EDO - PVI por método de Euler

Tamanho: px
Começar a partir da página:

Download "EDO - PVI por método de Euler"

Transcrição

1 EDO - PVI por método de Euler André Scarmagnani 1, Isaac da Silva 1, Valmei A. Junior 1 1 UDC ANGLO - Faculdade Anglo Americano (FAA) Av.Paraná, 5661, CEP: Foz do Iguaçu - PR - Brasil andre-scar@hotmail.com, isaac.s@outlook.com, valmeijr@terra.com.br Abstract. In numerical calculation there are several methods to solving ordinary differential equations containing initial condition. In this article we highlight the Euler method. This method will be presented using an example and an algorithm. Resumo. Em cálculo numérico existem vários métodos para resolver equações diferencias ordinárias que contém condição inicial. Neste artigo destacamos o método de Euler. Este método será apresentado através de um exemplo e um algoritmo. 1. História As equações diferenciais começaram com os estudos de Isaac Newton e Gottfried Wilhelm Leibniz durante o século XVII. Newton cresceu na Inglaterra, e se tornou professor de matemática em 1669 na cadeira Lucasian. Começou a publicar suas descobertas sobre cálculo a partir de Atuou pouco na área de equações diferenciais propriamente dita, porém seu desenvolvimento do cálculo e seus princípios básicos da mecânica forneceram base para as equações diferenciais. Ele também classificou as equações diferenciais de primeira ordem [Boyce and DiPrima 2006]. Liebniz nasceu em Leipzig e aos vinte anos completou seu doutorado de filosofia. Aos vinte e poucos anos desenvolveu seu interesse em matemática. Foi o primeiro a publicar alguma coisa sobre cálculos independentes. Criador do sinal de integral e da notação de derivada /. Descobridor do método de separação de variáveis, criador do método para resolver equações lineares de primeira ordem e também desenvolveu a redução de equações homogêneas a equações separáveis. Leibniz era embaixador e conselheiro de famílias reais, o que permitiu que ele tivesse contato com outros matemáticos, com isso foi resolvido muitos problemas em equações diferenciais no século XVII [Boyce and DiPrima 2006]. 2. EDOs Para resolvermos um problema de engenharia, usualmente de natureza física (Figura 1), temos que formulá-lo como uma expressão matemática, em termos de variáveis, funções, equações, etc. Essa expressão é, então, chamada de um modelo matemático do problema em questão. O processo de elaborar um modelo, resolvê-lo matematicamente e interpretar seus resultados em termos físicos ou outros é chamado de modelagem matemática ou, resumidamente, de modelagem [Kreyszig 1999].

2 Figura 1. Alguns exemplos de equações diferenciais. (Fonte: Adaptada de [Kreyszig 1999]). As EDOs são constituídas de equações contendo derivadas de uma função desconhecida e que depende de apenas uma variável independente, por isso é chamada de Equação Diferencial Ordinária. Na equação (1), tem-se que: y É a função desconhecida, x É a variável independente. = 4x + 1 (1) Um ponto importante a ser citado sobre EDOs, é referente a ordem e o grau. A ordem de uma EDO é dada pela ordem da mais alta derivada que nela aparecer e o seu grau é dado pela potência a que se encontra elevada a derivada de ordem mais alta. Veja no exemplo: ( d 2 ) 3 y + 3y 2 ( Na equação (2) a ordem é 2 e o grau é 3. ) 5 ( ) 4 y 5 = X. (2)

