ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br



Documentos relacionados
Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Aula 4 Ângulos em uma Circunferência

Aula 12 Áreas de Superfícies Planas

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

Aula 10 Triângulo Retângulo

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

NOME :... NÚMERO :... TURMA :...

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

Retas e Planos. Equação Paramétrica da Reta no Espaço

1 ELEMENTOS DA CIRCUNFERÊNCIA

A trigonometria do triângulo retângulo

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

Avaliação 1 - MA Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Rua 13 de junho,

Conceitos e fórmulas

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Potenciação no Conjunto dos Números Inteiros - Z

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

Geometria Analítica Plana.

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Relações Métricas nos. Dimas Crescencio. Triângulos

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

FEIXE DE RETAS PARALELAS TEOREMA DE TALES

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

INSTITUTO TECNOLÓGICO

Raio é o segmento de recta que une um ponto da circunferência com o seu centro.

Se o ABC é isóscele de base AC, determine x.

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 9

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO

Aula 5 Quadriláteros Notáveis

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

Construções Fundamentais. r P r

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

ELIPSES INSCRITAS NUM TRIÂNGULO

Capítulo 5: Aplicações da Derivada

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Triângulos Quaisquer algumas questões resolvidas

Nível 3 IV FAPMAT 28/10/2007

Questão 1. Questão 2. Questão 3. Resposta. Resposta

(CONCURSO PUBLICO DE ADMISSÃO AO COLÉGIO NA VAL / CPACN-2014)

GAAL /1 - Simulado - 1 Vetores e Produto Escalar

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

APOSTILA TECNOLOGIA MECANICA

AV1 - MA UMA SOLUÇÃO. b x

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos. Sergio Lima Netto sergioln@lps.ufrj.br

A B C F G H I. Apresente todas as soluções possíveis. Solução

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Vetores. Definição geométrica de vetores

MATEMÁTICA PROVA DO VESTIBULAR ESAMC RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

1ª Parte Questões de Múltipla Escolha

O conhecimento é a nossa propaganda.

Nesta aula iremos continuar com os exemplos de revisão.

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

Caderno 1: 35 minutos. Tolerância: 10 minutos

Calculando distâncias sem medir

Canguru sem fronteiras 2007

5 LG 1 - CIRCUNFERÊNCIA

Atividade 01 Ponto, reta e segmento 01

Abordagem de geometria no ensino médio partindo de poliedros

PROVA DO VESTIBULAR DA FUVEST ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

Canguru Matemático sem Fronteiras 2015

INTRODUÇÃO À ENGENHARIA

Geometria Plana Noções Primitivas

Matemática SSA 2 REVISÃO GERAL 1

5. DESENHO GEOMÉTRICO

Prog A B C A e B A e C B e C A,B e C Nenhum Pref

Resolução dos Exercícios sobre Derivadas

+ Do que xxx e escadas

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

Arcos na Circunferência

DIDÁTIKA - RESOLUÇÕES DOS EXERCÍCIOS EXTRAS

PERSPECTIVA LINEAR DEFINIÇÕES E TEOREMAS

Ponto, reta e plano no espaço tridimensional, cont.

Construções Elementares com Régua e Compasso

LISTÃO UNIDADE IV. Mensagem:

8º ANO TEOREMA DE PITÁGORAS. Nuno Marreiros. O que é um Teorema? Quem foi Pitágoras?

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

Transcrição:

MATEMÁTICA APLICADA

Disciplina: Matemática Aplicada Trigonometria e aplicações Introduzimos aqui alguns conceitos relacionados com a Trigonometria no triângulo retângulo, assunto comum na oitava série do Ensino Fundamental. Também dispomos de uma página mais aprofundada sobre o assunto tratado no âmbito do Ensino Médio. A trigonometria possui uma infinidade de aplicações práticas. Desde a antiguidade já se usava da trigonometria para obter distâncias impossíveis de serem calculadas por métodos comuns. Algumas aplicações da trigonometria são: Determinação da altura de um certo prédio. Os gregos determinaram a medida do raio de terra, por um processo muito simples. Seria impossível se medir a distância da Terra à Lua, porém com a trigonometria se torna simples. Um engenheiro precisa saber a largura de um rio para construir uma ponte, o trabalho dele é mais fácil quando ele usa dos recursos trigonométricos. Um cartógrafo (desenhista de mapas) precisa saber a altura de uma montanha, o comprimento de um rio, etc. Sem a trigonometria ele demoraria anos para desenhar um mapa. Tudo isto é possível calcular com o uso da trigonometria do triângulo retângulo. Triângulo Retângulo É um triângulo que possui um ângulo reto, isto é, um dos seus ângulos mede noventa graus, daí o nome triângulo retângulo. Como a soma das medidas dos ângulos internos de um triângulo é igual a 180, então os outros dois ângulos medirão 90.

