absorção (lei de Kirchhoff). Na introdução usamos o termo radiação térmica de matéria condensada, com isso queremos dizer matéria nos estados líquido ou sólido. Este tipo de espectro é contínuo e apresenta um máximo que determina a frequência predominante. A forma específica do espectro de radiação térmica depende do corpo que a está emitindo, mas existe uma classe de corpos que emite um espectro de caráter universal, ou seja, independente do material e da forma do corpo, dependente apenas da temperatura. Esses corpos são chamados corpos negros. O que é um corpo negro? Nosso senso comum diz que corpo negro é um objeto de cor preta que tem como propriedade absorver praticamente toda a luz incidente sobre ele. Esta definição está perto da definição correta, vamos apenas estendê-la e considerar todo tipo de radiação. Um corpo negro é então, um corpo que absorve toda a radiação incidente sobre ele, ou seja, ele não é capaz de refletir a radiação incidente. Desta forma podemos pensar em um corpo negro bem diferente do primeiro exemplo: imagine um objeto com uma cavidade conectada com o exterior através de O espectro é a distribuição de intensidade por frequência ou comprimento de onda. 1

2 um pequeno orifício. A radiação incidente sobre o orifício é refletida seguidamente pelas paredes internas da cavidade, e dificilmente conseguirá sair pelo orifício. Sendo assim, o orifício é (aproximadamente) um corpo negro, já que quase toda a radiação incidente sobre ele é absorvida. Outro aspecto interessante aparece por causa da lei de Kirchhoff. Como vimos, ela nos diz que, no equilíbrio térmico, e a (emissão absorção) ou e/a 1. Suponha que tenhamos dois corpos, um negro (corpo 1) e o outro não (corpo 2). Estando os dois em equilíbrio térmico, temos: e 1 /a 1 e 2 /a 2 1. Mas a 1 > a 2 porque o corpo 1 é negro, então, devemos ter também que e 1 > e 2, ou seja, os corpos negros são melhores absorvedores e emissores de radiação. Radiação de corpo negro Vamos prosseguir com o exemplo da cavidade com um pequeno orifício. Consideremos agora que a cavidade está a uma temperatura T e, portanto, está emitindo radiação térmica que é absorvida e reemitida pelas paredes internas e, eventualmente, sai pelo orifício. Como já vimos, o orifício tem propriedade de um corpo negro; portanto, a radiação que está saindo por ele tem propriedades de radiação de corpo negro, mas, já que ela é meramente uma amostra da radiação que existe dentro da cavidade, podemos dizer que a radiação dentro da cavidade tem propriedades de radiação de corpo negro. Descrição estatística de um sistema A descrição estatística de um sistema é a descrição das propriedades do seu estado de equilíbrio termodinâmico. A determinação do estado de equilíbrio, quando levamos em conta o efeito da temperatura, deve resultar de duas contribuições: energia (U) e entropia (S). Isso acontece da seguinte forma: mantendo a temperatura como um parâmetro fixo, o sistema busca minimizar sua energia e maximizar sua entropia. Por exemplo, se queremos descrever o sistema pela sua temperatura e pelo seu volume, este processo corresponde a minimizar um potencial termodinâmico que se chama energia livre de Helmholtz e é definido como A U-TS. Podemos ver que, realmente, pela forma de A, minimizar U ou maximizar S leva à diminuição de A. Esta é uma situação bastante diferente da que vemos em problemas de mecânica (quântica e clássica) em que o efeito da temperatura não é levado em conta, e o estado de equilíbrio é determinado apenas pela minimização da energia. Da minimização de A pode-se determinar qual a probabilidade P(e) de encontrar o sistema com uma determinada energia e, e temperatura T: onde exp P( e) ( e / kt ) Z distribuição de Boltzmann 2

