Imagem e Gráficos. vetorial ou raster?
|
|
- Heitor Caminha Padilha
- 2 Há anos
- Visualizações:
Transcrição
1 Imagem e Gráficos vetorial ou raster? UFF
2 Computação Visual tem pelo menos 3 grades divisões: CG ou SI, AI e OI
3
4 Diferença entre as áreas relacionadas ao que são as entradas (IN) e saídas (OUT)
5 Outra diferença entre as áreas da CV É o uso da descrição dos DADOS (desenhos ou imagens usados) na forma de pontos do espaço continuo ou na forma de elementos discretos. Chamadas respectivamente de: Descrição Vetorial e Descrição Matricial ou Raster (ou em bitmap, que significa mapa de bits)
6 Imagens matriciais ou raster são imagens que contêm a descrição de cada ponto ou PIXEL, em oposição as formas vetoriais (que descrevem o inicio e fim de cada segmento de reta, ou os pontos de controle de uma curva, ou os elementos que definem um sólido como lado de um cubo, raio de uma esfera, etc.). bitmap x gráfico vetorial.
7 Descrição Raster Armazenado como matrix, onde a área a ser usada depende da resolução (linha x coluna) e da gradação tonal (ou numero de cores_. Um bitmap pode ser monocromático, em escala de cinza ou colorido. No caso de cores os pixels são formados geralmente no padrão RGB, do inglês Red, Green, Blue, que utiliza três números inteiros para representar as cores vermelho, verde e azul
8 Descrição Matricial ou Raster A cada ponto da imagem exibida na tela corresponde a um pixel, de forma que a maioria das imagens requer um número muito grande de pixels para ser representada completamente de maneira bem nítida. Por exemplo, uma imagem comum de 100 pixels de largura por 100 de altura necessita de 3 bytes para representar cada pixel (um para cada cor primária RGB). Isso totaliza bytes.
9 e ao dar um zoom você nota os pixels! Isso não ocorre nas imagens vetoriais
10 Em CG usamos Descrição Vetorial Até quase o tempo todo, isso só vai mudar em uma das últimas fases do realismo visual. Assim a CG se baseia em vetores matemáticos.
11 Descrição Vetorial Por serem baseados em vetores, essa faz desenhos e gráficos geralmente mais leves (ocupam menos espaço de armazenamento) e não perdem qualidade ao serem ampliados, já que transformam por funções matemáticas adequadamente os elementos (quanto a escala e outras facilmente). Isso não ocorre com gráficos raster que perdem a qualidade. Outra vantagem do desenho vetorial é a possibilidade de isolar objetos e zonas, tratando-as independentemente, facilitando animações e combinações geométricas para compor objetos!
12
13 A CG usa de primitivas como pontos, linhas, curvas e formas ou polígonos (baseados em expressões matemáticas) para representar imagens. Os desenhos vetoriais são baseados em vetores que são definidos pelos seus pontos de controle ou nós. Os mais simples são segmentos de retas definidos pelo seus pontos limites. Cada um desses pontos possui uma posição definida nos eixos x de um plano de trabalho. Com atributos como cor, forma e espessura e preenchimento. Estas propriedades não aumentam o tamanho dos arquivos de desenho vetorial, uma vez que todas as informações residem na estrutura que descreve como o vetor deve ser desenhado.
14 Vetorização É o processo inverso O objetivo neste caso é transformar uma imagem raster em imagem vetorial (vetorização) para obter imagens MELHOR TRANSFORMÁVEIS (escaláveis ) que podem sofrer ampliação (por exemplo) sem perda de definição de imagem ou outras aplicações de CV gerativa Ou CG!
15 Vetores serão nossos melhores amigos... E transformações serão coisa que usaremos muito para... Vendo os pontos Como vetores em 2D (2,1),(5,1), (5,3), (2,3),... Ou em 3D (2,1,1), (5,3,1), (5,1,1), (2,3,1)...