Observação: Se a soma de dois ângulos mede 90, estes ângulos são denominados complementares, portanto podemos dizer que o triângulo retângulo possui dois ângulos complementares. Os lados de um triângulo retângulo recebem nomes especiais. Estes nomes são dados de acordo com a posição em relação ao ângulo reto. O lado oposto ao ângulo reto é a hipotenusa. Os lados que formam o ângulo reto (adjacentes a ele) são os catetos. Termo Cateto Hipotenusa Origem da palavra Cathetós: (perpendicular) Hypoteinusa: Hypó(por baixo) + teino(eu estendo) Para padronizar o estudo da Trigonometria, adotaremos as seguintes notações: Letra Lado Triângulo Vértice = Ângulo Medida a Hipotenusa A = Ângulo reto A=90 b Cateto B = Ângulo agudo B<90 c Cateto C = Ângulo agudo C<90 Nomenclatura dos catetos Os catetos recebem nomes especiais de acordo com a sua posição em relação ao ângulo sob análise. Se estivermos operando com o ângulo C, então o lado oposto, indicado por c, é o cateto oposto ao ângulo C e o lado adjacente ao ângulo C, indicado por b, é o cateto adjacente ao ângulo C. Ângulo Lado oposto Lado adjacente C c cateto oposto b cateto adjacente B b cateto oposto c cateto adjacente Um dos objetivos da trigonometria é mostrar a utilidade do conceitos matemáticos no nosso cotidiano. Iniciaremos estudando as propriedades geométricas e trigonométricas no triângulo retângulo. O estudo da trigonometria é extenso e minucioso. Propriedades do triângulo retângulo 1. Ângulos: Um triângulo retângulo possui um ângulo reto e dois ângulos agudos complementares. 2. Lados: Um triângulo retângulo é formado por três lados, uma hipotenusa (lado maior) e outros dois lados que são os catetos. 3. Altura: A altura de um triângulo é um segmento que tem uma extremidade num vértice e a outra extremidade no lado oposto ao vértice, sendo que este segmento é perpendicular ao lado oposto ao vértice. Existem 3 alturas no triângulo retângulo, sendo que duas delas são os catetos. A outra

altura (ver gráfico acima) é obtida tomando a base como a hipotenusa, a altura relativa a este lado será o segmento AD, denotado por h e perpendicular à base. A hipotenusa como base de um triângulo retângulo Tomando informações da mesma figura acima, obtemos: 1. o segmento AD, denotado por h, é a altura relativa à hipotenusa CB, indicada por a. 2. o segmento BD, denotado por m, é a projeção ortogonal do cateto c sobre a hipotenusa CB, indicada por a. 3. o segmento DC, denotado por n, é a projeção ortogonal do cateto b sobre a hipotenusa CB, indicada por a. Projeções de segmentos Introduziremos algumas idéias básicas sobre projeção. Já mostramos, no início deste trabalho, que a luz do Sol ao incidir sobre um prédio, determina uma sombra que é a projeção oblíqua do prédio sobre o solo. Tomando alguns segmentos de reta e uma reta não coincidentes é possível obter as projeções destes segmentos sobre a reta. Nas quatro situações apresentadas, as projeções dos segmentos AB são indicadas por A'B', sendo que no último caso A'=B' é um ponto. Projeções no triângulo retângulo Agora iremos indicar as projeções dos catetos no triângulo retângulo.

