ANÁLISE DO COMPORTAMENTO DAS SOLUÇÕES DO MODELO LOGÍSTICO COM LIMIAR E RESOLUÇÃO POR MEIO DE UMA MAPLET PROGRAMADA VIA MAPLE

Documentos relacionados
Adilandri Mércio Lobeiro 1. Sara Coelho Silva 2. Clícia Geovana Alves Pereira 3 PÚBLICO-ALVO

RESOLUÇÃO DA MODELAGEM DE UM CIRCUITO RC POR MEIO DE UMA MAPLET PROGRAMADA VIA SOFTWARE MAPLE 15

MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS

MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS

Gráficos. Material online: h-p://

Contando coelhos: uma introdução. à dinâmica populacional

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira

Concavidade. Universidade de Brasília Departamento de Matemática

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO

Universidade Federal de Juiz de Fora Departamento de Matemática

EQUAÇÕES DIFERENCIAIS: UMA ABORDAGEM PARA GRADUAÇÃO

Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

OBJETIVOS DOS CAPÍTULOS

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações

A Segunda Derivada: Análise da Variação de Uma Função

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

EDO - PVI por método de Euler

Concavidade e o Teste da Derivada Segunda

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD

Universidade Federal de Juiz de Fora Departamento de Matemática

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

3. Limites e Continuidade

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Faculdade de Ciências Exatas e Tecnológicas Curso de Engenharia Civil

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é

Um Método para Escalonar Sistemas de Equações Lineares Usando Somente Determinante de Ordem 2

Modelagem em Sistemas Complexos

REB Volume 6 (3): , 2013 ISSN MODELAGEM AMBIENTAL: PROBLEMAS ENVOLVENDO DINÂMICA POPULACIONAL

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

Aplicação do Software Maple 12 para o Balanceamento de Equações Químicas

Técnicas de. Integração

Sessão 1: Generalidades

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

Equações de diferenças e aplicações

Derivadas Parciais Capítulo 14

A SINGULARIDADE DE CURVAS ALGÉBRICAS

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G2 18 de outubro de 2010 (versão Ia)

EQUAÇÕES DIFERENCIAIS E MODELAGEM MATEMÁTICA: IMPORTANTES ESTRUTURAS PARA O ESTUDO DE CRESCINEBTO E DECRESCIMENTO DE POPULAÇÕES

Tópico 3. Limites e continuidade de uma função (Parte 1)

Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade:

Modelagem Matemática das Vibrações de uma Corda Elástica

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral)

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Gabarito Primeira Prova Unificada de Cálculo /2. Engenharia e Engenharia Química. ), (1c) lim 12 x 3 x

LIMITES E DERIVADAS COM O SOFTWARE MATHEMATICA 10.3

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

CADERNO DE ATIVIDADES

Matemática Aplicada à Economia II Lista 1 Equações Diferenciais Ordinárias

PLANO DE ENSINO. Escola ENGENHARIA E TECNOLOGIA DA INFORMAÇÃO

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO.

Modelagem em Sistemas Complexos

Concavidade e pontos de inflexão Aula 20

Universidade Federal do Paraná - UFPR Centro Politécnico. Departamento de Matemática Plano de curso

Torre de Hanói e Sequência de Fibonacci via Transformada Z

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G2 18 de outubro de 2010 (versão IVa)

Módulo 1 Potenciação, equação exponencial e função exponencial

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

Cálculo 1 A Turma F1 Prova VR

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Câmpus Londrina PLANO DE ENSINO CURSO LICENCIATURA QUIMICA MATRIZ 1

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

SUMÁRIO VOLUME II 8 MODELAGEM MATEMÁTICA COM EQUAÇÕES DIFERENCIAIS SÉRIES INFINITAS CURVAS PARAMÉTRICAS E POLARES; SEÇÕES CÔNICAS 692

Erros nas aproximações numéricas

CURVAS ALGÉBRICAS E PONTOS DE INFLEXÃO

Noções de Topografia Para Projetos Rodoviarios

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA SEMESTRE: 2016/2

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Derivada : definições e exemplos

DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA VOLTADA PARA O CONTROLE LINEAR UTILIZANDO O MATLAB

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

DAFIS/DAQBI - PPGFCET. Sistemas Complexos. [ M.S. Freitas / UTFPR ] Prof. Mário Sérgio Freitas, Dr. - UTFPR/DAFIS.

