Introdução aos Métodos Numéricos

Tamanho: px
Começar a partir da página:

Download "Introdução aos Métodos Numéricos"

Transcrição

1 Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho

2 Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas de Equações Lineares. Métodos Iterativos Integração Numérica Introdução à Resolução de Equações Diferenciais Ordinárias

3 Conteúdo Sistemas de Equações Lineares. Métodos diretos

4 Aqui abordaremos resolver um sistema A x= b supondo ser possível fazer a seguinte fatoração onde L e U são A=LU

5 Matrizes L e U L=( l l 31 l l 41 l 42 l l n 1,1 l n 1,2 l n 1,3 l n 1,4 1 0 l n,1 l n,2 l n,3 l n,4 l n,n 1 U =( u11 u12 u13 u14 u1,n 1 u1,n 0 u 22 u 23 u 24 u 2,n 1 u 2,n 0 0 u 33 u 34 u 3,n 1 u 3,n u 44 u 4,n 1 u 4,n u n 1,n 1 u n 1,n u n, n podemos demonstrar que se A tem det(a 0 então tal fatoração sempre é possível, embora permutações de linhas possam ser necessárias

6 Um dos que primeiro estudaram as questões numéricas da fatoração LU foi Alan Turing, considerado um dos pais da computação. Ele apresenta a fatoração LU num artigo de 1948 onde são analizados os erros gerados no processo de eliminação gaussiana.

7 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Você consegue achar a fatoração aplicando o que você sabe sobre multiplicação de matrizes.

8 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Se você multiplicar a primeira linha de L por cada coluna de U você obterá a 11 =u 11 ;a 12 =u 12 ;a 13 =u 13 ; ;a 1 n =u 1 n

9 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Se agora, sabendo a primeira linha de U, multiplicar as linhas de L pela primeira coluna de U você obterá a 21 =l 21 u 11 ;a 31 =l 31 u 11 ;a 41 =l 41 u 11 ; ;a n 1 =l n 1 u 11

10 Obtemos u 1 j =a 1 j ; j=1, n e l i1 = a i 1 u 11 ;i=2, n

11 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Multipliquemos a segunda linha de L pelas colunas de U a 22 =l 21 u 12 +u 22 ;a 23 =l 21 u 13 +u 23 ;a 24 =l 21 u 14 +u 24 ; ; a 2 n =l 21 u 1 n +u 2 n

12 Obtemos u 2 j =a 2 j u 1 j l 21 ; j=2, n Observe que neste cálculo não usamos os valores da primeira linha de A. É como se eles não mais existissem.

13 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Multipliquemos linhas de L pela segunda coluna de U a 32 =l 31 u 12 +l 32 u 22 ; a 42 =l 41 u 12 +l 42 u 22 ; ; a n 2 =l n 1 u 12 +l n 2 u 22

14 Obtemos l i2 = a i 2 l i 1 u 12 u 22 ;i=3, n Aqui não usamos os valores da primeira linha de A nem da primeira coluna de A. Eles não são mais necessários.

15 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Multipliquemos a terceira linha de L pelas colunas de U a 33 =l 31 u 13 +l 32 u 23 +u 33 ;a 34 =l 31 u 14 +l 32 u 24 +u 34 ; ; a 3 n =l 31 u 1 n +l 32 u 2 n +u 3 n

16 Obtemos 2 u 3 j =a 3 j l 31 u 1 j l 32 u 2 j =a 3 j k =1 l 3 k u kj ; j=3,n E aqui não necessitamos das duas primeiras linhas de A nem das duas primeiras colunas.

17 Fatoração =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n Multipliquemos linhas de L pela terceira coluna de U a 43 =l 41 u 13 +l 42 u 23 +l 43 u 33 ; ; a n 3 =l n 1 u 13 +l n 2 u 23 +l n 3 u 33

18 Obtemos l i3 = a i3 l i 1 u 13 l i 2 u 23 u 33 = 1 u 33 [ 2 a i 3 k =1 ] l ik u ;i=4, n k 3 Novamente não faremos referência as duas primeiras linhas de A e as duas primeiras colunas.