1. m = projeção de c sobre a hipotenusa. 2. n = projeção de b sobre a hipotenusa. 3. a = m+n. 4. h = média geométrica entre m e n. Para saber mais, clique sobre média geométrica. Relações Métricas no triângulo retângulo Para extrair algumas propriedades, faremos a decomposição do triângulo retângulo ABC em dois triângulos retângulos menores: ACD e ADB. Dessa forma, o ângulo A será decomposto na soma dos ângulos CÂD=B e DÂB=C. Observamos que os triângulos retângulos ABC, ADC e ADB são semelhantes. Triângulo hipotenusa cateto maior cateto menor ABC a b c ADC b n h ADB c h m Assim: a/b = b/n = c/h a/c = b/h = c/m b/c = n/h = h/m logo: a/c = c/m equivale a c² = a.m a/b = b/n equivale a b² = a.n a/c = b/h equivale a a.h = b.c h/m = n/h equivale a h² = m.n Existem também outras relações do triângulo inicial ABC. Como a=m+n, somando c² com b², obtemos:

c² + b² = a.m + a.n = a.(m+n) = a.a = a² que resulta no Teorema de Pitágoras: a² = b² + c² A demonstração acima, é uma das várias demonstrações do Teorema de Pitágoras. Funções trigonométricas básicas As Funções trigonométricas básicas são relações entre as medidas dos lados do triângulo retângulo e seus ângulos. As três funções básicas mais importantes da trigonometria são: seno, cosseno e tangente. O ângulo é indicado pela letra x. Função Notação Definição seno cosseno tangente sen(x) cos(x) tan(x) medida do cateto oposto a x medida da hipotenusa medida do cateto adjacente a x medida da hipotenusa medida do cateto oposto a x medida do cateto adjacente a x Tomando um triângulo retângulo ABC, com hipotenusa H medindo 1 unidade, então o seno do ângulo sob análise é o seu cateto oposto CO e o cosseno do mesmo é o seu cateto adjacente CA. Portanto a tangente do ângulo analisado será a razão entre seno e cosseno desse ângulo. CO CO sen(x)= = H 1 CA CA cos(x)= = H 1 CO sen(x) tan(x)= = CA cos(x) Relação fundamental: Para todo ângulo x (medido em radianos), vale a importante relação: cos²(x) + sen²(x) = 1 Introdução Geometria Plana: Elementos de geometria plana A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada teorema. Alguns desses objetos são aceitos sem demonstração, isto é, você deve aceitar tais conceitos porque os mesmos parecem funcionar na prática!

A Geometria permite que façamos uso dos conceitos elementares para construir outros objetos mais complexos como: pontos especiais, retas especiais, planos dos mais variados tipos, ângulos, médias, centros de gravidade de objetos, etc. Algumas definições Polígono: É uma figura plana formada por três ou mais segmentos de reta que se intersectam dois a dois. Os segmentos de reta são denominados lados do polígono.os pontos de intersecção são denominados vértices do polígono. A região interior ao polígono é muitas vezes tratada como se fosse o próprio polígono Polígono convexo: É um polígono construído de modo que os prolongamentos dos lados nunca ficarão no interior da figura original. Se dois pontos pertencem a um polígono convexo, então todo o segmento tendo estes dois pontos como extremidades, estará inteiramente contido no polígono. Polígono No. de lados Polígono No. de lados Triângulo 3 Quadrilátero 4 Pentágono 5 Hexágono 6 Heptágono 7 Octógono 8 Eneágono 9 Decágono 10 Undecágono 11 Dodecágono 12 Polígono não convexo: Um polígono é dito não convexo se dados dois pontos do polígono, o segmento que tem estes pontos como extremidades, contiver pontos que estão fora do polígono. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. Paralelogramo: É um quadrilátero cujos lados opostos são paralelos. Pode-se mostrar que num paralelogramo:

1. Os lados opostos são congruentes; 2. Os ângulos opostos são congruentes; 3. A soma de dois ângulos consecutivos vale 180 o ; 4. As diagonais cortam-se ao meio. Losango: Paralelogramo que tem todos os quatro lados congruentes. As diagonais de um losango formam um ângulo de 90 o. Retângulo: É um paralelogramo com quatro ângulos retos e dois pares de lados paralelos. Quadrado: É um paralelogramo que é ao mesmo tempo um losango e um retângulo. O quadrado possui quatro lados com a mesma medida e também quatro ângulos retos. Trapézio: Quadrilátero que só possui dois lados opostos paralelos com comprimentos distintos, denominados base menor e base maior. Pode-se mostrar que o segmento que liga os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e o seu comprimento é a média aritmética das somas das medidas das bases maior e menor do trapézio. Trapézio isósceles: Trapézio cujos lados não paralelos são congruentes. Neste caso, existem dois ângulos congruentes e dois lados congruentes. Este quadrilátero é obtido pela retirada de um triângulo isósceles menor superior (amarelo) do triângulo isósceles maior. "Pipa" ou "papagaio": É um quadrilátero que tem dois pares de lados consecutivos congruentes, mas os seus lados opostos não são congruentes.