16 Mas primeiro precisa-se Definir o sistema de coordenadas a ser usado: Um sistema de coordenadas cartesiano 3D é composto de 3 planos e 3 eixos ortogonais Precisam ter uma origem e unidades predefinidas (o orientação relativa dos eixos)
17 Mas há outros tipos mais úteis em determinada aplicação como os polares, cilíndricos e esféricos...
18 Recordando geometria... O que é um sistema cartesiano positivo ou com os eixos orientados pela regra da mão direta? O que eixos orientados pela regra da mão direta têm a ver com o produto vetorial da álgebra linear?
19 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana (3D) CG (objetos): Topologia :Faces, arestas, vértices Geometria (conjunto de coordenadas dos vértices) Distância entre 2 pontos = Distância euclidiana Comprimento dos vetores
20 Transformações n u.v= i=1 v i u i =produtointerno De corpo rígido (semelhança). Distância entre 2 pontos quaisquer é inalterada. Ângulos entre vetores é inalterado. Rotações, reflexões e translações
21 Transformações Afim Transf. Lineares + translações. Conceitos: multiplicação de vetores ( u, v, w) e matrizes T soma de vetores. Vetores => (linha ou coluna) Transposta ( T T i,j ) = ( T j,i ) Vetor coluna (n x 1): T (u) Vetor linha (1 x n) : (u ) T T
22 Transformações Lineares Definição 1. T(u + v) = T(u) + T(v) 2. T(av) = a T(v) u, v vetores de dimensão n= 2 ou 3. T matriz quadradas n x n.
23 Objetos em CG: Basta multiplicar T aos vetores ou pontos do objeto A translação não é uma transformação linear.
24 Transformações Lineares Bidimensionais 2D São representadas por matrizes 2 x 2. T=( a b d)( c x y) = ( ax+cy bx+dy)
25 Rotação em torno da origem =( cos(θ ) sin(θ ) ) R θ sin(θ ) cos(θ)
26 Escala em uma direção (horizontal) =( S k 0 1) x 0
27 Reflexão em Relação ao Eixo X Rfl x =( )
28 Reflexão em Relação ao Eixo Y Rfl y =( )
29 Reflexão em Relação à Reta y = x Rfl y=x =( )
30 Como fica a reflexão em torno da origem?
31 Cisalhamento em X =( C 1 k 1) x 0
32 Cisalhamento em Y C y =( 1 0 k 1)
33 Como fica o cisalhamento em ambos?
34 Transformações Rígidas Rotações, Reflexões e Translações. Preservam ângulos e comprimentos. Para matrizes ortonormais a Inversa é a matriz transposta (T -1 = T T ).
35 Se o objeto não esta na origem!! Mudança de escala Não éuma T. rígida!
36 Composição de Transformações Quando for necessário transformar um objeto em relação a um ponto P arbitrário: Translada-se P para origem. Aplicam-se uma ou mais transformações lineares elementares. Aplica-se a transformação desejada. Aplicam-se as transformações elementares inversas. Aplica-se a translação inversa: -P
37 Coordenadas homogêneas no R 2 é um elemento do R 3 com uma relação de escala. P=(x,y,λ);λ 0,(x/λ,y/λ,1) Um ponto do plano é definido como: Chamado P = [x,y,1] em coordenadas homogêneas (uma classe de equivalência).
38 Em coordenadas homogêneas as matrizes anteriores Devem ser 3 x 3 para as mesmas transformações afins bidimensionais. a c m M= b d n p q s
39 Matriz de Translação 1 0 m x x+m M= 0 1 n y = y+n
40 Transformações Lineares M=( a c 0 b d )( x y 1) = ( ax+cy bx+dy 1 )
41 Transformação Perspectiva M=( p q 1)( x y 1) = ( x y px+qy+1)
42 Transformação Perspectiva 2D
43 Efeito em um ponto no infinito M=( p q 1)( x y 0) = ( x y px+qy)
44 Pontos de Fuga Um ponto no infinito pode ser levado em um ponto P 0 do plano afim. Família de retas paralelas que se intersectam no infinito são transformadas numa família de retas incidentes em P 0. P 0 é chamado de ponto de fuga. Ponto de fuga principal corresponde a uma direção paralela aos eixos coordenados. Imagem de [x,0,0] ou [0,y,0].
