Ponto de Separação e Esteira

Documentos relacionados
Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.

Disciplina: Camada Limite Fluidodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica

Escoamentos Externos

Escoamentos externos. PME2230 Mecânica dos Fluidos I

Escoamentos exteriores. Escoamento em torno de um cilindro/esfera. Matéria:

Transferência de Calor

White NOTA METODOLOGIA

EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2016/17

Capitulo 6. Escoamento Externo

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Forças aerodinâmicas no Futebol. Dr. Guanis de Barros Vilela Junior

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

IPH a LISTA DE EXERCÍCIOS (atualizada 2017/1) Sempre que necessário e não for especificado, utilize:

Disciplina: Camada Limite Fluidodinâmica

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15

Dinâmica de uma Bola: a outra Crise do Futebol

ORIGEM DA TURBULÊNCIA

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Disciplina: Camada Limite Fluidodinâmica

1 a experiência Escoamento ao redor de um cilindro

Transferência de calor por convecção

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14

Perfis Sustentadores Efeitos da Viscosidade

Perfis Sustentadores Efeitos da Viscosidade

A Aerodinâmica da Bola de Futebol

Convecção Forçada Externa

1 03 Ge G om o etr t i r a i do o A v A iã i o, o, Fo F r o ç r as A e A ro r d o in i â n mic i as Prof. Diego Pablo

Propagação de momentos. cos. Aerodinâmica Perfis Sustentadores Momento de Picada em Torno do Bordo de Ataque. α M c. M V r BA

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2013/14

Corpos Não-Fuselados

Arrasto e sustentação

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções gratis em simplificaaulas.com.

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14

AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve.

Escoamento completamente desenvolvido

FENÔMENOS DE TRANSPORTES

3 a prova de F 128 Diurno 30/06/2014

Física I VS 18/07/2015

2a LISTA DE EXERCÍCIOS

EM34B Transferência de Calor 2

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2017/18

Aerodinâmica da Bola de Futebol: da Copa de 70 à Jabulani

Transferência de Calor

Exame Mecânica e Ondas Curso: MIEET data: 02/05/12. Nome:... Número:... Grupo I (10 valores)

Lista 10: Dinâmica das Rotações NOME:

FENÔMENOS DE TRANSPORTE

4 Configurações estudadas

Universidade Federal do Pampa UNIPAMPA. Fluidos Hidrostática e Hidrodinâmica

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6

Trajetórias de objetos: Modelos. Moussa Reda Mansour

Escoamentos exteriores

Mecânica dos Fluidos Formulário

Dinâmica dos fluidos. Prof. Dr. Guanis de Barros Vilela Junior

Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais

Transferência de Calor 1

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL

Física I Prova 2 20/02/2016

Escoamentos Externos

Dinâmica Circular Força Centrípeta

Disciplina: Camada Limite Fluidodinâmica

Aula 12 Conhecimentos Técnicos sobre Aviões

FIS-26 Lista-02 Fevereiro/2013

Relatório Preliminar Experimento Camada Limite EQ601 - Laboratório de Engenharia Química I Turma A

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15

MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos:

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

Instituto de Física - UFRJ Física I - Segunda Chamada - 2/03/2016. (c) 12gL/7 (d) 12gL/11 (e) 24gL/7. Parte 1 - Múltipla escolha - 0,6 cada

ESCOAMENTO DE AR AO REDOR DE UM CILINDRO EM TUNEL DE VENTO

Universidade Federal do ABC. EN 2411 Aula 10 Convecção Livre

2º Exame de Mecânica Aplicada II

MVO-11: Dinâmica de Veículos Aeroespaciais

Capítulo 6: Escoamento Externo Hidrodinâmica

BCJ Lista de Exercícios 7

CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

Física 1. 2 a prova 26/11/2016. Atenção: Leia as recomendações antes de fazer a prova.