CONTINUIDADE E LIMITES INFINITOS

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = ex x = 0

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral

Análise do ponto de equilíbrio no modelo Lotka- Volterra

Revisão de Pré-Cálculo PÁRABOLAS. Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

Funções Hiperbólicas:

PROGRAMA DE DISCIPLINAS DE CURSO DE GRADUAÇÃO. SERIAÇÃO IDEAL 1º ano Obrig/Opt/Est PRÉ/CO/REQUISITOS ANUAL/SEM.

Aula 22 O teste da derivada segunda para extremos relativos.

Universidade Federal de Juiz de Fora Departamento de Matemática

Unidade Curricular: Análise Matemática I

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

CADERNO DE ATIVIDADES

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO.

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Transcrição:

ANÁLISE DO COMPORTAMENTO DAS SOLUÇÕES DO MODELO LOGÍSTICO COM LIMIAR E RESOLUÇÃO POR MEIO DE UMA MAPLET PROGRAMADA VIA MAPLE Adilandri Mércio Lobeiro alobeiro@utfpr.edu.br UTFPR-CM, Universidade Tecnológica Federal do Paraná, COINF Campo Mourão PR Eloy Kaviski eloy.dhs@ufpr.br UFPR, Universidade Federal do Paraná, Departamento de Hidráulica e Saneamento Curitiba PR Liliana Madalena Gramani gramani@mat.ufpr.br UFPR, Universidade Federal do Paraná, Departamento de Matemática Curitiba PR Oilson Alberto Gonzatto Junior oilson.agjr@gmail.com Bolsista UTFPR-CM, Universidade Tecnológica Federal do Paraná, Eng. Ambiental Campo Mourão PR Resumo: Uma variação observada na natureza pode, muitas vezes, ser estudada por meio de modelos matemáticos, a teoria das Equações Diferenciais permite que este estudo se torne uma análise precisa acerca do comportamento de tal variação. Apoiando-se nesta teoria e, com o intuito de facilitar o entendimento e a interpretação geométrica de um modelo matemático que envolve Equações Diferenciais, apresenta-se o conceito de uma Equação Diferencial, seguida da conceituação de uma Equação Diferencial Ordinária do tipo Quadratura e seus métodos de solução. Em seguida é apresentado um exemplo da modelagem matemática de um fenômeno biológico para agregar a teoria à prática, o Modelo Logístico com Limiar e, por meio de uma Maplet programada via software Maple 16 encontram-se as Soluções Geral e Singulares da equação. Palavras-chave: Equação Logística com Limiar, Equação Diferencial, Maplet, Maple. 1 INTRODUÇÃO Uma das inúmeras vantagens oferecidas pelo cálculo de Newton e Leibnitz é a incorporação das noções de derivada e integral, tais noções possibilitam a descrição matemática de várias propriedades dos fenômenos físicos. Grande parte das teorias que descrevem os fenômenos naturais contém o que são conhecidas como Equações Diferenciais, essas equações estão presentes não apenas na Física, mas também na