3 3. O Problema do Valor Inicial - PVI O Problema de Valor Inicial (PVI) consiste em uma equação diferencial que é apresentada juntamente com sua condição inicial. Por exemplo: e sua condição inicial, = x + 6y (3) 4. Método de Euler y (2) = 1. (4) Este método é usado para resolver um PVI que contêm equações diferenciais de primeira ordem. Para isso, o método usa uma solução aproximada. Considere o problema de valor inicial representado pela seguinte equação e sua respectiva condição inicial: = f (y, x) ; y (x 0) = y 0. (5) Como já sabemos que a solução passa pelo ponto (x 0, y 0 ), com inclinação y (x 0 ), assim o ponto (x 0, y 0 ) serve de ponto de partida para a aproximação. Começando pelo ponto apresentado na condição inicial, seguimos a inclinação, usando um passo h, para poder seguir ao longo da reta tangente até chegar ao próximo ponto (x 1, y 1 ). Para isso usamos método de Euler que consiste na repetição das equações (6) e (7) para a geração dos pontos: x n+1 = x n + h (6) 4.1. Exemplo usando o Método de Euler y n+1 = y n + h.f (x n, y n ). (7) Para o exemplo de como usar o método de Euler, considere a equação diferencial (8) adaptada de [Boyce and DiPrima 2006], que é de primeira ordem: = 1 x + 4y; y (0) = 1. (8) A solução numérica da equação (8), com a sua condição inicial, é encontrada com o uso recursivo das equações (6) e (7). Para a resolução da equação do exemplo, utiliza-se um passo h = 0, 001 e condição de parada x = 2, sendo que a condição inicial para o primeiro passo x 0 = 0 e y 0 = 1.

4 Substituindo os dados nas equações (6) e (7), para o primeiro passo tem-se; y 1 = 1 + 0, 001.( ) (9) e para o segundo passo, x 1 = 0 + 0, 001 (10) y 2 = , 001.(1 0, , 005) (11) x 2 = 0, , 001. (12) A substituição do x e do y do novo passo continuará sendo substituído pelo x e y encontrado no passo anterior, enquanto o x for menor ou igual a 2, o que para esse exemplo resulta em passos. Na tabela 1 é apresentado x n e y n que são alguns valores calculados pelo método de Euler, sendo n o numero do passo e y alguns valores calculados pelo método analítico, possibilitando, assim, uma conparação entre os resultados. Tabela 1. Resultado da equação (8) usando método de Euler e o método analítico n x n y n y 0 0,000 1, , ,001 1, , ,002 1, , ,003 1, , ,004 1, , ,005 1, , ,500 8, , ,000 64, , , , , , , , Programação do Método de Euler Esse método é de fácil implementação, basta seguir a lógica dos passos que são apresentados abaixo. As variáveis x n, y n, x final, h e f (x, y) devem ser informadas para que o método possa ser executado, onde: x n x da condição inicial; y n y da condição inicial; x final Condição de parada do método; h Tamanho dos passos;

5 f (x, y) Equação diferencial ordinária. {Xn, Xfinal, Xn+1, Yn, Yn+1, h} INICIO Para Xn menor Xfinal FAÇA Escreva n, Xn, Yn Xn+1 = Xn + h Yn+1 = Yn + h.f(xn,yn) Xn = Xn+1 Yn = Yn+1 FIM_PARA FIM 5. Conclusão A solução numérica de um PVI, por meio da aplicação do método de Euler, nem sempre resulta em valores que se encaixam dentro de limites aceitáveis. O método de Euler é fácil de ser implementado, mas por se tratar de um método que nos resulta soluções aproximadas, apresenta uma diferença, como pode ser observada na tabela 1 onde, como por exemplo, pode se destacar a diferença encontrada na iteração n = 1500, onde y n = 473, está diferente de y = 479, Essa diferença é chamada de erro, que só pode ser minimizado diminuindo o tamanho do passo h. Porém, se h for muito pequeno, serão necessários muitos passos dentro do intervalo determinado. Na tabela 1, observa-se essa diferença entre os resultados obtidos método de Euler (y n ) e pelo método analítico (y). O erro absoluto do método pode ser calculado pela equação: ŷ (x) y (x) (13) ŷ (x) Resultado aproximado encontrado através do método de Euler; y (x) Resultado obtido através do método analítico; Sendo assim, é preciso uma análise com a intenção de adequar o passo h para realizar os cálculos, de tal forma que se obtenha um erro mínimo para que os resultados sejam válidos. Referências Boyce, W. E. and DiPrima, R. C. (2006). Equação Diferenciais Elementares e Problemas de Valores de Contorno. LTC, 8th edition. Kreyszig, E. (1999). Matemática Superior para Engenharia. LTC, 9th edition.