19 O algoritmo está começando a ficar nítido... e para i=2 até n u 1 j =a 1 j ; j=1, n l ij = 1 u jj [ j 1 a ij k=1 ] l ik u ;i> j kj i 1 u ij =a ij k =1 l ik u kj ; j>1

20 Pensando como computeiro... Pense bem... Nós humanos necessitamos de organizar um pouco o mundo. Mas os computadores já nascem ordenados. Eles não necessitam organizar a fatoração em duas matrizes separadas pois o algoritmo não confunde os dados, a não ser que o programador falhe.

21 Pensando como computeiro... Observe que não necessitamos de guardar no computador a fatoração em duas matrizes separadas =( a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n ( a11 a12 a13 a14 a1,n 1 ann u12 u13 u14 u1,n 1 u1, n l u 22 u 23 u 24 u 2,n 1 u 2, n l 31 l u 33 u 34 u 3,n 1 u 3, n l 41 l 42 l u 44 u 4,n 1 u 4, n l n 1,1 l n 1,2 l n 1,3 l n 1, u n 1, n 1 u n 1,n l n,1 l n,2 l n,3 l n,4 l n,n 1 1(u u n,n O algoritmo que se segue aproveita o espaço que não armazena mais valores necessários à fatoração

22 Algoritmo: Para i=1 até n Para j 1 até i 1 s a ij Para k=1, j 1 s s a ik a kj Para a ij s/a jj j 1 até n Também é uma algoritmo ingênuo s a ij Para k=1 até i 1 s s a ik a kj a ij s

23 Mas e a resolução do sistema? Observe que A x= b ( LU x= b L y= b onde U x= y o que nos deixa com dois SEL L y= b U x= y

24 Mas os sistemas são triangulares e de custo baixo O(n 2 E quanto custa a fatoração?

25 Mas os sistemas são triangulares e de custo baixo O(n 2 E quanto custa a fatoração? O(n 3! O custo computacional total da resolução do SEL é o mesmo que a eliminação gaussiana Então, para que isto?

26 Antes de responder vamos para um exemplo

27 Seja o sistema ( x=( que é conhecido nosso...

28 Fatoremos a matriz ( =( l l 31 l l 41 l 42 l 43 1 multiplicando os valores das matrizes. Primeira linha de L pelas colunas de U ( u11 u12 u13 u14 0 u 22 u 23 u u 33 u u 44 u 11 =a 11 =2 ;u 12 =a 12 =4 ;u 13 =a 14 = 1;u 14 =a 14 =1

29 ( =( l l 31 l l 41 l 42 l 43 1 Multiplicando as linhas de L pela primeira coluna de U. Os valores da segunda coluna da matriz L serão ( u 22 u 23 u u 33 u u 44 4=2l 21 ;6=2l 31 ;2=2l 41 l 21 = 2 ;l 31 =3;l 41 =1

30 ( =( l l 42 l 43 1 Multiplicando a segunda linha de L pelas colunas de U. Os valores da segunda linha da matriz U serão ( u 22 u 23 u u 33 u u 44 1= 2 4+u 22 ;6=( 2 ( 1+u 23 ;2= 2 1+u 24 u 22 =9;u 23 =4 ;u 24 =4

31 ( =( l l 42 l 43 1 Multiplicando as linhas de L pela segunda coluna de U. Os valores da segunda coluna da matriz L serão ( u 33 u u 44 3=3 4+9l 32 ;6=1 4+9l 42 l 32 = 1;l 42 =2/9

32 ( =( /9 l 43 1 Multiplicando a terceira linha de L pelas colunas de U. Os valores da terceira linha da matriz U serão ( u 33 u u 44 3=3 ( u 33 ;1= u 34 u 33 =10 ;u 34 =2

33 ( =( /9 l 43 1 Multiplicando as linhas de L pela terceira coluna de U. Os valores da terceira coluna da matriz L serão ( u 44 2= 1 1+2/9 4+10l 43 l 43 =19/90

34 ( =( /9 19/90 1 Multiplicando a quarta linha de L pelas colunas de U. Os valores da quarta linha da matriz U serão ( u 44 4=1 1+2/ /90 2+u 44 u 44 =76/ 45

35 Matriz fatorada ( =( /9 19/90 1 Observe a matriz final da eliminação gaussiana: ela é idêntica à matriz U obtida. Se você olhar os valores dos m's da eliminação gaussiana, irá encontrá-los com os sinais trocados na matriz L. Não é coincidência... ( / 45