3 ( e kt ) Z exp / conf função de partição A função de partição Z nada mais é do que a normalização da distribuição. A soma que aparece na expressão da função de partição deve ser feita sobre todas as configurações do sistema e a energia que aparece na exponencial é a energia dessa configuração. Normalmente um sistema pode ter várias configurações com a mesma energia, neste caso a soma em Z terá vários termos iguais. Nas expressões acima, k é a constante de Boltzmann : k 1.8 X 10-2 J K -1 Olhando com atenção para a expressão de P(e) vemos que a razão e/kt é determinante para que P(e) seja grande ou pequena. Vamos parar um pouco para ver o significado disto. kt é a energia térmica disponível pelo fato de que o sistema está a uma temperatura T>0. A uma temperatura de 00K (temperatura ambiente) kt ev. Para que tenhamos uma idéia do que pode acontecer em função dessa energia térmica, vamos ver alguns valores típicos de energia: vibração e rotação molecular 10 - ev excitação eletrônica 1 ev fusão nuclear 10 6 ev Esses valores nos dizem que: à temperatura ambiente as moléculas de um gás terão movimento de rotação e vibração, além da translação, mas não seremos capazes de observar excitações eletrônicas ou uma fusão nuclear nesta temperatura. Distribuição de Planck: descrição quântica Vamos usar o formalismo acima para construir um modelo para a radiação de corpo negro. Dentro da cavidade temos vários fótons, com frequências diferentes. Esse é o nosso sistema. Uma configuração para o sistema seria obtida com o conhecimento de que existem n 1 fótons com frequência 1 f, n 2 com frequência 2 f etc. O números n i são as ocupações. Vamos olhar, em primeiro lugar, para os fótons com uma determinada frequência f. A energia desses fótons é dada por e shf onde s é o número de fótons com frequência f e h é a constante de Planck (h 6.6 X 10-4 Js). O valor de s pode variar desde zero até infinito, como saber então o valor que será observado quando a temperatura for T? Se realizarmos uma série de medidas na cavidade, cada vez encontraremos um valor de s diferente, valores que flutuam em torno de um valor médio. Usamos a distribuição de Boltzmann exatamente para o cálculo desse valor médio: ela nos dá os pesos que entrarão quando formos calcular o valor médio de s. Portanto, a probabilidade de haver s fótons com frequência f é: P( s) exp( shf Z / kt )

4 E agora podemos calcular o valor médio da ocupação: s sp( s) s0 A energia dos s fótons fica então: e f hf s, onde o índice f nos lembra que esta é a energia dos fótons com frequência f. Para chegar à energia total da cavidade (U) é necessário somar para todas as frequências. Os detalhes desse cálculo podem ser encontrados nas referências abaixo; vamos apenas dar uma idéia do que é feito. Considerando uma cavidade cúbica de lado L (e volume V L ), por causa das condições de contorno, temos apenas frequências da forma f n nc/2l, onde c é a velocidade da luz e n(n x 2 +n y 2 +n z 2 ) 1/2. n, n x, n y e n z são números inteiros positivos. A soma sobre as frequências pode ser transformada em uma integral porque, para L grande, os valores de frequência são muito próximos. Com este procedimento, encontra-se: U V 5 8π 15h c ( kt ) 4 Lei de Stefan-Boltzmann A expressão acima está nos dizendo que a quantidade de energia dentro da cavidade aumenta com o aumento da temperatura, variando com T 4. Para encontrar a energia relacionada com cada faixa de frequência, definimos a densidade espectral u f: U V df u f 8πh c df f exp( hf / kt) 1 Ou seja, 8πh f u densidade espectral f c exp( hf / kt ) 1 Podemos traçar o gráfico de u f para diversos valores da temperatura: u f (10 19 J.m -.s -1 ) f(10 14 Hz) 5000 K 6000 K 7000 K Gráfico da densidade espectral de acordo com a lei de Planck para diferentes valores da temperatura. A área sob as curvas dá a densidade total de energia, uma grandeza que aumenta com a temperatura. O máximo de cada curva indica qual a frequência predominante. A emissão predominante a T 6000 K começa a se dar na faixa da luz visível. 4

5 A figura abaixo compara a previsão de Planck com dados experimentais. Como podemos ver, a concordância é muito boa. T1595 Comparação da lei de Planck (linha contínua) com resultados experimentais (pontos). Lei de Rayleigh-Jeans: descrição clássica A teoria clássica também usa a função de partição para o cálculo da energia média associada a cada frequência, só que trata o espectro de energia da radiação eletromagnética como contínuo. Este aparentemente pequeno detalhe leva a um valor médio para a energia bem diferente: e kt princípio da equipartição da energia (teoria clássica) Note que a a energia calculada não depende da frequência, como na teoria de Planck. A expressão para a densidade espectral clássica é conhecida como lei de Rayleigh-Jeans, e tem a seguinte forma: u f 8π ktf c 2 Rayleigh-Jeans (teoria clássica) 5