Neste caso, pode-se mostrar que as diagonais são perpendiculares e que os ângulos opostos ligados pela diagonal menor são congruentes. A importância da circunferência A circunferência possui características não comumente encontradas em outras figuras planas, como o fato de ser a única figura plana que pode ser rodada em torno de um ponto sem modificar sua posição aparente. É também a única figura que é simétrica em relação a um número infinito de eixos de simetria. A circunferência é importante em praticamente todas as áreas do conhecimento como nas Engenharias, Matemática, Física, Química, Biologia, Arquitetura, Astronomia, Artes e também é muito utilizado na indústria e bastante utilizada nas residências das pessoas. Circunferência e Círculo Circunferência: A circunferência é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência. Esta talvez seja a curva mais importante no contexto das aplicações. Círculo: (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo O é menor ou igual que uma distância r dada. Quando a distância é nula, o círculo se reduz a um ponto. O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. No gráfico acima, a circunferência é a linha de cor verde-escuro que envolve a região verde, enquanto o círculo é toda a região pintada de verde reunida com a circunferência. Pontos interiores de um círculo e exteriores a um círculo Pontos interiores: Os pontos interiores de um círculo são os pontos do círculo que não estão na circunferência. Pontos exteriores: Os pontos exteriores a um círculo são os pontos localizados fora do círculo.

Raio, corda e diâmetro Raio: Raio de uma circunferência (ou de um círculo) é um segmento de reta com uma extremidade no centro da circunferência e a outra extremidade num ponto qualquer da circunferência. Na figura, os segmentos de reta OA, OB e OC são raios. Corda: Corda de uma circunferência é um segmento de reta cujas extremidades pertencem à circunferência. Na figura, os segmentos de reta AC e DE são cordas. Diâmetro: Diâmetro de uma circunferência (ou de um círculo) é uma corda que passa pelo centro da circunferência. Observamos que o diâmetro é a maior corda da circunferência. Na figura, o segmento de reta AC é um diâmetro. Posições relativas de uma reta e uma circunferência. Reta secante: Uma reta é secante a uma circunferência se essa reta intercepta a circunferência em dois pontos quaisquer, podemos dizer também que é a reta que contém uma corda. Reta tangente: Uma reta tangente a uma circunferência é uma reta que intercepta a circunferência em um único ponto P. Este ponto é conhecido como ponto de tangência ou ponto de contato. Na figura ao lado, o ponto P é o ponto de tangência e a reta que passa pelos pontos E e F é uma reta tangente à circunferência. Observações: 1. Raios e diâmetros são nomes de segmentos de retas mas às vezes são também usados como os comprimentos desses segmentos. Por exemplo, podemos dizer que ON é o raio da circunferência, mas é usual dizer que o raio ON da circunferência mede 10cm ou que o raio ON tem 10cm. 2. Tangentes e secantes são nomes de retas, mas também são usados para denotar segmentos de retas ou semi-retas. Por exemplo, "A tangente PQ" pode significar a reta tangente à circunferência