36 Observe ainda que resolvemos 16 equações de uma variável Fatorar uma matriz nxn é equivalente a resolver equações de uma variável n 2

37 Resolvendo o sistema ( x=(

38 Resolvendo o sistema ( =( /9 19/90 1 ( / 45

39 Na fatoração LU o sistema original é transformado em dois sistemas A x= b LU x= b L y= b e U x= y ou seja, resolveremos primeiro ( y=( 1 2/9 19/

40 Calculemos cada valor do vetor y como abaixo ( y=( 1 2/9 19/ y 1 =4 ; 2 y 1 + y 2 = y 2 =9 y 2 =17 3 y 1 y 2 + y 3 = y 3 = 1 y 3 =4 y 1 +2/9 y 2 +19/90 y 3 + y 4 =12 4+2/ /90 4+ y 4 =12 y 4 =152/ 45

41 O vetor solução da primeira equação será y=( 152/45 que é o vetor constante no final da eliminação gaussiana.

42 O segundo sistema U x= y será ( x=( /45 152/ 45 que é equivalente a fazer a retrosubstituição na eliminação gaussiana. Ou seja,

43 O segundo sistema U x= y será ( x=( /45 152/ 45 x 4 = =2 10 x 3 +2 x 4 =4 10 x =4 x 3 = =0 9 x 2 +4 x 3 +4 x 4 =17 9 x 2 = x 2 = 9 9 =1 2 x 1 +4 x 2 x 3 +x 4 =4 2 x 1 = x 1 = 2 2 = 1

44 O vetor solução do problema será x=( Observe que resolvemos 8 equações de uma variável para obtermos a solução. Se fosse um sistema nxn seriam 2n equações de uma variável

45 Vimos que resolver por fatoração LU é equivalente a resolver n 2 +2n sistemas de equações de uma variável Vimos que há uma equivalência entre a resolução por fatoração LU e eliminação gaussiana No entanto, a fatoração LU é um pouco menos sensível à instabilidade numérica em relação à eliminação gaussiana. Além disso, a fatoração LU diminui o custo computacional de alguns problemas.

46 Retornemos um pouco...

47 Método dos Resíduos No método dos resíduos temos que resolver uma sequência de k SEL A z 1 = r 1 ; A z 2 = r 2 ; A z 3 = r 3 ; A z k = r k Se fizermos eliminação gaussiana em todos os sistemas o custo será alto. No caso, aproximadamente n 3 k.

48 Método dos Resíduos No entanto, se fizermos por fatoração LU, o primeiro sistema terá custo O(n 3 mas os demais sistemas o custo será de aproximadamente n 2 k. O custo total será bem menor...

49 Um Exemplo Um outro problema: Inversão de matrizes Se det(a é não nulo, então se AB=I diremos que B é a matriz inversa de A. Observe que este é um sistema de equações cuja a incógnita não é um vetor mas uma matriz

50 Um Exemplo Vamos ao velho truque: Resolveremos este problema por multiplicação de matrizes...

51 Um Exemplo O sistema abaixo pode ser escrito como AB=I ( a11 a12 a13 a14 a1,n 1 ann a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n ( a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n b11 b12 b13 b14 b1, n 1 b1n =( b 21 b 22 b 23 b 24 b 2,n 1 b 2n b 31 b 32 b 33 b 34 b 3,n 1 b 3n b 41 b 42 b 43 b 44 b 4,n 1 b 4, n b n 1,1 b n 1,2 b n 1,3 b n 1,4 b n 1,n 1 b n 1,n b n,1 b n,2 b n,3 b n,4 b n,n 1 l nn

52 Um Exemplo ( a11 a12 a13 a14 a1,n 1 ann a 21 a 22 a 23 a 24 a 2,n 1 a 2,n a 31 a 32 a 33 a 34 a 3,n 1 a 3,n a 41 a 42 a 43 a 44 a 4, n 1 a 4, n ( a n 1,1 a n 1,2 a n 1,3 a n 1,4 a n 1,n 1 a n 1,n a n,1 a n,2 a n,3 a n,4 a n,n 1 a n,n b11 b12 b13 b14 b1, n 1 b1n =( b 21 b 22 b 23 b 24 b 2,n 1 b 2n b 31 b 32 b 33 b 34 b 3,n 1 b 3n b 41 b 42 b 43 b 44 b 4,n 1 b 4, n b n 1,1 b n 1,2 b n 1,3 b n 1,4 b n 1,n 1 b n 1,n b n,1 b n,2 b n,3 b n,4 b n,n 1 l nn Mas este sistema pode ser entendido como a matriz A multiplicada por cada coluna de B resultando em cada coluna de I