6 E agora então podemos comparar a teoria clássica com os resultados experimentais, o que pode ser visto na figura abaixo: teoria clássica T 1500K experiência Comparação entre a teoria clássica de Rayleigh-Jeans e experiência. Podemos ver que há concordância apenas quando a frequência é muito baixa ou a temperatura muito alta. Neste limite a teoria de Planck coincide com a clássica. Realmente a idéia de níveis discretos é fundamental para uma correta descrição do espectro de radiação térmica. A teoria de Planck é considerada como o nascimento da Mecânica Quântica exatamente por isso. Agora que a Mecânica Quântica está bem estabelecida a teoria de Planck nem parece tão exótica, mas na época, o próprio Planck se sentiu desconfortável com a introdução da constante h para quantizar os níveis de energia e considerou esta alternativa como um ato de desespero. Aplicação: radiação cósmica de fundo Uma descoberta importante foi a de que o universo que nos é acessível está repleto com radiação aproximadamente como a de um corpo negro a 2.9K. A existência dessa radiação é uma evidência importante para a teoria do big bang que considera que o universo está expandindo e esfriando com o tempo. Esta radiação é a que restou de um período em que o universo era composto basicamente de elétrons e prótons a uma temperatura de cerca de 4000K. O plasma de elétrons e prótons interagia fortemente com a radiação eletromagnética em todas as frequências importantes, de tal forma que matéria e radiação estavam em equilíbrio térmico. Quando o universo resfriou para 000K, a matéria estava principalmente na forma de hidrogênio atômico, que interage com a radiação eletromagnética apenas nas frequências das linhas espectrais do hidrogênio. A maior parte da radiação de corpo negro se desacoplou da matéria nesta época, e sua evolução temporal foi a de um gás de fótons que esfriou pela expansão, a entropia constante, até uma temperatura de 2.9K. Após o desacoplamento a evolução da matéria, que se deu no sentido da formação de átomos mais pesados ( que estão organizados em galáxias, estrelas, e nuvens de poeira), 6

7 tornou-se mais complicada. A radiação eletromagnética, tal como a emitida pelas estrelas, irradiada pela matéria desde o desacoplamento aparece superposta à radiação cósmica de corpo negro. fluxo espectral (W/cm 2 steradian cm -1 ) corpo negro 2.9K frequência (cm -1 ) Medidas experimentais do espectro da radiação de corpo negro cósmica. Comportamento de corpos não-negros O corpo negro é uma idealização; na prática, parte de radiação incidente isotropicamente sobre uma superfície é absorvida, outra parte é refletida e outra transmitida. Em geral, a fração da radiação incidente, contendo todos os comprimentos de onda, depende da temperatura e da natureza da superfície. Esta fração é chamada absorvidade. absorvidade α fraçao da energia total da radiaçao isotrópica que é absorvida 7

8 Um corpo negro teria, portanto, α CN 1. Para determinar-se experimentalmente o valor de α define-se também uma grandeza chamada emitância : emitância E potência total emitida pela superfície, por unidade de área Suponhamos que um corpo não negro está em equilíbrio térmico com um corpo negro à temperatura T (por exemplo, podemos colocar o corpo não negro dentro da cavidade que discutimos acima). Teríamos, neste caso (de acordo com a lei de Kirchoff, mencionada acima) : E α E CN como α CN 1, CN α α E E CN Quer dizer, a absorvidade pode ser determinada medindo-se a emitância da superfície e dividindo pela emitância de um corpo negro na mesma temperatura. Alguns valores de absorvidade podem ser vistos na tabela abaixo. material faixa de temperatura, o C absorvidade metais polidos: alumínio ferro zinco filamentos: platina tungstênio outros materiais: asbestos gelo fuligem borracha cinza Os valores de absorvidade da tabela referem-se à radiação térmica apropriada à temperatura indicada. Por exemplo, a absorvidade do gelo é 0.97, mas não para a radiação visível, mas para a radiação no infravermelho longo que é a associada à temperatura de 0 o C. Repare que o asbestos (material usado em telhas de amianto) tem uma absorvidade próxima de 1, e portanto, será um bom emissor de radiaçao na região do infravermelho, que é o comprimento de onda correspondente à faixa de temperatura indicada. Quer dizer, um cômodo coberto com esse tipo de telha terá sua temperatura bastante elevada por esse efeito. 8

9 Referências Thermal Physics Charles Kittel e Herbert Kroemer, W.H. Freeman and Company, San Francisco, 1980 Física Quântica Robert Eisberg e Robert Resnick, Editora Campus, Rio de Janeiro,

A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos

A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos Universidade de São Paulo Instituto de Física de São Carlos A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos Nome: Mirian Denise Stringasci Disciplina: Mecânica Quântica Aplicada

Leia mais

Parte 1. Licenciatura em Química Física III

Parte 1. Licenciatura em Química Física III Parte 1 Licenciatura em Química Física III Radiação Térmica A superfície de um corpo qualquer, a uma temperatura maior que o zero absoluto (T > 0 K), emite energia na forma de radiação térmica, devido

Leia mais

Termo-Estatística Licenciatura: 22ª Aula (05/06/2013) RADIAÇÃO TÉRMICA. (ver livro Física Quântica de Eisberg e Resnick)

Termo-Estatística Licenciatura: 22ª Aula (05/06/2013) RADIAÇÃO TÉRMICA. (ver livro Física Quântica de Eisberg e Resnick) ermo-estatística Licenciatura: ª Aula (5/6/13) Prof. Alvaro Vannucci RADIAÇÃO ÉRMICA (ver livro Física Quântica de Eisberg e Resnick) Experimentalmente observa-se que os corpos em geral e principalmente