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,

Considerando o sistema isolado de forças externas, calcula-se que o módulo da velocidade da parte m 3 é 10 m/s, com a seguinte orientação: a) d) y

TRANSMISSÃO DE CALOR resumo

Lista 12: Rotação de corpos rígidos

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2013/14. Exame de 2ª Época 28 de Junho de 2014 Nome :

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo

MATEMÁTICA 1ª QUESTÃO. O domínio da função real = 2ª QUESTÃO. O valor de lim +3 1 é C) 2/3 D) 1 E) 4/3 3ª QUESTÃO B) 3 4ª QUESTÃO

Física 1. 1 a prova 14/04/2018. Atenção: Leia as recomendações antes de fazer a prova.

Introdução ao Projeto de Aeronaves. Aula 10 Características do Estol e Utilização de Flapes na Aeronave

Física I 2010/2011. Aula 19. Mecânica de Fluidos II

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície

EN Escoamento interno. Considerações fluidodinâmicas e térmicas

Lista de Exercícios 1 Forças e Campos Elétricos

Transcrição:

Ponto de Separação e Esteira p/ x=0 p/ x<0 p/ x>0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região em que o gradiente é favorável p/x< 0, este ajuda o escoamento. Porém se o gradiente de pressão é adverso p/x>0, este atua contra o escoamento. Neste caso, a tensão na parede pode ser reduzida até atingir o valor zero. Este ponto é chamado de ponto de separação u y 0 ; 0 ( τs 0) y A partir deste ponto a teoria da camada limite não pode mais ser utilizada. Ocorre a formação da esteira. y0 1

Exemplo: escoamento transversal a cilindro. U P P p p 0 p 0 Pode ocorrer separação na parte de trás do cilindro teoria potencial A pressão na região do escoamento separado é baixa, devido à alta energia cinética do escoamento naquela região

V ESCOAMENTO AO REOR E CORPOS SUBMERSOS L S Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. S d A força resultante que atua em um corpo devido ao escoamento de um fluido ao redor do corpo pode ser decomposta em uma força de arraste e uma força de sustentação L. Note que tanto quanto L possuem contribuição viscosa e de pressão. orça de Arraste (rag) = = componente da força resultante na direção do escoamento orça de Sustentação (Lift) = L = componente da força resultante na direção perpendicular ao escoamento S é a força total que possui contribuição viscosa e de pressão. é a força viscosa d P S d P S s t a força de pressão. d A S p n d A 3

É conveniente adimensionar essas forças, para generalizar as análises e os resultados. efine-se então: Coeficiente de Arraste = C C = C ( geometria, Re) C 1 V A ref Coeficiente de Sustentação = C L C L 1 V A ref em geral é a área projetada na direção perpendicular ao escoamento. Através da análise dimensional, obtemos C = C ( geometria, Re, r, M) Re= V L/ = número de Reynolds, r = V /(gl) = número de roud, quando existe superfície livre M = V/c = número de Mach, quando existem efeitos de compressibilidade ( c = velocidade do som) L A ref Com muita freqüência C = C ( geometria, Re) 4

Exemplos Escoamento sobre Placa Plana Horizontal U o =cte y x d p x 0 área de referência é A s = b L coeficiente de arraste ou coeficiente de atrito i ; ( x) S s d A Teoria da Camada Limite para Re x 5 x 10 5 C s L ( x) 0 s 1,38 Re L b d x s A s C Cf L 1 s U para 5 x 10 5 Re x 10 7 C 0, 074 Re 1/ 5 L 1740 Re L C Cf L p laminar 5 10 5 turbulento Re L Sustentação: L = 0 U 5

Escoamento perpendicular a placa plana para Re 10 3 = constante, só depende da razão de aspecto i ; S p d A O arraste é devido a diferença de pressão a frente e atrás da placa. Sustentação L =0 C para corpos com cantos vivos são praticamente independentes de Re porque a separação ocorre nos cantos vivos 6