45 Espaço 3D Um ponto do espaço 3D é definido como: P={( x,y,z,λ );λ 0,( x/λ,y/λ,z/λ,1)} Denotado por P = [x,y,z,w] em coordenadas homogêneas.
46 Translação no Espaço 3D
47 Escala em torno da origem do Espaço 3D
48 Rotações no Espaço 3D (ângulos de Euler)
49 Em torno de Z
50 Em torno de X
51 Em torno de Y
52 Projeções:
53 Classificação:
54 Características:
55 características
56 Ponto de fuga
57 O que são eixos principais? Maior e menor momento de inércia. Não há produto de inércia para os eixos principais Podem ser entendidos como os do menor BB possível para o objeto de interesse.
58 Pontos de fuga principais
59 possível mas não é realista 3 pontos de fuga e realidade
60 Matriz Projetiva Uma transformação projetiva M do R 3 é uma transformação linear do R 4. A matriz 4 x 4 de uma transformação projetiva representa uma transformação afim tridimensional. a d g m M= b e h n c f i o p q r s
61 Transformação Perspectiva Ponto P do espaço afim é levado no hiperplano w = r z + 1 Se z = -1/r, então P é levado em um ponto no infinito. Pontos do espaço afim com z = 0 não são afetados M=(1 1)=( x y y z z rz+1) 0 0 r 1)(x
62 Ponto de Fuga Principal A imagem do ponto ideal, correspondendo a direção z, tem coordenadas [0, 0, 1/r, 1] Este é o ponto de fuga principal da direção z. Semi-espaço infinito 0 < z étransformado no semi-espaço finito 0 < z 1/r M=( )=(0 r) 0 0 r 1)(0
63 Mais de Um Ponto de Fuga A transformação perspectiva com 3 pontos de fuga, possui 3 centros de projeção: [-1/p, 0, 0, 1] [0, -1/q, 0, 1] [0, 0, -1/r, 1] O mesmo resultado é obtido com a aplicação em cascata de 3 transformações perspectivas, com um único ponto de fuga em cada eixo.
64 Basta Implementar Transformações Com um Único Ponto de Fuga Transformações perspectivas com dois pontos de fuga equivalem a combinação de: rotação ao redor de um eixo perpendicular ao eixo que contém o centro de projeção. transformação perspectiva com um único ponto de fuga. Com duas rotações, obtêm-se transformações com três pontos de fuga.
65 As coordenadas de um ponto só fazem sentido em relação a um sistema de eixos de coordenadas perfeitamente caracterizado: i.e. Centralizado em um ponto bem definido (chamado origem do sistema de coordenadas). É importante identificar a unidade usada e a direção considerada positiva em cada eixo.
66 Fixando 2 conceitos fundamentais: sistemas de coordenadas e coordenadas. Qual a diferença entre as operações de dar um zoom ou mudar a de escala nas 3 direções? Como você pode dar o mesmo efeito visual do Zoom in e zoom out através da mudança de escala do objeto? As coordenadas do objeto são alteradas em qual dos casos? E os conceitos de panned (panorâmica) e translação do objeto: Como você pode dar o mesmo efeito visual do panned left (ou anti clock wise) e panned right (ou clock wise) através da translação do objeto? As coordenadas do objeto são alteradas em qual dos casos?
APLICATIVOS GRÁFICOS (AULA 4)
Prof. Breno Leonardo G. de M. Araújo brenod123@gmail.com http://blog.brenoleonardo.com.br APLICATIVOS GRÁFICOS (AULA 4) 1 Classificação da imagem Em relação à sua origem pode-se classificar uma imagem,
Imagem e Gráficos. vetorial ou raster?
http://computacaografica.ic.uff.br/conteudocap1.html Imagem e Gráficos vetorial ou raster? UFF Computação Visual tem pelo menos 3 grades divisões: CG ou SI, AI e PI Diferença entre as áreas relacionadas
Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos. Exercício 1 (individual) - Entrega: quarta 13/08
Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos Exercício 1 (individual) - Entrega: quarta 13/08 Escolha um objeto entre os que possivelmente compõem uma clínica médica de exames
Transformações Geométricas em C.G.
Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana
TRANSFORMAÇÃO LINEAR. Álgebra Linear - Prof a Ana Paula
Álgebra Linear - Prof a na Paula TRNSFORMÇÃO LINER Definição: T é uma transformação do espaço vetorial V no espaço vetorial W, T : V W, se cada vetor v V tem um só vetor imagem w W, que será indicado por
Frederico Damasceno Bortoloti. Adaptado de: Claudio Esperança Paulo Roma Cavalcanti
Fundamentos de Representação Gráfica Frederico Damasceno Bortoloti Adaptado de: Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Avaliação através de Prova Estudo / Seminário Nota parcial NP
The Graphics Pipeline
O Pipeline de Renderização Processamento Gráfico Marcelo Walter - UFPE 1 The Graphics Pipeline Processo de sintetizar imagens bidimensionais a partir de câmeras e objetos virtuais Visão em alto nível inicial
2 Texturas com Relevo e Equações de Pré Warping
2 Texturas com Relevo e Equações de Pré Warping A noção de warping de imagens é fundamental para o entendimento da técnica abordada nesta dissertação. Este capítulo apresenta definições formais para vários
Técnicas de Cartografia Digital
Técnicas de Cartografia Digital Maria Cecília Bonato Brandalize 2011 Aula 8 1. Vetoriais 2. Matriciais 3. Vantagens e Desvantagens 1. Vetoriais 2. Matriciais 3. Vantagens e Desvantagens Como são representados
COMPUTAÇÃO GRÁFICA REPRESENTAÇÃO DE IMAGENS
COMPUTAÇÃO GRÁFICA REPRESENTAÇÃO DE IMAGENS Curso: Tecnológico em Análise e Desenvolvimento de Sistemas Disciplina: COMPUTAÇÃO GRÁFICA 4º Semestre Prof. AFONSO MADEIRA ARQUITETURA GRÁFICA Frame-buffer
aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF Definição Transformações geométricas são operações que podem ser utilizadas para
Dispositivos de Entrada e Saída
Dispositivos de Entrada e Saída Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Robson Lins Dispositivos de Entrada Teclado, Mouse, Trackball,
Bitmap X Vetorial OS DOIS PRINCIPAIS TIPOS DE ARQUIVOS NA COMPUTAÇÃO GRÁFICA
OS DOIS PRINCIPAIS TIPOS DE ARQUIVOS NA COMPUTAÇÃO GRÁFICA Editores vetoriais são frequentemente contrastadas com editores de bitmap, e as suas capacidades se complementam. Eles são melhores para leiaute
Aula 2 Aquisição de Imagens
Processamento Digital de Imagens Aula 2 Aquisição de Imagens Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br EESC/USP Fundamentos de Imagens Digitais Ocorre a formação de uma imagem quando
APLICATIVOS GRÁFICOS (AULA 3)
Prof. Breno Leonardo G. de M. Araújo brenod123@gmail.com http://blog.brenoleonardo.com.br APLICATIVOS GRÁFICOS (AULA 3) Introdução A possibilidade de utilizarmos imagens, gráficos, desenhos e textos artísticos
Gobooks.com.br. PucQuePariu.com.br
ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.
Aquisição e Representação da Imagem Digital
Universidade Federal do Rio de Janeiro - IM/DCC & NCE Aquisição e Representação da Imagem Digital Antonio G. Thomé thome@nce.ufrj.br Sala AEP/33 Sumário. Introdução 2. Aquisição e Representação da Imagem
Projeções: leitura recomendada. Aulas 3, 4 e 10 da apostila Telecurso 2000
Projeções Projeções: leitura recomendada Aulas 3, 4 e 10 da apostila Telecurso 2000 Projeções: conceitos A projeção transforma pontos 3D (X, Y, Z) em 2D (xi,yi) Projeções: conceitos Raios de projeção emanam
Geoprocessamento e Cartografia Prof. MSc. Alexander Sergio Evaso
Geoprocessamento e Cartografia Prof. MSc. Alexander Sergio Evaso Aula 02 Componentes de um GIS (SIE, ou SIG) Ideias dependem de pessoas. Pessoas trazem o conhecimento para uma equipe, que engendra ideias.