que passa pelos pontos P e Q mas também pode ser o segmento de reta tangente à circunferência que liga os pontos P e Q. Do mesmo modo, a "secante AC" pode significar a reta que contém a corda BC e também pode ser o segmento de reta ligando o ponto A ao ponto C. Propriedades das secantes e tangentes. Se uma reta s, secante a uma circunferência de centro O, intercepta a circunferência em dois pontos distintos A e B e se M é o ponto médio da corda AB, então o segmento de reta OM é perpendicular à reta secante s. 1. Se uma reta s, secante a uma circunferência de centro O, intercepta a circunferência em dois pontos distintos A e B, a perpendicular à reta s que passa pelo centro O da circunferência, passa também pelo ponto médio da corda AB. 2. Seja OP um raio de uma circunferência, onde O é o centro e P um ponto da circunferência. Toda reta perpendicular ao raio OP é tangente à circunferência no ponto de tangência P. 3. Toda reta tangente a uma circunferência é perpendicular ao raio no ponto de tangência. Posições relativas de duas circunferências Reta tangente comum: Uma reta que é tangente a duas circunferências ao mesmo tempo é denominada uma tangente comum. Há duas possíveis retas tangentes comuns: a interna e a externa. Tangente comum interna Tangente comum externa Ao traçar uma reta ligando os centros de duas circunferências no plano, esta reta separa o plano em dois semi-planos. Se os pontos de tangência, um em cada circunferência, estão no mesmo semi-plano, temos uma reta tangente comum externa. Se os pontos de tangência, um em cada circunferência, estão em semiplanos diferentes, temos uma reta tangente comum interna.

Circunferências internas: Uma circunferência C1 é interna a uma circunferência C2, se todos os pontos do círculo C1 estão contidos no círculo C2. Uma circunferência é externa à outra se todos os seus pontos são pontos externos à outra. Circunferências concêntricas: Duas ou mais circunferências com o mesmo centro mas com raios diferentes são circunferências concêntricas. Circunferências tangentes: Duas circunferências que estão no mesmo plano, são tangentes uma à outra, se elas são tangentes à mesma reta no mesmo ponto de tangência. Circunf. tangentes externas Circunf. tangentes internas As circunferências são tangentes externas uma à outra se os seus centros estão em lados opostos da reta tangente comum e elas são tangentes internas uma à outra se os seus centros estão do mesmo lado da reta tangente comum.circunferências secantes: são aquelas que possuem somente dois pontos distintos em comum. Segmentos tangentes: Se AP e BP são segmentos de reta tangentes à circunferência nos ponto A e B, então esses segmentos AP e BP são congruentes. Polígonos circunscritos Polígono circunscrito a uma circunferência é o que possui seus lados tangentes à circunferência. Ao mesmo tempo, dizemos que esta circunferência está inscrita no polígono. Quadrilátero circunscrito Triângulo circunscrito Propriedade dos quadriláteros circunscritos: Se um quadrilátero é circunscrito a uma circunferência, a soma de dois lados opostos é igual a soma dos outros dois lados.

Arco de circunferência e ângulo central. Seja a circunferência de centro O traçada ao lado. Pela definição de circunferência temos que OP=OQ=OR=... e isto indica que os raios de uma circunferência são segmentos congruentes. Circunferências congruentes: São circunferências que possuem raios congruentes. Aqui a palavra raio refere-se ao segmento de reta e não a um número. Ângulo central: Em uma circunferência, o ângulo central é aquele cujo vértice coincide com o centro da circunferência. Na figura, o ângulo a é um ângulo central. Se numa circunferência de centro O, um ângulo central determina um arco AB, dizemos que AB é o arco correspondente ao ângulo AÔB. Arco menor: É um arco que reúne dois pontos da circunferência que não são extremos de um diâmetro e todos os pontos da circunferência que estão dentro do ângulo central cujos lados contém os dois pontos. Na figura, a linha vermelha indica o arco menor AB ou arco menor ACB. Arco maior: É um arco que liga dois pontos da circunferência que não são extremos de um diâmetro e todos os pontos da circunferência que estão fora do ângulo central cujos lados contém os dois pontos. Na figura a parte azul é o arco maior, o ponto D está no arco maior ADB enquanto o ponto C não está no arco maior mas está no arco menor AB, assim é frequentemente usado três letras para representar o arco maior. Semicircunferência: É um arco obtido pela reunião dos pontos extremos de um diâmetro com todos os pontos da circunferência que estão em um dos lados do diâmetro. O arco RTS é uma semicircunferência da circunferência de centro P e o arco RUS é outra. Observações: Em uma circunferência dada, temos que: 1. A medida do arco menor é a medida do ângulo central correspondente a m(aôb) e a medida do arco maior é menos a medida do arco menor m(aôb). 360 graus 2. A medida da semicircunferência é 180 graus ou Pi radianos. 3. Em circunferências congruentes ou em uma simples circunferência, arcos que possuem medidas iguais são arcos congruentes. 4. Em uma circunferência, se um ponto E está entre os pontos D e F, que são extremidades de um arco menor, então: m(de)+m(ef)=m(df). 5. Se o ponto E está entre os pontos D e F, extremidades de um arco maior: m(de)+m(ef)=m(def). Apenas esta última relação faz sentido para as duas últimas figuras apresentadas.