Integração por Quadratura Gaussiana

Integração por Quadratura Gaussiana Integração por Quadratura Gaussiana Fabricio C. Mota 1, Matheus C. Madalozzo 1, Regis S. Onishi 1, Valmei A. Junior 1 1 UDC ANGLO Faculdade Anglo Americano (FAA) Av. Paraná, 5661, CEP: 85868-00 Foz do

Leia mais

Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções

Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções As Equações Diferenciais são equações que contêm derivadas. Os seguintes exemplos são fenômenos físicos que envolvem taxas de variação: Movimento

Leia mais

Aplicação dos Métodos de Runge-Kutta de primeira, segunda, terceira e quarta ordem na Resolução de uma Equação Diferencial Ordinária.

Aplicação dos Métodos de Runge-Kutta de primeira, segunda, terceira e quarta ordem na Resolução de uma Equação Diferencial Ordinária. 1 Aplicação dos Métodos de Runge-Kutta de primeira, segunda, terceira e quarta ordem na Resolução de uma Equação Diferencial Ordinária. Rodrigo Romais (FCSGN) 1 r.romais@gmail.com Resumo: Métodos numéricos

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO DISCIPLINA Equações Diferenciais CÓDIGO MAF-2010-C01 PROFESSOR CRISTIAN PATRICIO NOVOA BUSTOS CURSO Engenharia PERÍODO CRÉDITO

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: CÁLCULO III CÓDIGO: 2DB.015 VALIDADE: Início: 01/13 Eixo: Matemática Carga Horária: Total: 50 horas/ 60 horas-aula Semanal: 4 aulas Créditos: 4 Modalidade: Teórica Integralização: Classificação

Leia mais

CSE-MME-b Revisão de Métodos Matemáticos para Engenharia Edição 2012

CSE-MME-b Revisão de Métodos Matemáticos para Engenharia Edição 2012 CSE-MME-b Revisão de Métodos Matemáticos para Engenharia Edição Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE

Leia mais

Erros nas aproximações numéricas

Erros nas aproximações numéricas Erros nas aproximações numéricas Prof. Emílio Graciliano Ferreira Mercuri Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR emilio@ufpr.br 4 de março de 2013 Resumo: O objetivo

Leia mais

Autorizado pela Portaria nº de 04/07/01 DOU de 09/07/01 PLANO DE CURSO

Autorizado pela Portaria nº de 04/07/01 DOU de 09/07/01 PLANO DE CURSO CURSO DE ENGENHARIA DA COMPUTAÇÃO Autorizado pela Portaria nº 1.400 de 04/07/01 DOU de 09/07/01 Componente Curricular: Equações Diferenciais Código: ENG222 CH Total:60 Horas Pré-Requisito: Cálculo Diferencial

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli 1-24 Equações Diferenciais Ordinárias Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,

Leia mais

MODELAGEM MATEMÁTICA APLICADA NA MECÂNICA EM PROBLEMAS DE VELOCIDADE DE ESCAPE.

MODELAGEM MATEMÁTICA APLICADA NA MECÂNICA EM PROBLEMAS DE VELOCIDADE DE ESCAPE. MODELAGEM MATEMÁTICA APLICADA NA MECÂNICA EM PROBLEMAS DE VELOCIDADE DE ESCAPE. Laedson Luan dos Santos Silva(1); Damião Franceilton Marques de Sousa (1); Natham Cândido de Oliveira (2); Isaac Ferreira

Leia mais

MÉTODOS NUMÉRICOS PARA RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS (Métodos de Euler e Runge-Kutta)

MÉTODOS NUMÉRICOS PARA RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS (Métodos de Euler e Runge-Kutta) MÉTODOS NUMÉRICOS PARA RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS (Métodos de Euler e Runge-Kutta) Ellison Souza da Silva¹ RESUMO Neste trabalho são apresentados os métodos numéricos de Euler, Euler

Leia mais

Aplicação dos Métodos de Euler e de Euler Melhorado na Resolução de uma Equação Diferencial Ordinária.