6. Geometria, Primitivas e Transformações 3D
6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também
Prof. Roni Márcio Fais Fundamentos da Computação Gráfica PRINCÍPIOS DO DESIGN GRÁFICO
PRINCÍPIOS DO DESIGN GRÁFICO Dentre os princípios do design gráfico destacam-se: Proximidade: aproximação de elementos que possuem relação entre si; Alinhamento: organização de textos ou imagens de forma
Atividade: matrizes e imagens digitais
Atividade: matrizes e imagens digitais Aluno(a): Turma: Professor(a): Parte 01 MÓDULO: MATRIZES E IMAGENS BINÁRIAS 1 2 3 4 5 6 7 8 Indique, na tabela abaixo, as respostas dos 8 desafios do Jogo dos Índices
Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa
Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares
UM POUCO DE COMPUTAÇÃO GRÁFICA.
UM POUCO DE COMPUTAÇÃO GRÁFICA. Imagem digital é a representação de uma imagem bidimensional usando números binários codificados de modo a permitir seu armazenamento, transferência, impressão ou reprodução,
FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim
FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação
Retas e Planos. Equação Paramétrica da Reta no Espaço
Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x
Computação Gráfica Interativa
Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.
Prof. Rossini Bezerra Faculdade Boa Viagem
Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no
Figura 1: Formato matricial de uma imagem retangular. Figura 2: Ampliação dos pixels de uma imagem
Universidade Federal de Santa Maria - UFSM Departamento de Eletrônica e Computação - DELC Introdução à Informática Prof. Cesar Tadeu Pozzer Julho de 2006 Imagens Uma imagem é representada por uma matriz
AULA 15 Plugin Preenchimento de Células
15.1 AULA 15 Plugin Preenchimento de Células Nessa aula são apresentadas as funcionalidades do plugin de preenchimento de células. O plugin Preenchimento de Células possibilita calcular valores para atributos
Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching"
Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching" 1 Com suas palavras explique o que é Reconhecimento de Padrões- RP. Quais são os fases clássicas que compõem
Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru
Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P
Processamento de Imagem. Representação, Armazenamento e Formato de imagens Professora Sheila Cáceres
Processamento de Imagem Representação, Armazenamento e Formato de imagens Professora Sheila Cáceres Representação e armazenamento de imagens Process. de Imagem - Prof. Sheila Cáceres 2 Representação Matricial
Cap. 7 - Fontes de Campo Magnético
Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.
Enquadramento e Conceitos Fundamentais
Licenciatura em Engenharia Informática e de Computadores Computação Gráfica Enquadramento e Conceitos Fundamentais Edward Angel, Cap. 1 Questão 9, exame de 29/06/11 [0.5v] Identifique e descreva os três
Representação de Imagens
Representação de Imagens Primitivas Gráficas As primitivas gráficas são os elementos básicos que formam um desenho. Exemplos: Ponto, segmento, polilinha, polígono, arco de elipse, etc. Primitivas já definidas
Desenho e Apresentação de Imagens por Computador
Desenho e Apresentação de Imagens por Computador Conteúdo s: Aspetos genéricos sobre o trabalho com imagens computacionais. Imagens computacionais e programas que criam ou manipulam esse tipo de imagens.
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem
Seleção 2015 - Edital N 15/2014
Departamento de Áreas Acadêmicas II Curso de Especialização em Matemática Seleção 015 - Edital N 15/014 INSTRUÇÕES: 1. O horário da realização da prova é previsto de 14h00min até as 17h30min.. A prova
Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F.