53 Um Exemplo Ou seja, A b 1 = I 1 A b 2 = I 2 A b 3 = I 3 A b n = I n onde são as k-ésimas colunas de B e I. b k e I k

54 Um Exemplo Inverter uma matriz corresponde a resolvermos n sistemas de equações lineares O números de operações necessárias para inverter uma matriz usando fatoração LU é de aproximadamente 4n 3 /3, quatro vezes mais que a eliminação gaussiana ou a fatoração LU. O algoritmo de Gauss-Jordan para inversão de matrizes faz isto de maneira compacta

55 Um Exemplo Ou seja, em geral não é uma boa ideia resolver um sistema invertendo a matriz associada ao sistema pois o custo é quatro vezes maior que por eliminação ou fatoração LU. O maior número de operações também gerará mais ruído numérico. Mesmo assim, há casos especiais que inverter pode ser interessante.

56 Sistemas de equações lineares Mas continuamos com a instabilidade numérica da eliminação gaussiana e da fatoração LU Há como evitar? Não... Mas podemos diminuir o desastre...

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Modelagem Computacional. Parte 6 2

Modelagem Computacional. Parte 6 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 6 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 6 e 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Uma equação linear com n variáveis tem a seguinte forma:

Uma equação linear com n variáveis tem a seguinte forma: Edgard Jamhour Uma equação linear com n variáveis tem a seguinte forma: a 1 x 1 + a 2 x 2 +... + a n x n = b onde a 1, a 2,..., a n e b são constantes reais. Um sistema de equações lineares é um conjunto

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares

Leia mais

Laboratório de Simulação Matemática. Parte 6 2

Laboratório de Simulação Matemática. Parte 6 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Sistemas Lineares. ( Aula 3 )

Sistemas Lineares. ( Aula 3 ) Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 Decomposição LU 3 Decomposição LU com Pivotamento 4 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Eliminação de Gauss Transforma

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Sistemas de Equações Lineares Métodos Iterativos

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A x + A x +... + A n x n b A x + A x +... + A n x n b............... A n x + A n x +... + A nn x n b n A A... A n x b A A... A n x b.................. A n A n...

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,

Leia mais

Fatoração LU André Luís M. Martinez UTFPR

Fatoração LU André Luís M. Martinez UTFPR Fatoração LU André Luís M. Martinez UTFPR Agosto de 2011 Sumário 1 Introdução Sumário 1 Introdução 2 Fatoração LU Sumário 1 Introdução 2 Fatoração LU 3 Método de Crout Sumário 1 Introdução 2 Fatoração

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Sistemas Lineares Métodos Diretos

Sistemas Lineares Métodos Diretos Sistemas Lineares Métodos Diretos Andrea M. P. Valli, Lucia Catabriga avalli@inf.ufes.br, luciac@inf.ufes.br March 19, 2018 Andrea M. P. Valli, Lucia Catabriga (UFES) DI-PPGI/UFES March 19, 2018 1 / 34

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 3 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Decomposição LU A matriz de coeficientes é decomposta em L e U L é uma matriz

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A 11 x 1 + A 12 x 2 +... + A 1n x n = b 1 A 21 x 1 + A 22 x 2 +... + A 2n x n = b 2............... A n1 x1 + A n2 x 2 +... + A nn x n = b n A 11 A 12... A 1n x

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Sistemas de Equações Lineares. Métodos Iterativos

Leia mais

Consideremos um sistema linear de n equações lineares e n incógnitas, do tipo:

Consideremos um sistema linear de n equações lineares e n incógnitas, do tipo: 58 3. Resolução de Sistemas Lineares MÉTODOS DIRETOS: são métodos que determinam a solução de um sistema linear com um número finito de operações. Entre os métodos diretos (Eliminação de Gauss, Eliminação