Biologia, Sociologia e todas as disciplinas científicas que se interessam em entender o mundo que nos cerca (ROBINSON, 2004, p. 1). O advento da computação na sociedade proporcionou inúmeras vantagens que foram desenvolvidas por sua versatilidade, hoje em dia o auxílio oferecido ao ensinoaprendizagem pelas técnicas computacionais é de importância fundamental. Tem-se a possibilidade de manipular, armazenar e visualizar um conjunto de dados como jamais foi possível no passado. Tais dados passam a fazer parte de um contexto maior, quebrando e/ou remodelando a ideia da formação particionada e necessariamente isolada dos conteúdos. Isto favorece o entendimento e assimilação do conhecimento disponibilizado nos meios acadêmicos, pois foca o contexto do resultado, não o valor isolado (TANEJA, 1997). O passar dos anos e consequente avanço da informática, nos presenteou com softwares muito mais específicos e aprimorados para cálculos matemáticos, um dos grandes representantes nesta área é o software Maple (atualmente em sua 16ª edição), pois além de ter sua própria interface e ferramentas para resolução de diversos problemas matemáticos já conhecidos, possui grande flexibilidade para desenvolvimento computacional, um campo destacado pela construção de Maplets. Maplets são interfaces produzidas para providenciar um acesso amistoso e interativo às ferramentas do Maple, tal acesso é possível devido ao uso de botões, áreas de plotagem, caixas de texto entre outros. Ao desenvolver uma Maplet é possível para o programador, personalizar e contextualizar os comandos a fim de torná-los intuitivos ao usuário final, além de ter em mãos a possibilidade de moldar representações gráficas a fim de facilitar o entendimento de certos conteúdos. Neste contexto, programa-se uma Maplet capaz de solucionar uma conhecida equação diferencial ordinária da biologia, a Equação Logística com Limiar, que modela o crescimento ou decrescimento de espécies. 2 CONCEITOS BÁSICOS 2.1 Equações Diferenciais Este trabalho será direcionado para equações que contêm derivadas ou diferenciais de uma ou mais variáveis dependentes em relação a uma única variável independente, as quais são chamadas de Equações Diferenciais Ordinárias (EDO). Limitando ainda a atenção, às Equações Diferenciais Ordinárias de Primeira Ordem, ou seja, as que contêm a primeira derivada como a derivada de maior ordem da equação, que podem ser escritas da seguinte forma (1) ou ainda, na forma explícita (2) Uma EDO simples na forma (2) é aquela onde é,, ou então, é independente da variável, isto (3)

Resolver esta equação consiste em encontrar uma função cuja derivada seja h(x), isto é, encontrar a primitiva de. Integrando ambos os lados de (3), ou ainda, usando o segundo Teorema Fundamental do Cálculo, obtém-se (4) onde. A função dada desta forma é a solução geral da Equação (3). Geometricamente, a Equação (4) é uma família de curvas e uma Solução Particular é a equação de uma dessas curvas. Estas curvas são denominadas curvas integrais da equação diferencial. Da mesma forma, se é independente da variável, isto é,, tem-se (5) que para resolver divide-se o processo em dois casos. 1. Para tem-se da Equação (5) que (6) logo a Solução Geral da equação, desde que a função seja integrável, é dada por (7) 2. Se tem-se que existe tal que,. Neste caso, a solução é onde é constante. De fato, (8) Tem-se que, onde é constante, é Solução Singular da EDO. 2.2 Definição (Equação Quadratura) Uma equação diferencial ordinária de primeira ordem da forma (9) ou (10) é chamada de quadratura (MURPHY, 1960, p. 9).

2.3 Equações Autônomas e Dinâmica Populacional Uma importante classe de Equações Diferenciais de Primeira Ordem são aquelas cuja variável independente não aparece explicitamente. Tais equações são chamadas Equações Autônomas (BOYCE e DIPRIMA, 2001, p. 75) e se dão na forma (11) Estas equações serão discutidas no contexto de crescimento ou decaimento populacional de uma dada espécie. Crescimento Exponencial Seja a população de uma dada espécie no tempo. A mais simples hipótese referente à variação da população é que a taxa de variação de é proporcional ao valor corrente desta mesma função, ou seja, (12) onde a constante de proporcionalidade é chamada de taxa de crescimento ou declínio, dependendo de seu sinal, positivo ou negativo. Aqui, assume-se, desta forma, a população estará crescendo. Resolvendo a Equação (12) sujeita à condição inicial obtém-se (13) (14) O modelo matemático constituído pelas Equações (12) e (13), é conhecido como Problema de Valor Inicial (PVI) que tem a Equação (14) como sua solução. Como o modelo prediz que a população crescerá exponencialmente por todo o tempo. Sob condições ideais, a Equação (14) pode ser observada e experimentada para muitas populações, pelo menos por períodos limitados de tempo. Contudo, é ululante que algumas condições ideais não continuam indefinidamente; eventualmente, limitações no espaço, comida, suprimentos, ou outros recursos reduzirão a taxa de crescimento e darão fim ao crescimento exponencial. Crescimento Logístico Levando em conta o fato de que a taxa de crescimento depende da população atual, pode-se substituir a constante da Equação (12) por uma função e então, obtémse uma equação modificada (15) Deseja-se agora, escolher tal que quando o valor de é pequeno, decresce com o crescimento de, e a medida que é suficientemente grande. A mais simples função tendo estas propriedades é, onde é uma constante positiva. Usando esta função na Equação (15), obtém-se