Aplicação dos Métodos de Euler e de Euler Melhorado na Resolução de uma Equação Diferencial Ordinária. Aplicação dos Métodos de Euler e de Euler Melhorado na Resolução de uma Equação Diferencial Ordinária. Rodrigo Romais (FCSGN) * r.romais@gmail.com Resumo: Métodos numéricos são extremamente úteis na resolução

Leia mais

MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS

MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS Resumo: Este artigo objetiva divulgar uma Maplet programada via Maple 16 para resolver

Leia mais

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7.1-Equação de Bernoulli A equação de Bernoulli é uma equação diferencial de primeira ordem do tipo: onde é uma constante sendo e e e quaisquer

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario EQUAÇÕES DIFERENCIAIS ORDINÁRIAS MÉTODO DE EULER MÉTODOS DE SÉRIES DE TAYLOR MÉTODOS DE RUNGE KUTTA EQUAÇÕES DIFERENCIAIS

Leia mais

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO. 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

Modelagem Computacional. Aula 5 2

Modelagem Computacional. Aula 5 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Aula 5 2 Prof. Thiago Alves de Queiroz 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

MATEMÁTICA II. Pedro Encarnação (Teóricas) Susana Torrado (Práticas) Carla Cardoso (Práticas) Descrição:

MATEMÁTICA II. Pedro Encarnação (Teóricas) Susana Torrado (Práticas) Carla Cardoso (Práticas) Descrição: MATEMÁTICA II Ano Académico: 2017/2018 2º Semestre Docente(s): Pedro Encarnação (Teóricas) Susana Torrado (Práticas) Carla Cardoso (Práticas) Descrição: A disciplina de Matemática II fornece aos alunos

Leia mais

MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION

MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION Giovani Prates Bisso Dambroz 2, Peterson Cleyton Avi 3 1 Texto produzido a partir de trabalho desenvolvido

Leia mais

Capítulo 7 - Equações Diferenciais Ordinárias

Capítulo 7 - Equações Diferenciais Ordinárias Capítulo 7 - Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando métodos

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Introdução Método de Diferenças: { w0 = α w i+1 = w i + h φ(t i, w i ),

Leia mais

CONTRIBUIÇÕES DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EM CIRCUITOS RC UTILIZADOS NO COTIDIANO.

CONTRIBUIÇÕES DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EM CIRCUITOS RC UTILIZADOS NO COTIDIANO. CONTRIBUIÇÕES DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EM CIRCUITOS RC UTILIZADOS NO COTIDIANO. Damião Franceilton Marques de Sousa 1 ; Luís Gomes de Negreiros Neto 1 ; Reinaldo Freire da Fonsenca 1 ; Ruam

Leia mais

3 Equações diferenciais

3 Equações diferenciais 3 Equações diferenciais 3. Forma geral das equações diferenciais Uma equação diferencial ordinária ou de forma abreviada, EDO de ordem n é uma relação entre uma função y(x) e as suas derivadas y, y,...,

Leia mais

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012 Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem A C Tort 22 de outubro de 2012 Uma equação diferencial ordinária linear de segunda ordem

Leia mais

Resoluções de Equações Diferenciais Ordinárias (EDOs) por Séries de Potências

Resoluções de Equações Diferenciais Ordinárias (EDOs) por Séries de Potências Resoluções de Equações Diferenciais Ordinárias (EDOs) por Séries de Potências Hudson Umbelino dos Anjos 1, Julia de Paula Borges 2 1 Mestre em Matemática IFTO. e-mail: hudsonanjos@ifto.edu.br 2 Graduanda

Leia mais

MATEMÁTICA II. Descrição:

MATEMÁTICA II. Descrição: MATEMÁTICA II Ano Académico: 2017/2018 1º Semestre Docente(s): Pedro Encarnação Descrição: A disciplina de Matemática II fornece aos alunos ferramentas de integração, de cálculo diferencial em R n incluindo

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

Palavras - chave: Resolução de Equações Diferenciais; Interpretação Gráfica; Software Maple.