Leia mais

Radiação térmica e a constante de Planck

Radiação térmica e a constante de Planck Material complementar de física 4 Professores: Márcia e Fabris Radiação térmica e a constante de Planck Em 14 de dezembro de 19, Max Planck apresentou a Sociedade Alemã de Física o seu artigo sobre a eoria

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva A radiação do corpo negro e as hipóteses de Planck Um corpo, em qualquer temperatura emite radiação, algumas vezes denominada radiação térmica. O estudo minucioso

Leia mais

Instituto de Física USP. Física V - Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 09. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 09 Professora: Mazé Bechara Material para leitura complementar ao Tópico II na Xerox do IF 1. Produção e Transformação de Luz; Albert Einstein (1905); Artigo 5 do

Leia mais

O ESPECTRO ELETROMAGNÉTICO

O ESPECTRO ELETROMAGNÉTICO O ESPECTRO ELETROMAGNÉTICO ONDAS: Interferência construtiva e destrutiva Onda 1 Onda 2 Onda composta a b c d e A luz apresenta interferência: natureza ondulatória: O experimento de Young (~1800) Efeito

Leia mais

Mecânica Quântica. Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck

Mecânica Quântica. Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck Mecânica Quântica Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck...numa reunião em 14/12/1900, Max Planck apresentou seu artigo Sobre a teoria

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. 1. INTRODUÇÃO: 1.1. Um rápido olhar na relação

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísica Lição 9 O Espectro da Luz INTRODUÇÃO À ASTROFÍSICA LIÇÃO 10 O ESPECTRO CONTÍNUO DA LUZ A medição do brilho das estrelas está diretamente ligada à medida de distância. A medida

Leia mais

Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz Laboratório de Física Moderna Radiação de Corpo Negro Aula 01 Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o

Leia mais

EMISSÃO e ABSORÇÃO de radiação

EMISSÃO e ABSORÇÃO de radiação EMISSÃO e ABSORÇÃO de radiação a EMISSÃO ocorre quando um elétron de um átomo salta de uma órbita superior para uma inferior (fundamentalização): um fóton é emitido (produzido). e - e - + n 2, E 2 n 1,

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 0 4. LEIS DA EMISSÃO

Leia mais

EMISSÃO e ABSORÇÃO de radiação

EMISSÃO e ABSORÇÃO de radiação EMISSÃO e ABSORÇÃO de radiação a EMISSÃO ocorre quando um elétron de um átomo salta de uma órbita superior para uma inferior (fundamentalização): um fóton é emitido (produzido). e - e - + n 2, E 2 n, E

Leia mais

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 hbarbosa@if.usp.br http://www.fap.if.usp.br/~hbarbosa Na primeira semana... Fizeram o gráfico dilog de PXT e PX(T-T 0 ), só que essa

Leia mais

A radiação do corpo negro

A radiação do corpo negro A radiação do corpo negro Um corpo em qualquer temperatura emite radiações eletromagnéticas. Por estarem relacionadas com a temperatura em que o corpo se encontra, freqüentemente são chamadas radiações

Leia mais

Laboratório de Física Moderna Radiação de Corpo Negro. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Radiação de Corpo Negro. Marcelo Gameiro Munhoz Laboratório de Física Moderna Radiação de Corpo Negro Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de

Leia mais

Propagação do calor. Condução térmica

Propagação do calor. Condução térmica Propagação do calor A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a irradiação. Condução térmica A condução térmica é um processo

Leia mais

Instituto de Física USP Física V Aula 08. Professora: Mazé Bechara

Instituto de Física USP Física V Aula 08. Professora: Mazé Bechara Instituto de Física USP Física V - 4300311 Aula 08 Professora: Mazé Bechara Aula 08 Oscilações nos sólidos e A Radiação do Corpo Negro i. O Calor específico molar a volume constante dos sólidos condutores

Leia mais

RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética

RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença

Leia mais

ESPECTROSCOPIA: 734EE. Como podemos estudar a Teoria de Planck em um laboratório didático?

ESPECTROSCOPIA: 734EE. Como podemos estudar a Teoria de Planck em um laboratório didático? 1 Imprimir Complementações sobre a Teoria de Planck: Como podemos estudar a Teoria de Planck em um laboratório didático? LÂMPADA DE FILAMENTO Em geral podemos estudar a lei de Stefan-Boltzmann e a Lei

Leia mais

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo

Leia mais

SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética

SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética O O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença

Leia mais

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 18 Professora: Mazé Bechara Aula 28 Discussão da 1ª prova e Apresentação do Tópico III 1. Soluções das questões da prova com comentários. Critérios de correção.