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

Sistema de Equaçõs Lineares

Sistema de Equaçõs Lineares Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais

Sistemas Lineares - Decomposição LU

Sistemas Lineares - Decomposição LU Sistemas Lineares - Decomposição LU Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES,

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 3 Sistemas de Equações Lineares Um sistema com n equações lineares pode ser escrito na forma : ou na forma matricial onde com a 1,1 x 1 + a 1,2 x 2 + + a x n = b 1 a 2,1 x 1 + a 2,2 x 2 + + a

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 13 04/2014 Sistemas de Equações Lineares Parte 3 MÉTODOS ITERATIVOS Cálculo Numérico 3/44 MOTIVAÇÃO Os métodos iterativos

Leia mais

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos:

Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Método de Gauss O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Triangulares Procedimento

Leia mais

Figura : Monitoria. Monitoria Cálculo Numérico

Figura : Monitoria. Monitoria Cálculo Numérico Monitoria Cálculo Numérico 207-02 NOME Email Dia / Horário Local Ana Sofia Nunez de Abreu nunez.asofia@gmail.com Sex. 0-2h D- Luiz Eduardo Xavier luizeduardosxavier@gmail.com Ter, 5-7h Lab Rafael Mendes

Leia mais

x 1 + b a 2 a 2 : declive da recta ;

x 1 + b a 2 a 2 : declive da recta ; - O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS.

SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé Lista 1: Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = ( 3, 1, 8, 2) T, calcule v 1,

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

Sistemas Lineares - Eliminação de Gauss

Sistemas Lineares - Eliminação de Gauss 1-28 Sistemas Lineares - Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-28

Leia mais

SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé. Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. x y z

SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé. Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. x y z SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = (, 1, 8, 2) T, calcule v 1, v 2 e v. 2. Dada a matriz: A = 5 7 2

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Conteúdo específico Aspectos básicos Obtenção direta

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Solução de sistemas de equações lineares

Solução de sistemas de equações lineares Cálculo Numérico Solução de sistemas de equações lineares Prof Daniel G Alfaro Vigo dgalfaro@dccufrjbr Departamento de Ciência da Computação IM UFRJ Parte I Métodos diretos Motivação: Circuito elétrico

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1 Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Parte 0: Normas de Vetor e Matriz

Parte 0: Normas de Vetor e Matriz Cálculo Numérico SME0104 ICMC-USP Lista : Sistemas Lineares Métodos Diretos Parte 0: Normas de Vetor e Matriz 1. Dadas as matrizes: 3 5 7 A = 3 6 B = 1 7 1 (a) Calcule A 1, B 1 e C 1 (b) Calcule A, B e

Leia mais

Sistemas Lineares. Métodos Iterativos Estacionários

Sistemas Lineares. Métodos Iterativos Estacionários -58 Sistemas Lineares Estacionários Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo -

Leia mais

Cálculo Numérico. Aula 8 Sistemas de Equações Lineares / Parte /04/2014. Prof. Guilherme Amorim*

Cálculo Numérico. Aula 8 Sistemas de Equações Lineares / Parte /04/2014. Prof. Guilherme Amorim* Cálculo Numérico Aula 8 Sistemas de Equações Lineares / Parte 1 2014.1-29/04/2014 Prof. Guilherme Amorim* gbca@cin.ufpe.br * Com algumas modificações pelo Prof. Sergio Queiroz Perguntas... O que é um sistema

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo da disciplina Erros em Aproximações Numéricas Sistemas de Equações

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Marina Andretta ICMC-USP 28 de março de 2012 Baseado no livro Análise Numérica, de R. L. Burden e

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Tópicos em Programação Linear e Inteira Prof. Dr.Ricardo Ribeiro dos Santos ricr.santos@gmail.com Universidade Católica Dom Bosco UCDB Engenharia de Computação Revisão: Tópicos de

Leia mais

Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Sistemas Lineares. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Sistemas Lineares Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)

Leia mais

Lista de Exercícios. 3x 1 + 2x 2 5x 3 = 0 2x 1 3x 2 + x 3 = 0 x 1 + 4x 2 x 3 = 4. 3x 1 + 4x 2 + 3x 3 = 10 x 1 + 5x 2 x 3 = 7 6x 1 + 3x 2 + 7x 3 = 15