Palavras - chave: Resolução de Equações Diferenciais; Interpretação Gráfica; Software Maple. UM PROBLEMA DE MISTURAS ATRAVÉS DE APLICAÇÃO DE EQUAÇÕES DIFERENCIAS ORDINÁRIAS F. L; Conci 1 ; M. L. Schmidt 2 ; S. Ribas 3 ; S. D. Stroschein 4. Resumo: O presente trabalho tem por objetivo relatar uma

Leia mais

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES Fernando Ricardo Moreira 1, Esdras Teixeira Costa 2, Marcio Koetz 3, Samanta Andressa Santos Dumke Teixeira 4, Henrique Bernardes da Silva 5 1 Professor Mestre

Leia mais

Calculo Numérico: Interpolação Polinomial de Hermite

Calculo Numérico: Interpolação Polinomial de Hermite Calculo Numérico: Interpolação Polinomial de Hermite Daniel Franco Pereira Junior¹ Felippe Frasson¹ Valmei Abreu Júnior¹ ¹Curso de Ciência da Computação Faculdades Anglo-Americano (FAA) Foz do Iguaçu PR

Leia mais

https://utfws.utfpr.edu.br/acad01/sistema/mpplanoensinoinformativo... MA70G Equações Diferenciais Ordinárias Nota/Conceito E Frequência

https://utfws.utfpr.edu.br/acad01/sistema/mpplanoensinoinformativo... MA70G Equações Diferenciais Ordinárias Nota/Conceito E Frequência 1 de 5 19/10/2017 09:40 Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Curitiba Informações da disciplina Código Ofertado Disciplina/Unidade Curricular Modo de Avaliação MA70G

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 22 07/2014 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando

Leia mais

Equações Diferenciais

Equações Diferenciais Capítulo 6 Equações Diferenciais 6.1 Definições Básicas Equação diferencial é uma equação onde aparecem uma função e suas derivadas. Por exemplo, f (x) + f (x) = cos(x) e y 4y + 5y + 3 = x 3 + 3x são exemplos

Leia mais

MÉTODOS MATEMÁTICOS. Prof. Dr. Paulo H. D. Santos.

MÉTODOS MATEMÁTICOS. Prof. Dr. Paulo H. D. Santos. MÉTODOS MATEMÁTICOS Prof. Dr. Paulo H. D. Santos psantos@utfpr.edu.br AULA 1 10/03/2015 Apresentação do Plano de Ensino; EDOs de 1ª Ordem Parte 1. Sumário Conteúdo Programático Metodologia Avaliação Critério

Leia mais

Optativa: Linha 2 Carga Horária: 45 hs Créditos: 03

Optativa: Linha 2 Carga Horária: 45 hs Créditos: 03 Título: CTS18 Introdução à Simulação Numérica Optativa: Linha 2 Carga Horária: 45 hs Créditos: 03 Ementa: 1. Introdução 2. Análise de Erros 3. Resolução de equações não lineares 4. Resolução de Sistemas

Leia mais

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno

Leia mais

Cálculo Numérico. Resumo e Exercícios P2

Cálculo Numérico. Resumo e Exercícios P2 Cálculo Numérico Resumo e Exercícios P2 Fórmulas e Resumo Teórico P2 Interpolação Em um conjunto de n pontos (x #, y # ), consiste em encontrar uma função f tal que f x # = y # para todo i = 1,2,, n. Na

Leia mais

Introdução às Equações Diferenciais Ordinárias e Suas Aplicações.