(16) A Equação (16) é conhecida como Equação de Verhulst ou Equação Logística. É conveniente escrever a equação logística em sua forma equivalente (17) onde. A constante é chamada de taxa de crescimento intrínseca, isto é, a taxa de crescimento na ausência de qualquer fator limitante. Busca-se inicialmente, as soluções da Equação (17) da mais simples maneira, ou seja, as funções constantes. Se é constante, tem-se para todo, então, solução constante da Equação (17) pode satisfazer a equação algébrica (18) onde as soluções constantes são e. Estas soluções são chamadas Soluções de Equilíbrio da Equação (17), pois, elas não correspondem a qualquer mudança ou variação em com o aumento de. No caso da Equação (17),, então, plotando o gráfico de, tem-se uma parábola, conforme pode ser visto na Figura 1. Os zeros de são também chamados de Pontos Críticos. Figura 1. por para. Os interceptos e correspondem aos pontos críticos da Equação (18), e o vértice da parábola é. Observe que para, ou seja, é uma função crescente neste intervalo; isto é indicado pelas setas que apontam para a direita, próximas ao na Figura 1 ou pelas que apontam para cima na Figura 2. Similarmente, se, então, o que indica um decréscimo da função, indicado pelas setas que apontam para a esquerda na Figura 1, ou para baixo na Figura 2 Figura 2. Crescimento Logístico: por para. Além disso, da Figura 1, note que se está próximo de zero ou, então a inclinação,, é próxima de zero, então as curvas soluções têm tangentes próximas

da horizontal. Elas tornam-se mais inclinadas conforme deixa as proximidades de zero ou. Estas observações indicam que os gráficos das soluções da Equação (17) devem ter uma forma geral mostrada na Figura 2 independentemente dos valores de e. Para esboçar os gráficos das soluções da Equação (17) no plano, inicia-se com as soluções de equilíbrio, e ; depois desenha-se outras curvas que são crescentes quando, cuja concavidade muda quando elas interceptam a reta ; por fim, plota-se as curvas decrescentes, quando. Observa-se pela Figura 1 que as tangentes às curvas se aproximam da horizontal quando se aproxima de zero ou. Note que é a cota superior que é aproximada, mas nunca excedida por populações crescentes começando abaixo deste valor. Então, é natural referir-se a como sendo o Nível de Saturação ou Capacidade de Sustentação Ambiental, para a espécie em questão. A solução do PVI (19) { (19) é dada por (20) conforme (BOYCE e DIPRIMA, 2001, p. 79). Observa-se que, se, pela Equação (20), para todo. Se e fazendo na Equação (20), obtém-se. Assim, para cada, a solução tende à solução de equilíbrio, assintoticamente quando. Portanto a solução constante é dita uma solução assintoticamente estável da Equação (17) e o ponto é dito um ponto de equilíbrio ou ponto crítico, assintoticamente estável. Por outro lado, a situação para a solução de equilíbrio é bem diferente. Mesmo soluções que comecem muito próximas de zero, crescem quando aumenta e tende a quando. A solução é dita uma solução de equilíbrio instável e é um ponto de equilíbrio, ou ponto crítico, instável. Um Limiar Crítico Considere a equação (21) onde e são constantes positivas. Observe que (exceto pela substituição do parâmetro por ) esta equação difere da Equação Logística (17) somente pela presença do sinal negativo no membro direito. Todavia as soluções da Equação (21) comportam-se muito diferente das soluções da Equação (17). Para a Equação (21) o gráfico de por, onde, é a parábola mostrada na Figura 3.