Problema Conversão Matricial Maria Cristina F. de Oliveira Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências, elipses, curvas,...) no dispositivo matricial rastering = conversão
Exercícios Adicionais
Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos
Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens
Fundamentos de Imagens Digitais Aquisição e Serão apresentadas as principais características de uma imagem digital: imagem do ponto de vista matemático processo de aquisição e digitalização de uma imagem
Álgebra Linear I Solução da 5ª Lista de Exercícios
FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária
Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado
GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação
3.3 Espaço Tridimensional - R 3 - versão α 1 1
1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P
ferramentas da imagem digital
ferramentas da imagem digital illustrator X photoshop aplicativo ilustração vetorial aplicativo imagem digital 02. 16 imagem vetorial X imagem de rastreio imagem vetorial traduz a imagem recorrendo a instrumentos
Fotografia Digital. Aula 1
Fotografia Digital Aula 1 FOTOGRAFIA DIGITAL Tema da aula: A Fotografia 2 A FOTOGRAFIA A palavra Fotografia vem do grego φως [fós] ("luz"), e γραφις [grafis] ("estilo", "pincel") ou γραφη grafê, e significa
x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior).
2 Lentes Metálicas Este capítulo destina-se a apresentar os princípios básicos de funcionamento e dimensionamento de lentes metálicas. Apresenta, ainda, comparações com as lentes dielétricas, cujas técnicas
Processamento digital de imagens. introdução
Processamento digital de imagens introdução Imagem digital Imagem digital pode ser descrita como uma matriz bidimensional de números inteiros que corresponde a medidas discretas da energia eletromagnética
Projeção e Anaglifos
Projeção e Anaglifos Renato Paes Leme Nosso problema básico é o seguinte: temos uma coleção de pontos (x i, y i, z i ) em um conjunto de vértices, e um conjunto de polígonos. Queremos representar esses
Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org
Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática
Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com
Computação Gráfica Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Modelagem Em Computação Gráfica, modelagem consiste em todo o processo de descrever um modelo, objeto ou cena, de forma
Morfologia Matemática Binária
Morfologia Matemática Binária Conceitos fundamentais: (Você precisa entender bem esses Pontos básicos para dominar a área! Esse será nosso game do dia!!! E nossa nota 2!!) Morfologia Matemática Binária
CorelDRAW 11 1. UM PROGRAMA DE DESIGN
CorelDRAW 11 1. UM PROGRAMA DE DESIGN Com o Corel você vai trabalhar com um dos aplicativos mais usados no campo do design e da auto-edição, já que permite operar com dois tipos de gráficos (vetoriais
Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013
Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante
AULA 2 Planos, Vistas e Temas
2.1 AULA 2 Planos, Vistas e Temas Essa aula apresenta os conceitos de Plano de Informação, Vista e Tema e suas manipulações no TerraView. Para isso será usado o banco de dados criado na AULA 1. Abra o
Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui
Projeção Perspectiva Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Definição Quando olhamos para um objeto, temos a sensação de profundidade e relevo; O desenho, para transmitir essa mesma idéia,
Sumário INTRODUÇÃO 3 TELA DE APRESENTAÇÃO 3 DESENHANDO E TRANSFORMANDO 29 FERRAMENTA FORMA 29 PREENCHIMENTOS E CONTORNOS 36
Sumário Todos os direitos reservados e protegidos pela Lei 5.988 de 14/12/73. Nenhuma parte deste livro, sem prévia autorização por escrito de Celta Informática, poderá ser reproduzida total ou parcialmente,
Aula 9 Plano tangente, diferencial e gradiente
MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para
utilizando o software geogebra no ensino de certos conteúdos matemáticos
V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 utilizando o software geogebra no ensino de certos conteúdos matemáticos ermínia de
Informática Aplicada a Radiologia
Informática Aplicada a Radiologia Apostila: Imagem Digital parte I Prof. Rubens Freire Rosa Imagem na forma digital A representação de Imagens na forma digital nos permite capturar, armazenar e processar
Desenhando no Flash. Comece um novo arquivo novo, de tamanho 500 X 300 pixels.
Desenhando no Flash Os arquivos criados no Flash guardam e apresentam as informações gráficas vetorialmente. Isto significa que as imagens são entendidas como formas e preenchimentos e o que é armazenado
Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.
Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.
SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno
SEGEMENTAÇÃO DE IMAGENS Nielsen Castelo Damasceno Segmentação Segmentação Representação e descrição Préprocessamento Problema Aquisição de imagem Base do conhecimento Reconhecimento e interpretação Resultado
AULA 5 Manipulando Dados Matriciais: Grades e Imagens. 5.1 Importando Grades e Imagens Interface Simplificada
5.1 AULA 5 Manipulando Dados Matriciais: Grades e Imagens Nessa aula serão apresentadas algumas funcionalidades do TerraView relativas a manipulação de dados matriciais. Como dados matriciais são entendidas
Computação Gráfica. Dispositivos de Visualização. Profa. Carolina Watanabe
Computação Gráfica Dispositivos de Visualização Profa. Carolina Watanabe Material elaborado pela Profa. Marcela X. Ribeiro, UFSCar, Atualizado pela Profa. Carolina Watanabe, UNIR 1 Dispositivos de Visualização/Exibição
O Problema da Projecção. Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro
O Problema da Projecção Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Introdução Ao longo de séculos, artistas, engenheiros, projectistas e arquitectos tem tentado resolver as dificuldades
Apostila de Física 39 Lentes Esféricas
Apostila de Física 39 Lentes Esféricas 1.0 Definições Lente Sistemas ópticos de maior importância em nossa civilização. Lente esférica Sistema óptico constituído por 3 meios homogêneos e transparentes
ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller
ÁLGEBRA LINEAR Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo Prof. Susie C. Keller Núcleo de uma Definição: Chama-se núcleo de uma transformação linear T: V W ao conjunto
AULA 5 Manipulando Dados Matriciais: Grades e Imagens. 5.1 Importando Grades e Imagens Interface Simplificada
5.1 AULA 5 Manipulando Dados Matriciais: Grades e Imagens Nessa aula serão apresentadas algumas funcionalidades do TerraView relativas à manipulação de dados matriciais. Como dados matriciais são entendidas
CAPÍTULO 6 TRANSFORMAÇÃO LINEAR
INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são
REVISÃO DAS PUBLICAÇÕES
O arquivo index.htm. Código fonte. REVISÃO DAS PUBLICAÇÕES Erros que podem ocorrer: Verificar a barra ( / ) que fecha as marcações; Inverter os comandos FRAMESET E FRAME SRC; Espaço entre a marcação FRAME
pontuação Discursiva 02 questões 15 pontos 30 pontos Múltipla escolha 25 questões 2,8 pontos 70 pontos
Caderno de Provas CÁLCULO DIFERENCIAL E INTEGRAL E ÁLGEBRA LINEAR Edital Nº. 36/2011 REITORIA/IFRN 29 de janeiro de 2012 INSTRUÇÕES GERAIS PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul
ÓPTICA GEOMÉTRICA. Lista de Problemas
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE II ÓPTICA GEOMÉTRICA Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J.
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
Introdução ao MicroStation Ambiente 3D
Introdução ao MicroStation Ambiente 3D Roberto Scalco 2003 EFB 301 Desenho 2 Introdução ao MicroStation V8 Ambiente 3D Introdução ao MicroStation V8 Ambiente 3D 3 Autor Roberto Scalco Mestrando em Engenharia
Imagem digital - 1. A natureza da imagem fotográfica. A natureza da imagem fotográfica
A natureza da imagem fotográfica PRODUÇÃO GRÁFICA 2 Imagem digital - 1 Antes do desenvolvimento das câmeras digitais, tínhamos a fotografia convencional, registrada em papel ou filme, através de um processo
MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.
MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/
3.4 Movimento ao longo de uma curva no espaço (terça parte)
3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória
CAPÍTULO 1 Introduzindo SIG
CAPÍTULO 1 Introduzindo SIG Por muito tempo, estudou-se o mundo usando modelos como mapas e globos. Aproximadamente nos últimos trinta anos, tornou-se possível colocar estes modelos dentro de computadores
ESTUDO DAS PROJEÇÕES NOÇÕES ELEMENTARES 1. DEFINIÇÃO
Estudo das projeções ESTUDO DAS PROJEÇÕES NOÇÕES ELEMENTARES 1. DEFINIÇÃO Geometria é a ciência que tem por objetivo a medida das linhas, superfícies e dos volumes. Descrever significa representar, contar
INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário.
INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário. INSTRUMENTOS USADOS Esquadros São usados em pares: um
INSTITUTO TECNOLÓGICO
PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA
ESPAÇOS MUNIDOS DE PRODUTO INTERNO
ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.
Iluminaçao. Os modelos de Iluminação são técnicas usadas para calcular a intensidade da cor de um ponto a ser exibido.
Iluminaçao Os modelos de Iluminação são técnicas usadas para calcular a intensidade da cor de um ponto a ser exibido. Também chamados modelos de reflexão, utilizam: a cor do objeto a cor da luz a posição
A sigla CAD pode representar duas definições principais, das quais muitas vezes são empregadas inadequadamente:
A sigla CAD pode representar duas definições principais, das quais muitas vezes são empregadas inadequadamente: Computer Aided Drafting (CAD) a palavra drafting pode ser traduzida como desenho técnico,
Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com
Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a
19/11/2015. Um pouco de história antes... A FOTOGRAFIA. James Clerk Maxwell (1831 1879) Escócia (Reino Unido) físico, filósofo e matemático.
Prof. Reginaldo Brito Um pouco de história antes... A FOTOGRAFIA Joseph-Nicéphore Niepce * França, (1765-1833) James Clerk Maxwell (1831 1879) Escócia (Reino Unido) físico, filósofo e matemático. 1826,
Apostila Complementar
Desenho Técnico Apostila Complementar O curso de Desenho técnico mecânico é baseado nas apostilas de Leitura e Interpretação do Desenho Técnico Mecânico do Telecurso 2000 Profissionalizante de Mecânica.
I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO
Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,
AutoCAD 2011 3D Modelagem
AutoCAD 2011 3D Modelagem -1- Copyright 2010 Todos os direitos reservados e protegidos pela lei 5.988 de 14/12/1973. Nenhuma parte desta publicação poderá ser produzida ou transmitida, sejam quais forem
Globos Digitais. 1 Dglobo
Globos Digitais Introdução O sucesso do Google Earth, Microsoft Visual Earth e outros sistemas é mais do que cultuado e conhecido da comunidade cartográfica e do público que tem acesso aos mapas digitais.
Estão corretas: (A) I, II e IV (B) II e III (C) II e IV (D) III e V (E) I, III e V
FUNDAÇÃO VISCONDE DE CAIRU FACULDADE VISCONDE DE CAIRU CURSO: ANÁLISE E DESENVOLVIMENTO DE SISTEMAS PROF.: AFONSO CELSO M. MADEIRA DISCIPLINA: COMPUTAÇÃO GRÁFICA (TACOG) 4º SEMESTRE GABARITO Segundo a
8. Síntese de Imagens: Cálculo de Cor
8. Síntese de Imagens: Cálculo de Cor O processo de determinar a aparência (ou seja, a textura e a cor) das superfícies visíveis é chamado de shading. Essa aparência da superfície depende das propriedades
REPRESENTAÇÃO DE SUPERFÍCIES. Introdução ao Projeto e Manufatura assistido por Computador PROF. ALTAMIR DIAS
REPRESENTAÇÃO DE SUPERFÍCIES Introdução ao Projeto e Manufatura assistido por Computador PROF. ALTAMIR DIAS 17/4/2001 1 Introdução Superfícies são usadas: projeto de forma e representação de objetos complexos
PERSPECTIVA LINEAR DEFINIÇÕES E TEOREMAS
Figura 64. Tapeçaria da sala de actos do Governo Civil de Bragança (800 cm x 800 cm). Luís Canotilho 2000. A geometria é também aplicada ao simbolismo humano. No presente caso as formas geométricas identificam
4.2 Produto Vetorial. Orientação sobre uma reta r
94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação
Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens
Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens Prof Fabrízzio Alphonsus A M N Soares 2012 Capítulo 2 Fundamentos da Imagem Digital Definição de Imagem: Uma imagem
Aula 8 : Desenho Topográfico
Aula 8 : Desenho Topográfico Topografia, do grego topos (lugar) e graphein (descrever), é a ciência aplicada que representa, no papel, a configuração (contorno,dimensão e posição relativa) de um porção