Introdução às Equações Diferenciais Ordinárias e Suas Aplicações. Universidade Federal de Campina Grande UFCG Centro de Ciências e Tecnologia CCT Unidade Acadêmica de Matemática UAMat Programa de Educação Tutorial PET Introdução às Equações Diferenciais Ordinárias e

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

GILVANDRO CORREIA DE MELO JÚNIOR UMA ABORDAGEM SOBRE TAXA DE VARIAÇÃO E DERIVADA

GILVANDRO CORREIA DE MELO JÚNIOR UMA ABORDAGEM SOBRE TAXA DE VARIAÇÃO E DERIVADA UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPUS I CENTRO DE CIÊNCIAS E TECNOLOGIAS CCT DEPARTAMENTO DE MATEÁTICA - DM CURSO DE GRADUAÇÃO EM LICENCIATURA PLENA EM MATEMÁTICA GILVANDRO CORREIA DE MELO JÚNIOR UMA

Leia mais

Comparação entre métodos numéricos computacionais na solução de um problema de valor inicial

Comparação entre métodos numéricos computacionais na solução de um problema de valor inicial Comparação entre métodos numéricos computacionais na solução de um problema de valor inicial Comparison of computational numerical methods in an initial value problem solution ISSN 2316-9664 Volume 7,

Leia mais

PROGRAMA ANALÍTICO DE DISCIPLINA

PROGRAMA ANALÍTICO DE DISCIPLINA Página: 1 Data de Criação: 06/06/2005 Período Início: 2005/01 Horas Aula Teórica: 68 Prática: 0 ExtraClasse: 0 Carga Horária:68 Número de Créditos: 4 Sistema de Aprovação: Aprovação por Média/Freqüência

Leia mais

Comparação entre métodos numéricos: Runge-Kutta de quarta ordem e previsor-corretor

Comparação entre métodos numéricos: Runge-Kutta de quarta ordem e previsor-corretor Comparação entre métodos numéricos: Runge-Kutta de quarta ordem e previsor-corretor Comparison of numerical methods: fourth-order Runge-Kutta and predictor-corrector ISSN 2316-9664 Volume 7, dez. 2016

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias MAP-2121 - Primeiro exercício programa - 2006 Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias Instruções gerais - Os exercícios computacionais pedidos

Leia mais

Equações Diferenciais com Aplicações. Discente: André Felipe Araújo Ramalho Orientadora: Profª. Jacqueline Félix de Brito.

Equações Diferenciais com Aplicações. Discente: André Felipe Araújo Ramalho Orientadora: Profª. Jacqueline Félix de Brito. Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia CCT Unidade Acadêmica de Matemática e Estatística UAME Programa de Educação Tutorial PET MATEMÁTICA Equações Diferenciais com

Leia mais

Cálculo Numérico Algoritmos

Cálculo Numérico Algoritmos Cálculo Numérico Algoritmos Valdenir de Souza Junior Abril de 2007 Sumário 1 Introdução 1 2 Raízes de Equações 1 2.1 Método da Bisseção......................... 2 2.2 Método de Newton-Raphson.....................

Leia mais

Conceitos e Princípios Gerais

Conceitos e Princípios Gerais Conceitos e Princípios Gerais Conceitos e Princípios Gerais Fases na resolução de problemas físicos Resolução do Modelo Matemático Conceitos Básicos de Cálculo Numérico Erros em Processos Numéricos Fases

Leia mais

EQUAÇÕES DIFERENCIAIS: UMA ABORDAGEM PARA GRADUAÇÃO

EQUAÇÕES DIFERENCIAIS: UMA ABORDAGEM PARA GRADUAÇÃO EQUAÇÕES DIFERENCIAIS: UMA ABORDAGEM PARA GRADUAÇÃO Marcelo F. de Oliveira 1 ; Licéia A. Pires 1 Universidade Federal do Paraná Faculdade Educacional Araucária RESUMO A análise do comportamento de um fenômeno

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO

Leia mais

Equações Diferenciais Ordinárias de Ordem Superior a Um

Equações Diferenciais Ordinárias de Ordem Superior a Um Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 31: O Nascimento do Cálculo 26/06/2015 2 Estudo de curvas no século XVII Movimento descrevem representado por Equações Curvas representadas