Figura 3. por para. Os interceptos no são os pontos críticos e, correspondendo às soluções de equilíbrio e. Se, então e decresce com o aumento de. Por outro lado, se, então, e cresce com o aumento de. E ainda, é uma solução de equilíbrio assintoticamente estável, e é instável. Além disso, é negativa para e positiva para, então o gráfico de por é côncavo para cima e côncavo para baixo, respectivamente, nestes intervalos. Também, é positiva para, então o gráfico de por é também côncavo para cima. Para fazer uso de todas as informações obtidas da Figura 3, conclui-se que os gráficos das soluções da Equação (21) para diferentes valores de devem ter uma aparência qualitativa como mostrada na Figura 4. Figura 4. por para. Pela Figura 4, fica claro que com o aumento de, ou se aproxima de zero ou cresce indefinidamente, dependendo se o valor inicial,, é menor ou maior que. Assim, é um Limiar, abaixo do qual, o crescimento não ocorre. Pode-se confirmar estas conclusões obtidas geometricamente observando a solução da Equação (21) sujeita à condição inicial, dada por (22) Se, então segue da Equação (22) que quando. Isto corrobora com a análise geométrica qualitativa. Se, então o denominador no lado direito da Equação (22) é zero para algum valor finito de. Denotando este valor por, e calculando ele com (23) que dá (24) Logo, se a população inicial estiver acima do limiar, o modelo limiar prediz que o gráfico de por terá uma assíntota vertical em ; em outras palavras, a

população se torna infinita, em um tempo finito, que depende do valor inicial e do limiar. A existência e localização desta assíntota não se apresentam na análise geométrica, então, neste caso, a solução explícita nos dará informações qualitativas adicionais tão bem quanto informações quantitativas. As populações de algumas espécies exibem o fenômeno limiar. Se há poucos indivíduos presentes, a espécie não é capaz de se propagar com eficiência e a população torna-se extinta. Contudo, se uma população maior que o nível limiar puder ser reunida, então o crescimento pode ocorrer. Naturalmente, a população não se torna ilimitada, então, eventualmente a Equação (21) deve ser modificada para levar isso em consideração. Crescimento Logístico com Limiar Como mencionado acima, o modelo com limiar representado pela Equação (21), pode necessitar de algumas alterações para que o crescimento ilimitado não ocorra quando estiver acima do limiar. A mais simples maneira de fazer isto é introduzir outro fator que terá o efeito de tornar negativo quando for grande. Assim, consideraremos (25) onde e. O gráfico de por, onde, terá três pontos críticos para esta situação:, e, correspondendo às soluções de equilíbrio,, e, respectivamente. Veja a Figura 5. Figura 5. por para. Observando a Figura 5 torna-se claro que para, e consequentemente está aumentando neste intervalo. O inverso também é verdadeiro para e. Em consequência, as soluções de equilíbrio e são assintoticamente estáveis, e a solução é instável. Plotando o gráfico de por temos a aparência qualitativa mostrada na Figura 6. Figura 6. por para. Se iniciar abaixo do limiar, então declina para a extinção definitiva. Por outro lado, se iniciar acima do limiar, então eventualmente se aproxima de, o Nível

de Saturação ou Capacidade de Sustentação Ambiental. Os pontos de inflexão no gráfico de por na Figura 6 correspondem aos pontos máximos e mínimos, e, respectivamente, no gráfico de por na Figura 5. Estes valores podem ser obtidos pela diferenciação do lado direito da Equação (25) com respeito a, quando igualando seu resultado a zero, e resolvendo-o para. Obtém-se ( ) (26) onde o sinal positivo corresponde a e o sinal negativo é referente a. 3 APLICAÇÃO DA MAPLET DESENVOLVIDA VIA MAPLE 16 Do Modelo Logístico com Limiar discutido na seção 2, resolve-se a Equação (25) utilizando a Maplet programada via Maple 16. Na Figura 7, pode ser vista a tela inicial do software desenvolvido, com a descrição de suas funções. 1. Área destinada ao registro das instruções dadas ao usuário; 2. Área para digitar a equação e clicar nos botões para utilização do software; 3. Área onde informações relevantes para a solução são apresentadas ao usuário; 4. Área para visualização gráfica das soluções; 5. Área para visualização dos resultados obtidos a cada passo; 6. Área destinada ao registro de todas as etapas realizadas pelo usuário. Figura 7. Tela inicial da Maplet Com a Equação Logística com Limiar digitada e classificada, pelo software, neste caso, uma Quadratura, clica-se em Próximo Passo, visualiza-se a equação digitada na forma matemática bem como as primeiras instruções para efetuar a resolução, observe a Figura 8. Figura 8. Equação Classificada e processo de resolução iniciado.

