ONDAS ELETROMAGNÉTICAS

Documentos relacionados
Exemplos de fontes emissoras de ondas eletromagnéticas

Universidade Federal do Rio de Janeiro

Capítulo 11. Corrente alternada

Capítulo Cálculo com funções vetoriais

As cargas das partículas 1, 2 e 3, respectivamente, são:

Notas de aula - profa Marlene - função logarítmica 1

Circuitos Elétricos I EEL420

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Modelos Não-Lineares

Lista de Exercícios 1

Cap. 5 - Tiristores 1

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Seção 5: Equações Lineares de 1 a Ordem

O gráfico que é uma reta

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova.

RELATIVIDADE ESPECIAL

4. SINAL E CONDICIONAMENTO DE SINAL

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1

Capítulo 2: Proposta de um Novo Retificador Trifásico

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

4a. Lista de Exercícios

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Curvas e Superfícies Paramétricas

Cálculo Vetorial - Lista de Exercícios

Problema Inversor CMOS

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

Cálculo I - Lista 3: Derivadas

4 Análise de Sensibilidade

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

A entropia de uma tabela de vida em previdência social *

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

Características dos Processos ARMA

Econometria Semestre

Exercícios sobre o Modelo Logístico Discreto

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda)

DEPARTAMENTO DE ESTATÍSTICA - UFSCar 6 a Lista de exercício de Teoria de Matrizes 28/06/2017

Primeira Lista de Exercícios

Sinais e Sistemas. Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames)

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

VERSÃO PARA IMPRESSÃO

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

Transcrição:

LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo elérico, e assim por diane, ocorrendo desa forma, a propagação de energia. As ondas eleromagnéicas podem se propagar ano no espaço livre, como aravés de ouros meios e disposiivos, especialmene projeados e consruídos para esse fim..1 Ondas leromagnéicas lanas Ondas eleromagnéicas planas são aquelas que se propagam em um única direção. São boas aproimações de ondas reais em aplicações práicas. Configurações mais compleas podem ser obidas como superposições de ondas planas. m uma onda eleromagnéica plana os veores inensidade de campo magnéico e de campo elérico são perpendiculares enre si em odos os ponos do espaço. A figura.1 ilusra uma onda plana se propagando na direção perpendicular ao papel e para fora dese. Observemos que a propagação da onda se dá na direção do produo veorial, direção esa conhecida e obida pela regra da mão direia. Figura.1 Onda plana se propagando para fora do plano do papel m uma onda eleromagnéica plana, os veores inensidade de campo elérico e de campo magnéico possuem apenas uma componene cada, perpendiculares enre sí. or isso, essa onda é conhecida ambém como uma onda eleromagnéica ransversal, ou TM (Transverse lecromagneical). ara nossas deduções, vamor considerar que o veor inensidade de campo magnéico possui apenas a componene em, e o veor inensidade de campo elérico possui sua única componene em. Sendo esa uma onda TM, a direção de propagação se dará na direção. m ouras palavras, e só variam na direção, o que pode ser viso na figura. ara enconrar a epressão de uma onda eleromagnéica plana, vamos nos reporar às equações (1.6) e (1.7) do capíulo anerior, dadas na forma diferencial. Vamos ainda admiir que esa onda eleromagnéica propaga-se em um meio iseno de cargas livres ( = ), e sem perdas, ou seja, com conduividade nula ( = ). Mediane ais hipóeses, repeindo aqui esas mesmas epressões emos: UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino

LTROMAGNTISMO II UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino 4 (.1) (.) Figura. polariação e direção de propagação de onda onda plana Desenvolvendo o roacional do veor inensidade de campo magnéico em coordenadas caresianas (lado esquerdo da equação.1) e epressando a derivada emporal do veor inensidade de campo elérico eremos: (.3) elas considerações feias sobre esa onda plana, o campo magnéico só admie a componene em e o campo elérico apenas em. Ainda pela caracerísica apresenada o campo magnéico não varia na direção. Desa forma, a equação (.3) se redu a:. (.4) Ou pela idenidade veorial: (.5) Desenvolvendo agora o roacional do veor inensidade de campo elérico da equação (.),e epressando a derivada emporal do veor inensidade de campo magnéico em coordenadas caresianas, emos: (.6) ela hipóese da onda plana e pela invariabilidade do campo elérico na direção, a equação (.3) se redu a: (.7) ou ainda: (.) direção de propagação da onda