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

CÁLCULO NUMÉRICO PLANO DE ENSINO 5º P. ENG. BIOMÉDICA/CIVIL Prof. Rodrigo Baleeiro Silva

CÁLCULO NUMÉRICO PLANO DE ENSINO 5º P. ENG. BIOMÉDICA/CIVIL Prof. Rodrigo Baleeiro Silva CÁLCULO NUMÉRICO 5º P. ENG. BIOMÉDICA/CIVIL 2016 Prof. Rodrigo Baleeiro Silva APRESENTAÇÃO Rodrigo Baleeiro Silva; Mestrando em Modelagem computaciol e sistemas(unimontes); Pós Graduado em Docência em

Leia mais

Métodos Numéricos. Professor Tenani - 9 de Agosto de 2015

Métodos Numéricos. Professor Tenani -  9 de Agosto de 2015 Métodos Numéricos Professor Tenani - www.professortenani.com.br 9 de Agosto de 2015 Métodos Numéricos Professor Tenani - www.professortenani.com.br 1 / 51 Índice Métodos Numéricos Professor Tenani - www.professortenani.com.br

Leia mais

Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma:

Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma: Edgard Jamhour Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma: n f x, x 0 = n=0 a n x x 0 f(x,x 0 ) = a 0 + a 1 (x-x 0 ) + a 2 (x-x

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Introdução à Resolução de Equações Diferenciais Ordinárias

Leia mais

Modelagem Matemática das Vibrações de uma Corda Elástica

Modelagem Matemática das Vibrações de uma Corda Elástica Modelagem Matemática das Vibrações de uma Corda Elástica Rossato, Jéssica Helisa Hautrive 1 ; Bisognin, Eleni 2 Trabalho de Iniciação Científica, Probic - CNPq 1 Curso de Engenharia de Materiais do Centro

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Método das Secantes. Marina Andretta/Franklina Toledo ICMC-USP. 4 de setembro de 2012

Método das Secantes. Marina Andretta/Franklina Toledo ICMC-USP. 4 de setembro de 2012 Determinação de raízes de funções: Método das Secantes Marina Andretta/Franklina Toledo ICMC-USP 4 de setembro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS 1. INTRODUÇÃO Sistemas dinâmicos lineares são aqueles que obedecem ao princípio da superposição, isto é, um sistema

Leia mais

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial Capítulo 7: Equações Diferenciais Ordinárias. Problema de valor inicial Definição: Sea uma função de e n um número inteiro positivo então uma relação de igualdade que envolva... n é camada uma equação

Leia mais

BROWN, Theodore L. et al. Química: a ciência central. 9.ed. São Paulo: Pearson Prentice Hall, p. ISBN

BROWN, Theodore L. et al. Química: a ciência central. 9.ed. São Paulo: Pearson Prentice Hall, p. ISBN Engenharia Matriz Curricular Fase 2 Qua, 26 de Setembro de 2012 14:35 QMC1 Química Geral Conceitos fundamentais da química. Estrutura da matéria. Periodicidade química: propriedades atômicas e tendências

Leia mais

Modelagem matemática de fenômenos geométricos e físicos através de Equações Diferenciais Ordinárias: Catenária e Curva de Reflexão

Modelagem matemática de fenômenos geométricos e físicos através de Equações Diferenciais Ordinárias: Catenária e Curva de Reflexão Modelagem matemática de fenômenos geométricos e físicos através de Equações Diferenciais Ordinárias: Catenária e Curva de Reflexão André Luís Pereira Souza * (IC), Miguel Antônio de Camargo (PQ) *andreluis020@hotmail.com

Leia mais

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x).