Propriedades de arcos e cordas Uma corda de uma circunferência é um segmento de reta que une dois pontos da circunferência. Se os extremos de uma corda não são extremos de um diâmetro eles são extremos de dois arcos de circunferência sendo um deles um arco menor e o outro um arco maior. Quando não for especificada, a expressão arco de uma corda se referirá ao arco menor e quanto ao arco maior sempre teremos que especificar. Observações 1. Se um ponto X está em um arco AB e o arco AX é congruente ao arco XB, o ponto X é o ponto médio do arco AB. Além disso, qualquer segmento de reta que contém o ponto X é um segmento bissetor do arco AB. O ponto médio do arco não é o centro do arco, o centro do arco é o centro da circunferência que contém o arco. 2. Para obter a distância de um ponto O a uma reta r, traçamos uma reta perpendicular à reta dada passando pelo ponto O. O ponto T obtido pela interseção dessas duas retas é o ponto que determinará um extremo do segmento OT cuja medida representa a distância entre o ponto e a reta. 3. Em uma mesma circunferência ou em circunferências congruentes, cordas congruentes possuem arcos congruentes e arcos congruentes possuem cordas congruentes. (Situação 1). 4. Um diâmetro que é perpendicular a uma corda é bissetor da corda e também de seus dois arcos. (Situação 2). 5. Em uma mesma circunferência ou em circunferências congruentes, cordas que possuem a mesma distância do centro são congruentes. (Situação 3). Situação 1 Situação 2 Situação 3 Polígonos inscritos na circunferência Um polígono é inscrito em uma circunferência se cada vértice do polígono é um ponto da circunferência e neste caso dizemos que a circunferência é circunscrita ao polígono. Propriedade dos quadriláteros inscritos: Se um quadrilátero está inscrito em uma circunferência então os ângulos opostos são suplementares, isto é a soma dos ângulos opostos é 180 graus e a soma de todos os quatro ângulos é 360 graus.

 + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Ângulos inscritos Ângulo inscrito: relativo a uma circunferência é um ângulo com o vértice na circunferência e os lados secantes a ela. Na figura à esquerda abaixo, o ângulo AVB é inscrito e AB é o arco correspondente. Medida do ângulo inscrito: A medida de um ângulo inscrito em uma circunferência é igual à metade da respectiva medida do ângulo central, ou seja, a metade de seu arco correspondente, isto é: m = n/2 = (1/2) m(ab) Ângulo reto inscrito na circunferência: O arco correspondente a um ângulo reto inscrito em uma circunferência é a semi-circunferência. Se um triângulo inscrito numa semicircunferência tem um lado igual ao diâmetro, então ele é um triângulo retângulo e esse diâmetro é a hipotenusa do triângulo. Ângulo semi-inscrito e arco capaz Ângulo semi-inscrito: Ângulo semi-inscrito ou ângulo de segmento é um ângulo que possui um dos lados tangente à circunferência, o outro lado secante à circunferência e o vértice na circunferência. Este ângulo determina um arco (menor) sobre a circunferência. No gráfico ao lado, a reta secante passa pelos pontos A e B e o arco correspondente ao ângulo semi-inscrito BAC é o arco AXB onde X é um ponto sobre o arco. Observação: A medida do ângulo semi-inscrito é a metade da medida do arco interceptado. Na figura, a medida do ângulo BÂC é igual a metade da medida do arco AXB. Arco capaz: Dado um segmento AB e um ângulo k, pergunta-se: Qual é o lugar geométrico de todos os pontos do plano que contém os vértices dos ângulos cujos lados passam pelos pontos A e B sendo todos os ângulos congruentes ao ângulo k? Este lugar geométrico é um arco de circunferência denominado arco capaz.