Corpos com extremidades pontudas, induzem a separação e o coeficiente de arraste passa a ser somente uma função da geometria para Re 10 3. Coeficientes de Arraste para alguns objetos são ilustrados no Quadro 9.3 7

Escoamento ao redor de uma esfera ou cilindro C 1 V Aref Para baixos Re, Re < 1, não há separação e o arraste viscoso predomina. Nestes casos, temos arraste de pressão e viscoso. Esfera Lei de Stokes para Esfera 3 V ; A p 4 C Para Re >10, o arraste de pressão começa a dominar 4 Re vórtices de von Kármán A medida que o Reynolds cresce, o ponto de separação se move para montante, aumentando o arraste de pressão. Para 10 3 < Re < 10 5, o coeficiente de arraste C é praticamente independente do no. de Reynolds. O arraste de pressão domina. 8

Para Re < x 10 5 o escoamento é laminar, e a separação ocorre na parte frontal da esfera. Aumentando um pouco o número de Reynolds, o regime de escoamento passa para turbulento e o ponto de separação move-se para jusante, reduzindo de forma drástica a contribuição do arraste de pressão, levando a uma queda brusca do coeficiente de arraste C. 9

A figura ao lado ilustra a distribuição de pressão ao redor da esfera. Se o escoamento for não viscoso, o perfil de pressão é simétrico, com valor mínimo no centro. evido a combinação atrito viscoso e gradiente de pressão adverso, o escoamento é desacelerado, e finalmente surge o ponto de separação. A pressão então não é recuperada, resultando numa pressão atrás da esfera, bem menor do que na frente, o que leva a um arraste alto. O escoamento turbulento possui mais momentum, sendo mais difícil de separar. Consequentemente, o ponto de separação ocorre mais para jusante, e parte da pressão é recuperada, resultando em um arraste de pressão menor. Note que apesar do arraste viscoso crescer, como o arraste de pressão é dominante, o arraste total cai. 10

C 1 V A ref O escoamento ao redor de um cilindro é análogo ao escoamento ao redor de uma esfera. esfera A ref 4 cilindro A ref L 11 A força de sustentação também é nula para este caso. Todo escoamento que apresente simetria, com relação ao eixo alinhado com o escoamento, a sustentação é nula. 11

Obs: A rugosidade da superfície pode alterar o valor do número de Reynolds onde ocorre a transição do escoamento laminar para turbulento, reduzindo o coeficiente de arraste: bola de golfe Efeito Magnus: Como já visto uma rotação induz um escoamento não simétrico, resultando em uma sustentação que pode ser positiva ou negativa, dependendo a direção relativa do movimento horizontal e da rotação. A figura abaixo, ilustra o coeficiente de arraste e sustentação para este caso. Como era de se espera, para uma determinada faixa de número de Reynolds, como o arraste de pressão domina, o número de Reynolds não influencia no escoamento. Porém, a razão entre a velocidade da corrente livre e velocidade angular influencia fortemente a sustentação e ligeiramente o arraste. 1

Escoamento ao Redor de Corpos Aerodinâmicos Objetivo: reduzir o arraste. Para uma grande faixa de número de Reynolds, a grande contribuição para o arraste total é devido ao arraste de pressão. A separação do escoamento só ocorre se houve um gradiente de pressão adverso. Vimos que p x U d d U x logo o gradiente de pressão depende do valor da velocidade da corrente livre, mas depende também do gradiente de velocidade ao longo da superfície. Uma possível forma de reduzir o gradiente de pressão, é reduzir du /dx. Isso pode ser conseguido com perfis aerodinâmicos ou hidrodinâmicos 13

Escoamento ao Redor de Corpos Aerodinâmicos O tamanho das regiões de separação atrás dos corpos pode ser reduzida alterando-se a forma dos corpos. O objetivo na mudança de geometria é reduzir o arraste de pressão. No entanto, ao aumentar a área superficial o arraste viscoso cresce. eve-se procurar o ponto de mínimo 14