LTROMAGNTISMO II 5 Derivando (.5) em relação a e (.) em relação a, eremos: (.9) 1 (.1) ela idenidade enre (.9) e (.1): 1 (.11) A equação da onda em fica: (.1) Analogamene, faendo a operação inversa, ou seja, derivando (.) em relação a e (.5) em relação a, eremos a equação da onda em. Assim, (.13) Fica níida a dualidade apresenada pelas equações (.1) e (.13), epressando o mesmo fenômeno eleromagnéico, podendo assim ser uiliadas indisinamene. odemos perceber que ano na equação (.1) como na equação (.13) aparece o ermo. Faendo v = 1 / ( ) podemos escrever: v (.14) O parmero v em dimensão de velocidade, uma das caracerísicas do meio. ara o vácuo ou espaço livre emos: v 1 1 3.1 m / s 9 7 1 (.15) 4 1. 36 sa é a velocidade de propagação de qualquer onda eleromagnéica no espaço livre, praicamene a velocidade da lu no vácuo (,997945 1 m/s) calculada muio anes do surgimeno da eoria eleromagnéica. Mais uma prova de que a lu é uma onda eleromagnéica, em acordo com a demonsração eórica de Mawell. A equação de onda (.1) é uma equação diferencial a derivadas parciais, linear e de segunda ordem que devemos enconrar uma solução. Aqui, nos resringiremos a apresenar uma possível solução para ela, e mosrar que essa solução é correa. Seja a seguine proposa de solução: sen ( m) (.16) UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino

LTROMAGNTISMO II 6 A consane /, onde é o comprimeno de onda, m uma consane a deerminar e o empo. Derivando (.16) uma ve em relação a, eremos: cos ( m) (.17) Derivando novamene em relação a : Derivando agora (.16) em relação a : Derivando novamene em relação a : sen ( m) m cos ( m) m sen ( m) (.1) (.19) (.) Subsiuindo (.19) e (.) em (.1) considerando (.15), emos: m v sen m m sen (.1) Assim, a equação (.16) é uma solução para (.1) se m v (.) Sendo v a velocidade de propagação da onda, uma solução geral para a equação (.1) é: v) sen ( ) (.3) sen ( v Qualquer ermo de (.3) isoladamene ambém é uma solução, assim como a soma dos dois ermos. Soluções para a equação (.1) ambém podem ser escrias de oura maneira, como eponenciais, ouras funções rigonoméricas, ou qualquer oura função que varia harmonicamene. Uma ve que v = f, segue-se que: v f f (.4) onde f é a freqüência, em, e a velocidade (ou freqüência) angular em rad/s. Assim, a equação (.3) pode ser escria como: sen( ) sen( ) (.5) Admiindo que o primeiro ermo em (.5) seja uma solução, vamos analisá-la em função de, para diversos insanes de empo ilusrados na figura.3. ara =,. e sen( ), como mosra a curva (a). ara = T/4, TT 4 e sen cos, conforme a curva (b). UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino

LTROMAGNTISMO II 7 ara = T/, TT e sen sen ara = 3T/4, T3T 4 3 / e sen 3 / cos à curva (d)., correspondendo à curva (c)., o que corresponde (a) 3 4 - (b) 3 4 - (c) 3 4 - (d) 3 4 - Figura.3 cuvas para em 4 insanes de empo Fiando nossa aenção numa fase da onda, ou seja, no pono, podemos perceber que ele caminha para a esquerda com uma velocidade v. orano, o ermo escolhido da equação (.9), represena a propagação de uma onda rerógrada ou aquela que caminha na direção negaiva. UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino

LTROMAGNTISMO II O pono é chamado de pono de fase consane. Assim, no caso da onda rerógrada em análise podemos escrever em ermos cinemáicos que: v ce (.3) d d d d v (.31) v (.3) v é, porano, a velocidade de um pono de fase consane, ou simplesmene a velocidade de fase da onda. emplo.1 No espaço livre (,) 1 3 sen( 1,4 ). Obenha (,) e esboce e, para =. Solução: O veor inensidade de campo elérico esá polariado na direção posiiva. A onda esá se propagando na direção posiiva do eio. ela regra da mão direia ou pelo produo veorial, o veor inensidade de campo magnéico esá polariado na direção negaiva de, conforme pode ser observado na figura.4. B B B,4 1 1,35 1 3 5 sen 1 sen,54 sen,4 1,4 T 1,4 A / m ara =, sen ( ) = sen () Figura.4 roduo veorial, para deerminar a direção de ela equação (ponual) de Mawell: B Desenvolvendo o roacional fica: B Inegrando: 3,4 1 cos 1,4 a Figura.5 sboço das ondas e UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino

LTROMAGNTISMO II 9 XRCÍCIOS 1)- No espaço livre: Obenha uma epressão para (,) (, ) 1,e j 1,5 1 e deermine a direção de propagação. )- No espaço livre: (,) 1,33 1 1 cos 7 4 1 (A / m) Obenha uma epressão para (,). nconre e. 3)- Calcule a ampliude e a direção da onda (,) 1 sen( ) 15sen( ) em =, = 3/4. Se a onda se propaga no espaço livre, enconre a epressão para (,). UNS Naasson ereira de Alcanara Jr. Claudio Vara de Aquino