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Primeira Edição junho de 2005 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Introdução 2.2- Corpo

Leia mais

Instituto de Física USP Física V Aula 7. Professora: Mazé Bechara

Instituto de Física USP Física V Aula 7. Professora: Mazé Bechara Instituto de Física USP Física V - 4300311 Aula 7 Professora: Mazé Bechara Material para leitura na Xerox do IF 1. Produção e Transformação de Luz; Albert Einstein (1905); Artigo 5 do Livro O ano Miraculoso

Leia mais

Capítulo 9: Transferência de calor por radiação térmica

Capítulo 9: Transferência de calor por radiação térmica Capítulo 9: Transferência de calor por radiação térmica Radiação térmica Propriedades básicas da radiação Transferência de calor por radiação entre duas superfícies paralelas infinitas Radiação térmica

Leia mais

= AT Lei de Stefan-Boltzmann

= AT Lei de Stefan-Boltzmann Radiação transporte de energia sob a forma de ondas electromagnéticas. No vazio, a propagação dá-se à velocidade da luz. A radiação térmica, emitida por um sólido ou líquido em virtude da sua temperatura

Leia mais

Luz & Radiação. Roberto Ortiz EACH USP

Luz & Radiação. Roberto Ortiz EACH USP Luz & Radiação Roberto Ortiz EACH USP A luz é uma onda eletromagnética A figura acima ilustra os campos elétrico (E) e magnético (B) que compõem a luz Eles são perpendiculares entre si e perpendiculares

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Journal Club Teoria do funcional da densidade A energia do estado fundamental é um funcional

Leia mais

2. Propriedades Corpusculares das Ondas

2. Propriedades Corpusculares das Ondas 2. Propriedades Corpusculares das Ondas Sumário Revisão sobre ondas eletromagnéticas Radiação térmica Hipótese dos quanta de Planck Efeito Fotoelétrico Geração de raios-x Absorção de raios-x Ondas eletromagnéticas

Leia mais

Aula 21 Fótons e ondas de matéria I. Física Geral IV FIS503

Aula 21 Fótons e ondas de matéria I. Física Geral IV FIS503 Aula 21 Fótons e ondas de matéria I Física Geral IV FIS503 1 Correção da aula passada: Energia relativística: uma nova interpretação m p = 1, 007276 u m 4 He = 4, 002603 u ΔE = (mhe 4m p )c 2 = 0, 026501

Leia mais

Pró-Reitoria de Graduação. Plano de Ensino XX Quadrimestre de 20XX. Caracterização da disciplina Código da NHT3013 Nome da disciplina: Física Térmica

Pró-Reitoria de Graduação. Plano de Ensino XX Quadrimestre de 20XX. Caracterização da disciplina Código da NHT3013 Nome da disciplina: Física Térmica Caracterização da disciplina Código da NHT3013 Nome da disciplina: Física Térmica disciplina: Créditos (T-P-I): (4-0 - 4) Carga horária: 48 horas Aula prática: 0 Câmpus: SA Código da Turma: Turno: Quadrimestre:

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Radiação - Conceitos Fundamentais Consideremos um objeto que se encontra inicialmente a uma temperatura T S mais elevada que a temperatura T VIZ de sua vizinhança. A presença do vácuo impede a perda de

Leia mais

Física Moderna I Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940

Física Moderna I Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940 Física Moderna I Aula 03 Marcelo G Munhoz Pelletron, sala 245, ramal 6940 munhoz@if.usp.br 1 Radiação Térmica Ondas eletromagnéticas emitidas por todos os objetos com temperatura acima do zero absoluto

Leia mais

Introdução à Química Moderna

Introdução à Química Moderna Introdução à Química Moderna Prof. Alex Fabiano C. Campos, Dr Radiação de Corpo Negro Objeto com T 0K:emite radiação eletromagnética. T 0K Física Clássica: vibração térmica dos átomos e moléculas, provoca

Leia mais

A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN

A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN Material Utilizado: - um fonte regulada de potência CC (3 A, 12 V) - uma lâmpada de Stefan-Boltzmann (PASCO TD-8553) - um sensor de radiação (PASCO TD-8555) - um milivoltímetro

Leia mais

Radiação do corpo negro

Radiação do corpo negro Radiação do corpo negro Radiação térmica. Um corpo a temperatura ambiente emite radiação na região infravermelha do espectro eletromagnético e portanto, não é detectável pelo olho humano. Com o aumento

Leia mais

Aula 1 Evidências experimentais da teoria quântica : radiação do Corpo Negro.