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x). Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II A C Tort 25 de setembro de 2012 1 O fator integrante Suponha que a EDO de primeira ordem seja da forma: Multiplicando a EDO por

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

ANÁLISE DE ALGORITMOS: PARTE 4

ANÁLISE DE ALGORITMOS: PARTE 4 ANÁLISE DE ALGORITMOS: PARTE 4 Prof. André Backes 2 Função recursiva Função que chama a si mesma durante a sua execução Exemplo: fatorial de um número N. Para N = 4 temos 4! = 4 * 3! 3! = 3 * 2! 2! = 2

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

O USO DE EQUAÇÕES DIFERENCIAIS NO CRESCIMENTO DE BACTÉRIAS

O USO DE EQUAÇÕES DIFERENCIAIS NO CRESCIMENTO DE BACTÉRIAS O USO DE EQUAÇÕES DIFERENCIAIS NO CRESCIMENTO DE BACTÉRIAS E. CIMADON 1 ;L. TRES ;M. P. PERGHER ;P. P. RUSEZYT 4 ; S. D. STROSCHEIN 5 Resumo: Este artigo tem por objetivo apresentar um problema com o intuito

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS

MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS MAPLET PROGRAMADA VIA MAPLE: SOLUÇÃO NUMÉRICA DE UM PVI UTILIZANDO OS MÉTODOS LINEARES DE PASSO MÚLTIPLO EXPLÍCITOS ADILANDRI MÉRCIO LOBEIRO 1, OILSON ALBERTO GONZATTO JUNIOR 2, TEREZA MARIA PEREIRA GARCIA

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet

Leia mais

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO 1 EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO Bruno Claudino dos Santos, Viviane Colucci, Vitória Maria Almeida Teodoro de Oliveira, Felipe Borino Giroldo, eticia Darlla Cordeiro. Universidade Tecnológica

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Ensaio sobre o método de Newton-Raphson usando calculadora científica.

Ensaio sobre o método de Newton-Raphson usando calculadora científica. Ensaio sobre o método de Newton-Raphson usando calculadora científica www.matematicaemdados.com.br Matemática em dados Ensaio sobre o método de Newton-Raphson usando calculadora científica Djanir Angelim

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

Programa Analítico de Disciplina MAT147 Cálculo II

Programa Analítico de Disciplina MAT147 Cálculo II Programa Analítico de Disciplina Departamento de Matemática - Centro de Ciências Exatas e Tecnológicas Aprovação processo: 00/4802 Número de créditos: 4 Teóricas Práticas Total Duração em semanas: 15 Carga

Leia mais

1 of 7 7/31/2013 10:56 PM Instituto de Matemática Departamento de Matemática Pura e Aplicada Dados de identificação Período Letivo: 2013/2 Professor Responsável: TERESA TSUKAZAN DE RUIZ Disciplina: EQUAÇÕES

Leia mais

SUMÁRIO VOLUME II 8 MODELAGEM MATEMÁTICA COM EQUAÇÕES DIFERENCIAIS SÉRIES INFINITAS CURVAS PARAMÉTRICAS E POLARES; SEÇÕES CÔNICAS 692

SUMÁRIO VOLUME II 8 MODELAGEM MATEMÁTICA COM EQUAÇÕES DIFERENCIAIS SÉRIES INFINITAS CURVAS PARAMÉTRICAS E POLARES; SEÇÕES CÔNICAS 692 SUMÁRIO VOLUME II 8 MODELAGEM MATEMÁTICA COM EQUAÇÕES DIFERENCIAIS 561 8.1 Modelagem com equações diferenciais 561 8.2 Separação de variáveis 568 8.3 Campos de direções; método de Euler 579 8.4 Equações

Leia mais

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias MAP2310 14/03/2005 Análise Numérica e Equações Diferenciais I 1 o Semestre de 2005 1 1 Equações Diferenciais Ordinárias 1.1 Introdução Equações envolvendo uma variável independente real t, uma função desconhecida

Leia mais

Matemática Aplicada Mestrados em Engenharia Industrial e Engenharia Química

Matemática Aplicada Mestrados em Engenharia Industrial e Engenharia Química Matemática Aplicada Mestrados em Engenharia Industrial e Engenharia Química Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 1 o Semestre 2007/2008

Leia mais