Ao clicar em Próximo Passo uma nova janela abrirá, para auxiliar o usuário a separar a variável dependente, observe o resultado na Figura 9. Figura 9. Manipulador de Equações. Ao clicar em Devolver Resultado, retorna-se à Maplet que apresenta as Soluções Singulares da EDO, caso existam. Observe a Figura 10. Figura 10. Soluções Singulares da EDO. Clicando em Próximo Passo, aplica-se a integral em ambos os membros da equação. Ao clicar novamente, surge a janela para auxiliar na resolução destas integrais. Figura 11. Métodos de Integração. Clicando em All Steps, há apresentação de todas as etapas realizadas para a solução da integral, mas pode optar-se por resolver passo a passo, clicando em Next Step.

O resultado obtido pelas duas integrações é a chamada Solução Geral, que pode ser vista na Figura 12, onde C é a constante de integração. Figura 12. Solução Geral da EDO. A seguir apresenta-se um exemplo do Modelo Logístico com Limiar, substituindose as constantes e, por e, respectivamente, como pode ser visto na Figura 13. Figura 13. Crescimento Logístico com Limiar para. 4 CONSIDERAÇÕES FINAIS O entendimento da forma como as soluções do Modelo Logístico com Limiar se comportam é possível por meio de análises geométricas relativamente simples, contudo, sua resolução analítica não compartilha da mesma simplicidade. A Maplet para a resolução de EDOs do tipo abordado por esse trabalho foi desenvolvida com a ambição de tornar este estudo menos dispendioso, destacando-se pelo fato de desenvolver a solução e guiar o usuário por todo o processo passo a passo, além de possibilitar o vislumbre gráfico de tais soluções. O trabalho contribui ainda com o fomento à utilização de softwares matemáticos como ferramenta adicional para controle e análise de problemas práticos. Agradecimentos Os autores agradecem à UTFPR pelo incentivo realizado por meio de bolsas de estudo. 5 REFERÊNCIAS / CITAÇÕES BOYCE, W. E.; DIPRIMA, R. C. Elementary Differential Equations and Boundary Value Problems. 7ª. ed. New York: John Wiley & Sons, Inc., 2001.

MURPHY, G. M. Ordinary Differential Equations antheir Solutions. New York: Van Nostrand Reinhold Company, 1960. ROBINSON, J. C. An Introduction to Ordinary Differential Equations. New York: Cambridge University Press, 2004. TANEJA, I. J. Maple V: Uma Abordagem Computacional no Ensino de Cálculo. Florianópolis: UFSC, 1997. ANALYSIS OF THE BEHAVIOR OF SOLUTIONS OF THE LOGISTIC MODEL WITH THRESHOLD AND RESOLUTION THROUGH A PROGRAMED MAPLET BY WAY OF MAPLE Abstract: A variation observed in nature can often be studied by means of mathematical models, the theory of differential equations allows this study to become a precise analysis of the behavior of such variation. Building on this theory and, in order to facilitate understanding and geometric interpretation of a mathematical model involving differential equations, we present the concept of a differential equation, then the concept of an Ordinary Differential Equation type Quadrature and its methods solution. Next is an example of mathematical modeling of a biological phenomenon to aggregate theory to practice, the logistic model with threshold and, by means of a programmed via software Maple Maplet 16 are the General and Singular Solutions of the equation. Key-words: Logistic Equation with Threshold, Differential Equation, Maplet, Maple.