Escoamento simétrico L = 0 a torna o escoamento assimétrico L 0 a V L a V L a = ângulo de ataque 15

As figuras ilustram o coeficiente de arraste e sustentação em função do ângulo de ataque. Para a = 0, temos C L 0, pois o aerofólio é construído com uma assimetria, para garantir uma sustentação mesmo sem ângulo de ataque. A medida que a a sustentação cresce. Um pequeno aumento pode ser observado para o arraste. Para um ângulo de ataque da ordem de 15 o, ocorre uma perda total da sustentação e o coeficiente de arraste explode. Isto ocorre, pois surge uma separação na parte superior do aerófolio, como pode ser visto na figura abaixo. Este fenômeno é chamado de stall (estolar) 16

Aeronaves podem ser dotadas de aerofólios de baixo arraste para terem desempenho excelente em condições de cruzeiro, resultando em coeficientes de sustentação máxima baixos. Portanto um esforço adicional deve ser feito para obter-se velocidades de aterrissagem baixas. Nas condições de vôo, a sustentação deve sempre igualar o peso da aeronave P peso L C L 1 V A ef A velocidade mínima pode ser reduzida, aumentando C L,max ou a área efetiva A ef. Ppeso V min C A L,max ef A velocidade mínima de vôo é obtida quando C L =C L,max, logo 17

uas técnicas são muito utilizadas: seções de asa com geometria variável (flaps) técnicas de controle da camadalimite: sucção 18

Exemplo 1: Uma chaminé cilíndrica de 1 m de diâmetro e m de altura está exposta a um vento uniforme de 56 km/h nas condições atmosféricas padrão. Estime o momento fletor na base da chaminé devido a força do vento. V=56km/h =15,6 m/s H/ H= m Hipóteses: (1) H >> (desprezar efeitos de extremidade) cilindro infinito Ar: =1, kg/m 3, =1,7 10-5 kg/(ms) M o C H ; 1 V A p ; A p H C V C (Re) ; Re 1, 110 6 C =0,4 C 0,4 Re=1,1 x10 6 M o 1 4 C V H 1, 4110 4 J 19

Exemplo. Um carro de competição pesando 7000 N atinge uma velocidade de 50 km/h é desacelerado pela força de arraste de um paraquedas com área A =,5 m. etermine o tempo necessário para que o veículo desacelere para 100 km/h no ar-padrão. 0

Exemplo 3. Os hidrofólios de uma embarcação de efeito de superfície têm uma área total efetiva de 0,7 m. Os seus coeficientes de sustentação e arrasto são 1,6 e 0,5 respectivamente. A massa total da embarcação em condição de navegação é de 1800 kg. etermine a velocidade mínima na qual a embarcação é suportada pelos hidrofólios. Nesta velocidade, determine a potência necessária para vencer a resistência da água. Se a embarcação dispuser de um motor de 110KW, estime a sua velocidade mínima. 1

Exemplo 4. Uma bola de tênis lisa, com massa de 57 g e 64 mm de diâmetro, é golpeada a 5 m/s na sua parte superior, com um efeito que lhe dá rotação, no sentido da trajetória de 7500 rpm. Calcule a sustentação aerodinâmica atuando na bola. Avalie o raio de curvatura de sua trajetória no plano vertical. Compare com o raio quando não houver o efeito.

Exemplo 5. Uma partícula de poeira radioativa é lançada a 10 000 m de altitude. A densidade da partícula é de 650 kg/m 3. Estime o tempo de queda da partícula para as seguintes situações: ( i ) diâmetro = 10 m ( ii ) diâmetro = 1 m 3

Exemplo 6. Um cata-vento é formado por semihemisférios de diâmetro igual a 10 cm, unidos por uma haste de 35 cm. Estime o torque obtido, sabendo que a velocidade do vento é de 5 m/s. V L 4