Construção do arco capaz com régua e compasso: 1. Traçar um segmento de reta AB; 2. Pelo ponto A, trace uma reta t formando com o segmento AB um ângulo congruente a k (mesma medida que o ângulo k); 3. Traçar uma reta p perpendicular à reta t passando pelo ponto A; 4. Determinar o ponto médio M do segmento AB; 5. Traçar a reta mediatriz m ao segmento AB; 6. Obter o ponto O que é a interseção entre a reta p e a mediatriz m. 7. Com o compasso centrado no ponto O e abertura OA, traçar o arco de circunferência localizado acima do segmento AB. 8. O arco que aparece em vermelho no gráfico ao lado é o arco capaz. Observação: Todo ângulo inscrito no arco capaz AB, com lados passando pelos pontos A e B são congruentes e isto significa que, o segmento de reta AB é sempre visto sob o mesmo ângulo de visão se o vértice deste ângulo está localizado no arco ca cpaz. Na figura abaixo à esquerda, os ângulos que passam por A e B e têm vértices em V 1, V 2, V 3,..., são todos congruentes (a mesma medida). Na figura acima à direita, o arco capaz relativo ao ângulo semi-inscrito m de vértice em A é o arco AVB. Se n é ângulo central então a medida de m é o dobro da medida de n, isto é: m(arco AB) = 2 medida(m) = medida(n) Outras propriedades com cordas e segmentos Agora apresentaremos alguns resultados que fazem a conexão entre segmentos e cordas, que não são evidentes à primeira vista. Se a reta AB é tangente à circunferência no ponto B então o segmento AB é o segmento tangente de A até a circunferência. Se a reta RT é uma reta secante que intercepta a circunferência em S e T e R é um ponto exterior a circunferência, então RT é um segmento secante e RS é a parte externa do segmento secante. Na sequência, usaremos a notação (PZ) para representar a medida do segmento PZ, em função das dificuldades que a linguagem HTML proporciona para a apresentação de materiais de Matemática. Cordas interceptando dentro da circunferência: Se duas cordas de uma mesma circunferência se interceptam em um ponto P dentro da circunferência, então o produto das medidas das duas partes de uma corda é igual ao produto das medidas das duas partes da outra corda. (AP).(PB) = (CP).(PD) Potência de ponto (1): A partir de um ponto fixo P dentro de uma circunferência, tem-se que (PA).(PB) é constante qualquer que seja a corda AB passando por este ponto P. Este produto (PA).(PB) é denominado a potência do ponto P em relação a esta circunferência.

Secantes interceptando fora da circunferência: Consideremos duas retas secantes a uma mesma circunferência que se interceptam em um ponto P localizado fora da circunferência. Se uma das retas passa pelos pontos A e B e a outra reta passa pelos pontos C e D da circunferência, então o produto da medida do segmento secante PA pela medida da sua parte exterior PB é igual ao produto da medida do segmento secante PC pela medida da sua parte exterior PD. (PA).(PB)=(PC).(PD) Potência de ponto (2): Se P é um ponto fixo fora da circunferência, o produto (PA).(PB) é constante qualquer que seja a reta secante à circunferência passando por P. Este produto (PA).(PB) é também denominado a potência do ponto P em relação à circunferência. Secante e tangente interceptando fora da circunferência: Se uma reta secante e uma reta tangente a uma mesma circunferência se interceptam em um ponto P fora da circunferência, a reta secante passando pelos pontos A e B e a reta tangente passando pelo ponto T de tangência à circunferência, então o quadrado da medida do segmento tangente PT é igual ao produto da medida do segmento secante PA pela medida da sua parte exterior PB. (PT) 2 = (PA).(PB) Exemplo: Consideremos a figura ao lado com as cordas AB e CD tendo interseção no ponto P, com (AP) = 5cm, (PB) = 8cm, (CD) = 14cm. Iremos obter a medida do segmento PD. Tomaremos (PD)=x, para podermos escrever que (CP) = 14-x e somente utilizaremos a unidade de medida no final. Desse modo, (PD).(PC)=(PA).(PB) e podemos escrever que x(14-x)=5 8, de onde segue que x²- 14x+40=0. Resolvendo esta equação do segundo grau, obtemos: x=4 ou x=10, o que significa que se uma das partes do segmento medir 4cm, a outra medirá 10cm. Pela figura anexada, observamos que o segmento PD é maior que o segmento PC e concluímos que (PD)=10cm e (PC)=4cm.