Aula 1 Evidências experimentais da teoria quântica : radiação do Corpo Negro. UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 1 Evidências experimentais da teoria quântica : radiação do Corpo Negro. Cosmic microwave background Planck Satellite 1 Motivações para

Leia mais

Notas de Aula de Física Quântica (BCK0103)

Notas de Aula de Física Quântica (BCK0103) Física Quântica 1 Notas de Aula de Física Quântica (BCK13) Prof. Dr. Marcelo Augusto Leigui de Oliveira Radiação de Corpo Negro I. LEIS DA RADIAÇÃO TÉRMICA Todos os corpos com temperatura acima do zero

Leia mais

FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM

FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: 0053- A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM 1 Introdução à Física Moderna 2 Objetivos do Aprendizado Explicar a absorção e emissão da

Leia mais

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN Introdução à Astrofísica Lição 18 A Distribuição de Maxwell INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN Um estado de um gás é especificado por suas coordenadas, de modo que representemos

Leia mais

8.4 Termômetros de Radiação

8.4 Termômetros de Radiação 8.4 Termômetros de Radiação Todos os tipos de medidores de temperatura discutidos até aqui necessitam que o sensor estivesse em contato físico com o corpo cuja temperatura se deseja medir. Além disso,

Leia mais

Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta:

Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta: 23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 1 Expansão

Leia mais

Sensoriamento remoto 1. Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016

Sensoriamento remoto 1. Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016 Sensoriamento remoto 1 Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016 Súmula princípios e leis da radiação eletromagnética radiação solar conceito de corpo negro REM e sensoriamento

Leia mais

Instituto de Física USP. Física V - Aula 24. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 24. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 24 Professora: Mazé Bechara Aula 24 Princípio de correspondênciam Experimento de Franck e Hertz, e regra de quantização de Wilson-Sommerfeld 1. O princípio de correspondência

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Início da Física Moderna Vários fenômenos, não podiam ser compreendidos nos quadros da física clássica a radiação do corpo negro o efeito fotoelétrico a emissão de

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL Aula 23 2 MEDIÇÃO DE TEMPERATURA COM TERMÔMETRO DE RADIAÇÃO CONTATO INDIRETO 3 INTRODUÇÃO

Leia mais

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi (2016-2) Sólido cristalino Num modelo para um sólido cristalino podemos supor que os N átomos sejam equivalentes a 3N osciladores harmônicos

Leia mais

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO Introdução à Astrofísica INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO Lição 8 O Problema do Corpo Negro A maior parte de toda a física do século XIX estava bem descrita através da mecânica

Leia mais

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton

Leia mais

Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H.

Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H. ESPECTROSCOPIA II A relação da luz com as linhas espectrais O que acontece se átomos de H forem bombardeados por fótons? R. Existem três possibilidades: 1) a maioria dos fótons passa sem nenhuma interação

Leia mais

FIS-14 Mecânica I. Ronaldo Rodrigues Pela

FIS-14 Mecânica I. Ronaldo Rodrigues Pela FIS-14 Mecânica I Ronaldo Rodrigues Pela Objetivos Visão geral: Termodinâmica e Mecânica Velocidade rms Equipartição da Energia e calor específico Origem microscópica da distribuição de Maxwell-Boltzmann

Leia mais

POSTULADOS DA MECÂNICA QUÂNTICA

POSTULADOS DA MECÂNICA QUÂNTICA UNIVERSIDADE FEDERAL DO ABC POSTULADOS DA MECÂNICA QUÂNTICA FERNANDA MARIA RODRIGUEZ ABRIL/2015 Resumo da Apresentação O que é Mecânica Quântica? Cenário no fim do século XIX; Radiação do corpo negro;

Leia mais

Prof. MSc. David Roza José 1/23

Prof. MSc. David Roza José 1/23 1/23 Radiação de Corpo Negro Para se avaliar a potência emissiva, irradiação, radiosidade ou o fluxo radiativo líquido de uma superfície real opaca, deve-se quantificar as seguintes intensidades espectrais

Leia mais

Laboratório de Física Moderna Espectroscopia do H. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Espectroscopia do H. Marcelo Gameiro Munhoz Laboratório de Física Moderna Espectroscopia do H Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de fenômeno

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Mecânica Mecânica: estuda o estado de movimento (ou repouso) de corpos sujeitos à ação

Leia mais

Distribuição da radiação* ESPECTRO

Distribuição da radiação* ESPECTRO ESPECTROSCOPIA intensidade INFORMAÇÃO Distribuição da radiação* ESPECTRO Através do espectro de um objeto astronômico pode-se conhecer informações sobre temperatura, pressão, densidade, composição química,

Leia mais

Física D Extensivo V. 8

Física D Extensivo V. 8 Física D Extensivo V. 8 Exercícios 0) C f R X > f WZ 0) B 03) E 04) E raios X > luz Raios X são radiações eletromagnéticas com um comprimento de onda muito curto, aproximadamente de 0,06 até 0 Å. Formam-se

Leia mais

Tópico I A Estrutura da Matéria no contexto da Física Clássica

Tópico I A Estrutura da Matéria no contexto da Física Clássica UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA Física V (4300311) - Período: noturno 2o Semestre de 2012 ------------------------------------------------------------------------------------------------

Leia mais

25/Mar/2015 Aula /Mar/2015 Aula 9

25/Mar/2015 Aula /Mar/2015 Aula 9 20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia

Leia mais

Considerações gerais sobre radiação térmica

Considerações gerais sobre radiação térmica CÁLCULO TÉRMICO E FLUIDOMECÂNICO DE GERADORES DE VAPOR Prof. Waldir A. Bizzo Faculdade de Engenharia Mecânica - UNICAMP General Considerations Considerações gerais sobre radiação térmica Radiação térmica

Leia mais

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Fundamentos de Astronomia e Astrofísica: FIS2001

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Fundamentos de Astronomia e Astrofísica: FIS2001 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Fundamentos de Astronomia e Astrofísica: FIS2001 Prof. Rogério Riffel 1 Extinção Atmosférica A atmosfera é praticamente

Leia mais

Temperatura, calor e processos de transmissão de calor

Temperatura, calor e processos de transmissão de calor REVISÃO ENEM Temperatura, calor e processos de transmissão de calor TEMPERATURA Temperatura é a grandeza física escalar que nos permite avaliar o grau de agitação das moléculas. Quanto maior for o grau

Leia mais

Instituto de Física USP. Física V - Aula 08. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 08. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 08 Professora: Mazé Bechara Aula 08 Uma determinação da radiança espectral do corpo negro no contexto da Física Clássica. A quantização de Planck e a radiança espectral

Leia mais

Graça Meireles. Física -10º ano. Física -10º ano 2

Graça Meireles. Física -10º ano. Física -10º ano 2 Escola Secundária D. Afonso Sanches Energia do Sol para a Terra Graça Meireles Física -10º ano 1 Variação da Temperatura com a Altitude Física -10º ano 2 1 Sistemas Termodinâmicos Propriedades a ter em

Leia mais

O que é um transição de fase?

O que é um transição de fase? Transição de Fase O que é um transição de fase? Fases são estados macroscópicos específicos da Matéria em equilíbrio termodinâmico. Exemplo: estado sólido, líquido ou gasoso. Transição de fase é uma transformação

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL Aula 24 2 TERMÔMETROS DE RADIAÇÃO São medidores de temperatura sem contato. Os componentes

Leia mais

CAP4 parte 1 RADIAÇÃO ELETROMAGNÉTICA E SUA INTERAÇÃO COM A MATÉRIA. Alguns slides de P. Armitage, G. Djorgovski e Elisabete Dal Pino

CAP4 parte 1 RADIAÇÃO ELETROMAGNÉTICA E SUA INTERAÇÃO COM A MATÉRIA. Alguns slides de P. Armitage, G. Djorgovski e Elisabete Dal Pino CAP4 parte 1 RADIAÇÃO ELETROMAGNÉTICA E SUA INTERAÇÃO COM A MATÉRIA Alguns slides de P. Armitage, G. Djorgovski e Elisabete Dal Pino INTRODUÇÃO Estrelas mais importante fonte/sorvedouro de matéria na evolução

Leia mais

Laser. Emissão Estimulada

Laser. Emissão Estimulada Laser A palavra laser é formada com as iniciais das palavras da expressão inglesa light amplification by stimulated emission of radiation, que significa amplificação de luz por emissão estimulada de radiação.

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 4. LEIS DA EMISSÃO

Leia mais

Física Moderna I Período: noturno

Física Moderna I Período: noturno UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA Física Moderna I - 4300375 Período: noturno 1o Semestre de 01 --------------------------------------------------------------------------------------- Guia

Leia mais

Física Moderna 1. 2 o Semestre/2010 Aulas # 2 & 3 Radiação Térmica e Postulado de Planck (II-1 & II-2) Friday, August 13, 2010

Física Moderna 1. 2 o Semestre/2010 Aulas # 2 & 3 Radiação Térmica e Postulado de Planck (II-1 & II-2) Friday, August 13, 2010 Física Moderna 1 2 o Semestre/2010 Aulas # 2 & 3 Radiação Térmica e Postulado de Planck (II-1 & II-2) 1 2 Menezes, A matéria. uma aventura do espírito, Ed. Livraria da Física, 2006 Introdução Max Planck

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 12 ESTATÍSTICA QUÂNTICA Primeira Edição junho de 2005 CAPÍTULO 12 ESTATÍSTICA QUÂNTICA ÍNDICE 12-1- Introdução 12.2- Indistinguibilidade

Leia mais

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS Introdução Propriedades

Leia mais

Instituto de Física USP. Física V - Aula 17. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 17. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 17 Professora: Mazé Bechara Aula 17 Competição entre processos de interação de raios-x e gama com a matéria 1. Secção de choque para efeito fotoelétrico, espalhamentos

Leia mais

Ficha formativa 10ªano-Química-unidade1 Nome: Nº Turma:

Ficha formativa 10ªano-Química-unidade1 Nome: Nº Turma: ESCOLA SECUNDÁRIA DE LOUSADA Física Química A 11º Ano Ficha formativa 10ªano-Química-unidade1 Nome: Nº Turma: 1 Os astrónomos identificaram uma nova estrela, cuja luz demora 200 anos, 300 dias e 6 horas

Leia mais

Instituto de Física USP. Física Moderna I. Aula 13. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 13. Professora: Mazé Bechara Instituto de Física USP Física Moderna I Aula 13 Professora: Mazé Bechara Aula 13 Processos de criação e de aniquilação de matéria 1. Outros processos que evidenciam o caráter corpuscular da radiação (chocantes

Leia mais

Lista de Exercícios - Física Quântica - UNIDADE 1

Lista de Exercícios - Física Quântica - UNIDADE 1 Lista de Exercícios - Física Quântica - UNIDADE 1 Problemas e questões baseados no D. Halliday, R. Resnick e J. Walker, Fundamentos de Física, 6ª ed. - Capítulos 39, 40 e 41. Questões 1. Como pode a energia

Leia mais

Instituto de Física USP. Física Moderna I. Aula 07. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 07. Professora: Mazé Bechara Instituto de Física USP Física Moderna I Aula 07 Professora: Mazé Bechara Material para leitura na Xerox do IF 1. Produção e Transformação de Luz - Albert Einstein (1905) Artigo 5 do Livro O ano Miraculoso

Leia mais

IX Olimpíada Ibero-Americana de Física

IX Olimpíada Ibero-Americana de Física 1 IX Olimpíada Ibero-Americana de Física Salvador, Setembro de 2004 Questão 1 - Sensores Hall (10 pontos) H * H 8 0 Figura 1: Chapinha de material semicondutor atravessada por uma corrente I colocada em

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. 1. INTRODUÇÃO: 1.1. O SOL 1.1.1. Noções gerais

Leia mais

Relação da intensidade com poder emissivo, irradiação e radiosidade

Relação da intensidade com poder emissivo, irradiação e radiosidade Relação da intensidade com poder emissivo, irradiação e radiosidade O poder emissivo espectral (W/m 2.μm) corresponde à emissão espectral em todas as direcções possíveis: 2π π 2 ( ) /, (,, ) cos sin E

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de junho de 2014 CAPÍTULO 2 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 2.1- Radiação

Leia mais

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão 1) Relatividade: Do Tempo: (dilatação temporal) Das

Leia mais

Laboratório de Física Moderna Espectrosocopia Aula 01. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Espectrosocopia Aula 01. Marcelo Gameiro Munhoz Laboratório de Física Moderna Espectrosocopia Aula 01 Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de

Leia mais

Físicos reescrevem a estória bíblica da criação na forma

Físicos reescrevem a estória bíblica da criação na forma INÍCIO DO SÉCULO XX Pilares Mecânica (Newton) Eletromagnetismo (Maxwell) Físicos reescrevem a estória bíblica da criação na forma No início Ele criou os céus e a terra - F = G mm r 2 = ma e Ele disse,

Leia mais

Física Estatística. Introdução. Vitor Oguri

Física Estatística. Introdução. Vitor Oguri Física Estatística Introdução Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) 20 de

Leia mais

QUI346 QUÍMICA ANALÍTICA INSTRUMENTAL

QUI346 QUÍMICA ANALÍTICA INSTRUMENTAL QUI346 QUÍMICA ANALÍTICA INSTRUMENTAL Prof. Mauricio Xavier Coutrim DEQUI RADIAÇÃO ELETROMAGNÉTICA Onda eletromagnética (vácuo: v = 2,99792.10 8 m.s -1 ) l = comprimento de onda A = amplitude da onda v

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

ATIVIDADE DE FÍSICA MODERNA LER E RESUMIR RESPONDER LISTA

ATIVIDADE DE FÍSICA MODERNA LER E RESUMIR RESPONDER LISTA SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS VERIFICAÇÃO

Leia mais

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Por propriedade ótica subentende-se a reposta do material à exposição à radiação eletromagnética e, em particular, à luz visível.

Leia mais

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia

Leia mais

Aula 25 Radiação. UFJF/Departamento de Engenharia de Produção e Mecânica. Prof. Dr. Washington Orlando Irrazabal Bohorquez

Aula 25 Radiação. UFJF/Departamento de Engenharia de Produção e Mecânica. Prof. Dr. Washington Orlando Irrazabal Bohorquez Aula 25 Radiação UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez REVISÃO: Representa a transferência de calor devido à energia emitida pela matéria

Leia mais

AULA 8 Teoria Cinética dos Gases II

AULA 8 Teoria Cinética dos Gases II UFABC - BC0205 Prof. Germán Lugones AULA 8 Teoria Cinética dos Gases II James Clerk Maxwell 1831-1879 A Distribuição de Velocidades Moleculares A velocidade média quadrática V rms nos fornece uma ideia

Leia mais