Lista de Exercícios. 3x 1 + 2x 2 5x 3 = 0 2x 1 3x 2 + x 3 = 0 x 1 + 4x 2 x 3 = 4. 3x 1 + 4x 2 + 3x 3 = 10 x 1 + 5x 2 x 3 = 7 6x 1 + 3x 2 + 7x 3 = 15 Universidade Federal de Santa Catarina Centro Tecnológico Depto de Informática e Estatística Disciplina: INE5202-Cálculo Numérico Cap. 3 - Sistemas Lineares Lista de Exercícios 3.2 - Eliminação Gaussiana.

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

Física Computacional 18 matrizes: inversão, valores próprios e sol. da eq. De Schrödinger

Física Computacional 18 matrizes: inversão, valores próprios e sol. da eq. De Schrödinger Física Computacional 18 matrizes: inversão, valores próprios e sol. da eq. De Schrödinger 1. Trabalhar com matrizes, e aplicá-las a um problema físico a. Inversão da matriz, eliminação de Gauss b. Determinante

Leia mais

Solução de Sistemas Lineares: Métodos Exatos

Solução de Sistemas Lineares: Métodos Exatos Capítulo 4 Solução de Sistemas Lineares: Métodos Exatos 4 Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do potencial

Leia mais

Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn

Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn Guia-1 Revisão de Matrizes, Determinantes, Vetores e Sistemas Lineares SMA00 - Complementos de Geometria e Vetores Estagiária PAE: Ingrid Sofia Meza Sarmiento 1 Introdução Este texto cobre o material sobre

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Programação de Computadores

Programação de Computadores Programação de Computadores Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Estrutura de dados: listas Manipulando listas Vetores como listas

Leia mais

1, , ,

1, , , Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Licenciatura em Informática Fundamentos de Geometria Analítica e Álgebra Linear Profª Sheila R. Oro Este texto

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Sistemas Lineares e Matrizes

Sistemas Lineares e Matrizes Sistemas Lineares e Matrizes Lino Marcos da Silva linosilva@univasfedubr Obs Este texto ainda está em fase de redação Por isso, peço a gentileza de avisar-me sobre a ocorrência de erros conceituais, gráficos

Leia mais

Universidade Federal de Santa Catarina Centro Tecnológico Depto de Informática e Estatística Disciplina: INE50-Cálculo Numérico Cap. - Sistemas Lineares Lista de Exercícios - Soluções 1. Resposta: a) x

Leia mais

Matriz de Admitância e Cálculo de Redes

Matriz de Admitância e Cálculo de Redes Matriz de Admitância e Cálculo de Redes Matriz de Admitância e Fatoração LU Joinville, 22 de Abril de 2013 Escopo dos Tópicos Abordados Matriz de Admitância e Cálculo de Redes Matriz de Admitância; Eliminação

Leia mais

Lista de exercícios 9 Mudanças de Bases

Lista de exercícios 9 Mudanças de Bases Universidade Federal do Paraná 2 semestre 2016 Algebra Linear Olivier Brahic Lista de exercícios 9 Mudanças de Bases Observação: no livro do Leon [1] o autor chama de matriz de transição de B 1 para B

Leia mais

Tema: Método da Eliminação de Gauss

Tema: Método da Eliminação de Gauss Universidade Federal de Uberlândia Faculdade de Computação GMA038 Introdução à Ciência da Computação Prof. Renato Pimentel Trabalho de implementação 25,0 pontos Prazo máximo para entrega: 15 de julho (até

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Fórmula de Lagrange

Leia mais

PESQUISA OPERACIONAL

PESQUISA OPERACIONAL PESQUISA OPERACIONAL Uma breve introdução. Prof. Cleber Almeida de Oliveira Apostila para auxiliar os estudos da disciplina de Pesquisa Operacional por meio da compilação de diversas fontes. Esta apostila

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Instabilidade Numérica

Leia mais

Introdução aos Sistemas Lineares

Introdução aos Sistemas Lineares Introdução aos Sistemas Lineares Profa Cynthia de O Laga Ferreira Métodos Numéricos e Computacionais I - SME005 Frequentemente, em todas as áres científicas, precisamos resolver problemas na forma Ax =

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais