Resolução de Sistemas Lineares. Ana Paula

Tamanho: px
Começar a partir da página:

Download "Resolução de Sistemas Lineares. Ana Paula"

Transcrição

1 Resolução de Sistemas Lineares

2 Sumário 1 Aula Anterior 2 Decomposição LU 3 Decomposição LU com Pivotamento 4 Revisão

3 Aula Anterior Aula Anterior

4 Aula Anterior Aula Anterior Eliminação de Gauss Transforma o sistema linear num sistema equivalente com matriz de coeficientes triangular superior Resolve o sistema equivalente utilizando substituições retroativas Eliminação de Gauss com estratégias de pivotamento Evita que o pivô seja nulo e evita efeitos numéricos

5 Decomposição LU Decomposição LU

6 Decomposição LU Decomposição LU Uma matriz quadrada A pode ser decomposta como A = LU onde L é uma matriz triangular inferior com diagonal principal unitária U é uma matriz triangular superior Assim, Ax = b LUx = b Definindo Ux = y, então pode-se resolver e depois Ly = b Ux = y (por substituições sucessivas) (por substituições retroativas)

7 Decomposição LU Decomposição LU Uma matriz quadrada A pode ser decomposta como A = LU onde L é uma matriz triangular inferior com diagonal principal unitária U é uma matriz triangular superior Assim, Ax = b LUx = b Definindo Ux = y, então pode-se resolver e depois Ly = b Ux = y (por substituições sucessivas) (por substituições retroativas)

8 Decomposição LU Decomposição LU Uma matriz quadrada A pode ser decomposta como A = LU onde L é uma matriz triangular inferior com diagonal principal unitária U é uma matriz triangular superior Assim, Ax = b LUx = b Definindo Ux = y, então pode-se resolver e depois Ly = b Ux = y (por substituições sucessivas) (por substituições retroativas)

9 Decomposição LU Decomposição LU Uma matriz quadrada A pode ser decomposta como A = LU onde L é uma matriz triangular inferior com diagonal principal unitária U é uma matriz triangular superior Assim, Ax = b LUx = b Definindo Ux = y, então pode-se resolver e depois Ly = b Ux = y (por substituições sucessivas) (por substituições retroativas)

10 Decomposição LU Decomposição LU Determinante da Matriz A det(a) = det(lu) = det(l) det(u) = 1 det(u) = u 11 u u nn

11 Decomposição LU Decomposição LU Obtenção das Matrizes L e U As matrizes L e U podem ser obtidas pela definição de produto e igualdade de matrizes a 11 a 12 a a 1n u 11 u 12 u u 1n a 21 a 22 a a 2n l u 22 u u 2n a 31 a 32 a a 3n = l 31 l u u 3n a n1 a n2 a n3... a nn l n1 l n2 l n u nn As matrizes podem então ser obtidas na ordem: 1 a linha de U 1 a coluna de L 2 a linha de U 2 a coluna de L.

12 Decomposição LU Decomposição LU Obtenção das Matrizes L e U 1 a linha de U 1 a coluna de L a 11 = 1u 11 u 11 = a 11 a 12 = 1u 12 u 12 = a 12. a 1n = 1u 1n u 1n = a 1n a 21 = l 21 u 11 l 21 = a 21 u 11 a 31 = l 31 u 11 l 31 = a 31 u 11. a n1 = l n1 u 11 l n1 = a n1 u 11

13 Decomposição LU Decomposição LU Obtenção das Matrizes L e U 1 a linha de U 1 a coluna de L a 11 = 1u 11 u 11 = a 11 a 12 = 1u 12 u 12 = a 12. a 1n = 1u 1n u 1n = a 1n a 21 = l 21 u 11 l 21 = a 21 u 11 a 31 = l 31 u 11 l 31 = a 31 u 11. a n1 = l n1 u 11 l n1 = a n1 u 11

14 Decomposição LU Decomposição LU Obtenção das Matrizes L e U 2 a linha de U 2 a coluna de L a 22 = l 21 u u 22 u 22 = a 22 l 21 u 12 a 23 = l 21 u u 23 u 23 = a 23 l 21 u 13. a 2n = l 21 u 1n + 1u 2n u 2n = a 2n l 21 u 1n a 32 = l 31 u 12 + l 32 u 22 l 32 = a 32 l 31 u 12 u 22 a 42 = l 41 u 12 + l 42 u 22 l 42 = a 42 l 41 u 12 u 22. a n2 = l n1 u 12 + l n2 u 22 l n2 = a n2 l n1 u 12 u 22

15 Decomposição LU Decomposição LU Obtenção das Matrizes L e U 2 a linha de U 2 a coluna de L a 22 = l 21 u u 22 u 22 = a 22 l 21 u 12 a 23 = l 21 u u 23 u 23 = a 23 l 21 u 13. a 2n = l 21 u 1n + 1u 2n u 2n = a 2n l 21 u 1n a 32 = l 31 u 12 + l 32 u 22 l 32 = a 32 l 31 u 12 u 22 a 42 = l 41 u 12 + l 42 u 22 l 42 = a 42 l 41 u 12 u 22. a n2 = l n1 u 12 + l n2 u 22 l n2 = a n2 l n1 u 12 u 22

16 Decomposição LU Decomposição LU Obtenção das Matrizes L e U De forma geral, tem-se que i 1 u ij = a ij l ik u kj ; k=1 i j l ij = j 1 a ij l ik u kj k=1 u jj ; i > j

17 Decomposição LU Decomposição LU Entrada: Matriz A, n 1 inicio 2 para i = 1,..., n faça 3 para j = i,..., n faça i 1 4 u ij a ij l ik u kj ; k=1 5 para j = i + 1,..., n faça i 1 a ji l jk u ki 6 l ji k=1 u ii ; Algoritmo 1: Decomposição LU - Complexidade O(n 3 ) Na prática, L e U podem ser armazenadas sobre a matriz A

18 Decomposição LU Decomposição LU Via Eliminação de Gauss A Eliminação de Gauss pode ser utilizada para decompor A nas matrizes L e U U é a matriz triangular superior resultante L é a matriz triangular inferior formada pelos multiplicadores m ij e com diagonal principal unitária

19 Decomposição LU Decomposição LU Passos a serem seguidos: Determine as matrizes L e U a partir da Eliminação de Gauss Resolva o sistema Ly = b, usando método de substituições sucessivas; Resolva o sistema U x = y, usando método de substituições retroativas.

20 Decomposição LU Decomposição LU Nota-se que A decomposição é realizada com complexidade O(n 3 ) Os sistemas lineares com matrizes de coeficientes triangulares podem ser resolvidos com complexidade O(n 2 ) A vantagem da Decomposição LU é que a matriz A somente precisa ser decomposta uma vez para resolver diversos sistemas na forma Ax = b 1 Ax = b 2.

21 Decomposição LU Exemplo Exemplo 1 Decomponha a matriz de coeficientes que segue em matrizes L e U usando a Eliminação de Gauss A = Solução: L = e U =

22 Decomposição LU Exemplo Exemplo 1 Decomponha a matriz de coeficientes que segue em matrizes L e U usando a Eliminação de Gauss A = Solução: L = e U =

23 Decomposição LU Exemplo Exemplo 1 Decomponha a matriz de coeficientes que segue em matrizes L e U usando a Eliminação de Gauss A = Solução: L = e U =

24 Decomposição LU Exemplo Exemplo 2 Resolva o sistema linear que segue utilizando a Decomposição LU e calcule o determinante da matriz de coeficientes utilizando a decomposição x 1 x 2 = x Solução: L = 2 1 0, U = 0 1 0, x = det(a) = u 11 u 22 u 33 = 2 e

25 Decomposição LU Exemplo Exemplo 2 Resolva o sistema linear que segue utilizando a Decomposição LU e calcule o determinante da matriz de coeficientes utilizando a decomposição x 1 x 2 = x Solução: L = 2 1 0, U = 0 1 0, x = det(a) = u 11 u 22 u 33 = 2 e

26 Decomposição LU Exemplo Exemplo 2 Resolva o sistema linear que segue utilizando a Decomposição LU e calcule o determinante da matriz de coeficientes utilizando a decomposição x 1 x 2 = x Solução: L = 2 1 0, U = 0 1 0, x = det(a) = u 11 u 22 u 33 = 2 e

27 Decomposição LU com Pivotamento Decomposição LU com Pivotamento

28 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Assim como na Eliminação de Gauss, alguns problemas podem ser evitados ao utilizar estratégias de pivotamento na Decomposição LU A estratégia de pivotamento parcial será vista aqui O vetor de constantes b não participa do processo de decomposição As trocas das linhas devem ser aplicadas a ele quando o sistema triangular estiver sendo resolvido Matriz de permutação Vetor de trocas mais adequado computacionalmente

29 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Definição (Matriz de Permutação): Uma matriz P quadrada de ordem n é uma matriz de permutação se pode ser obtida permutando as colunas (ou linhas) da matriz identidade I de ordem n. Seja P uma matriz de permutação e A uma matriz quadrada de ordem n, então PA é a matriz A com as linhas permutadas AP é a matriz A com as colunas permutadas

30 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Definição (Matriz de Permutação): Uma matriz P quadrada de ordem n é uma matriz de permutação se pode ser obtida permutando as colunas (ou linhas) da matriz identidade I de ordem n. Seja P uma matriz de permutação e A uma matriz quadrada de ordem n, então PA é a matriz A com as linhas permutadas AP é a matriz A com as colunas permutadas

31 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Por exemplo, sejam P = na coluna 2 1 na coluna 3 1 na coluna e A = então PA = = linha 2 de A linha 3 de A linha 1 de A

32 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Por exemplo, sejam P = na coluna 2 1 na coluna 3 1 na coluna e A = então PA = = linha 2 de A linha 3 de A linha 1 de A

33 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Parcial Seja A = PA = LU então LUx = PAx = Pb Logo, o sistema é resolvido definindo Ux = y e resolvendo Ly = Pb resolvendo Ux = y Nota-se que det(a ) = det(lu) = det(u)

34 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Parcial Seja A = PA = LU então LUx = PAx = Pb Logo, o sistema é resolvido definindo Ux = y e resolvendo Ly = Pb resolvendo Ux = y Nota-se que det(a ) = det(lu) = det(u)

35 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Parcial Seja A = PA = LU então LUx = PAx = Pb Logo, o sistema é resolvido definindo Ux = y e resolvendo Ly = Pb resolvendo Ux = y Nota-se que det(a ) = det(lu) = det(u)

36 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Parcial Seja A = PA = LU então LUx = PAx = Pb Logo, o sistema é resolvido definindo Ux = y e resolvendo Ly = Pb resolvendo Ux = y Nota-se que det(a ) = det(lu) = det(u)

37 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Parcial Na prática (implementação) a matriz de permutação P de ordem n é representada por um vetor p de ordem n de valores inteiros p[k] representa o índice da coluna de P que tem o elemento da k-ésima linha igual a 1 p representa as trocas de linhas da matriz A Por exemplo, P = na coluna 2 1 na coluna 3 1 na coluna 1 2 p = 3 1

38 Decomposição LU com Pivotamento Decomposição LU com Pivotamento Parcial Na prática (implementação) a matriz de permutação P de ordem n é representada por um vetor p de ordem n de valores inteiros p[k] representa o índice da coluna de P que tem o elemento da k-ésima linha igual a 1 p representa as trocas de linhas da matriz A Por exemplo, P = na coluna 2 1 na coluna 3 1 na coluna 1 2 p = 3 1

39 Decomposição LU com Pivotamento Exemplo Exemplo 3 Resolva o sistema linear que segue utilizando a Decomposição LU com Pivotamento Parcial x 1 x 2 = x Solução: L = 3/4 1 0, U = /4 e x = 1 1/4 1/ /8 2

40 Decomposição LU com Pivotamento Exemplo Exemplo 3 Resolva o sistema linear que segue utilizando a Decomposição LU com Pivotamento Parcial x 1 x 2 = x Solução: L = 3/4 1 0, U = /4 e x = 1 1/4 1/ /8 2

41 Decomposição LU com Pivotamento Exemplo Exemplo 3 Resolva o sistema linear que segue utilizando a Decomposição LU com Pivotamento Parcial x 1 x 2 = x Solução: L = 3/4 1 0, U = /4 e x = 1 1/4 1/ /8 2

42 Revisão Revisão

43 Revisão Revisão Decomposição LU A matriz de coeficientes é decomposta em L e U L é uma matriz triangular inferior com elementos da diagonal principal unitários U é uma matriz triangular superior Substituindo A por LU então a solução pode ser obtida resolvendo dois sistemas triangulares Ly = b Ux = y A decomposição não envolve o vetor b Decomposição LU com Pivotamento Parcial Vetor com as permutações das linhas

44 Revisão Revisão Decomposição LU com Pivotamento Parcial Vetor com as permutações das linhas

45 Revisão Dúvidas?

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 3 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Decomposição LU A matriz de coeficientes é decomposta em L e U L é uma matriz

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Sistemas Lineares - Decomposição LU

Sistemas Lineares - Decomposição LU Sistemas Lineares - Decomposição LU Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES,

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Sistemas Lineares Métodos Diretos

Sistemas Lineares Métodos Diretos Sistemas Lineares Métodos Diretos Andrea M. P. Valli, Lucia Catabriga avalli@inf.ufes.br, luciac@inf.ufes.br March 19, 2018 Andrea M. P. Valli, Lucia Catabriga (UFES) DI-PPGI/UFES March 19, 2018 1 / 34

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Parte 0: Normas de Vetor e Matriz

Parte 0: Normas de Vetor e Matriz Cálculo Numérico SME0104 ICMC-USP Lista : Sistemas Lineares Métodos Diretos Parte 0: Normas de Vetor e Matriz 1. Dadas as matrizes: 3 5 7 A = 3 6 B = 1 7 1 (a) Calcule A 1, B 1 e C 1 (b) Calcule A, B e

Leia mais

Modelagem Computacional. Parte 6 2

Modelagem Computacional. Parte 6 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 6 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 6 e 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Laboratório de Simulação Matemática. Parte 6 2

Laboratório de Simulação Matemática. Parte 6 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Solução de Sistemas Lineares: Métodos Diretos

Solução de Sistemas Lineares: Métodos Diretos 04 de abril de 2014 Estagiária PAE: Gabriela Reis Prof. Afonso Paiva Neto Solução de Sistemas Lineares: Métodos Diretos Decomposição LU Teorema Seja A uma matriz quadrada de ordem n, e A k o menor principal

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Sistemas Lineares. Métodos Iterativos Estacionários

Sistemas Lineares. Métodos Iterativos Estacionários -58 Sistemas Lineares Estacionários Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo -

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (3) 5º P. ENG. DE COMPUTAÇÃO/TELECOMUNICAÇÃO/CONTROLE FACIT / Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (3) 5º P. ENG. DE COMPUTAÇÃO/TELECOMUNICAÇÃO/CONTROLE FACIT / Prof. Rodrigo Baleeiro Silva ANÁLISE NUMÉRICA Sistemas Lineares () 5º P. ENG. DE COMPUTAÇÃO/TELECOMUNICAÇÃO/CONTROLE FACIT / Prof. Rodrigo Baleeiro Silva Decomposição LU Um matriz quadrada A pode ser escrita como o produto de duas

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

Uma equação linear com n variáveis tem a seguinte forma:

Uma equação linear com n variáveis tem a seguinte forma: Edgard Jamhour Uma equação linear com n variáveis tem a seguinte forma: a 1 x 1 + a 2 x 2 +... + a n x n = b onde a 1, a 2,..., a n e b são constantes reais. Um sistema de equações lineares é um conjunto

Leia mais

Fatoração LU André Luís M. Martinez UTFPR

Fatoração LU André Luís M. Martinez UTFPR Fatoração LU André Luís M. Martinez UTFPR Agosto de 2011 Sumário 1 Introdução Sumário 1 Introdução 2 Fatoração LU Sumário 1 Introdução 2 Fatoração LU 3 Método de Crout Sumário 1 Introdução 2 Fatoração

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Marina Andretta ICMC-USP 28 de março de 2012 Baseado no livro Análise Numérica, de R. L. Burden e

Leia mais

2. Sistemas lineares

2. Sistemas lineares 2. Sistemas lineares 2.1 Conceitos fundamentais. 2.2 Sistemas triangulares. 2.3 Eliminação de Gauss. 2.4 Decomposição LU. 2.5 Decomposição de Cholesky. 2.6 Decomposição espectral. 2.7 Uso da decomposição.

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Marina Andretta/Franklina Toledo ICMC-USP 3 de setembro de 2012 Baseado no livro Análise Numérica,

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais

Nota importante: U é a matriz condensada obtida no processo de condensação da matriz

Nota importante: U é a matriz condensada obtida no processo de condensação da matriz Decomposição P T LU A denominada decomposição P T L U é um processo que pode ser extremamente útil no cálculo computacional, na resolução de sistemas de equações lineares. Propriedade Seja A uma matriz

Leia mais

Universidade Federal do Espírito Santo - UFES

Universidade Federal do Espírito Santo - UFES Universidade Federal do Espírito Santo - UFES Centro Universitário Norte do Espírito Santo - CEUNES Departamento de Matemática Aplicada - DMA Prof Isaac P Santos - 2018/1 Aula: Sistemas Lineares 1 Sistemas

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 3 Sistemas de Equações Lineares Um sistema com n equações lineares pode ser escrito na forma : ou na forma matricial onde com a 1,1 x 1 + a 1,2 x 2 + + a x n = b 1 a 2,1 x 1 + a 2,2 x 2 + + a

Leia mais

Solução de sistemas de equações lineares

Solução de sistemas de equações lineares Cálculo Numérico Solução de sistemas de equações lineares Prof Daniel G Alfaro Vigo dgalfaro@dccufrjbr Departamento de Ciência da Computação IM UFRJ Parte I Métodos diretos Motivação: Circuito elétrico

Leia mais

Laboratório de Matemática Computacional II

Laboratório de Matemática Computacional II Laboratório de Matemática Computacional II Melissa Weber Mendonça 1 1 Universidade Federal de Santa Catarina 2011.2 M. Weber Mendonça (UFSC) Laboratório de Matemática Computacional II 2011.2 1 / 15 Anteriormente...

Leia mais

Solução de Sistemas Lineares: Métodos Exatos

Solução de Sistemas Lineares: Métodos Exatos Capítulo 4 Solução de Sistemas Lineares: Métodos Exatos 4 Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do potencial

Leia mais

Introdução aos Sistemas Lineares

Introdução aos Sistemas Lineares Introdução aos Sistemas Lineares Profa Cynthia de O Laga Ferreira Métodos Numéricos e Computacionais I - SME005 Frequentemente, em todas as áres científicas, precisamos resolver problemas na forma Ax =

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição

Leia mais

Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos:

Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Método de Gauss O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Triangulares Procedimento

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A 11 x 1 + A 12 x 2 +... + A 1n x n = b 1 A 21 x 1 + A 22 x 2 +... + A 2n x n = b 2............... A n1 x1 + A n2 x 2 +... + A nn x n = b n A 11 A 12... A 1n x

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Resolução de Sistemas de Equações Lineares Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A x + A x +... + A n x n b A x + A x +... + A n x n b............... A n x + A n x +... + A nn x n b n A A... A n x b A A... A n x b.................. A n A n...

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Curso de Matemática Aplicada - MCC03 Algebra Linear. Iniciado em 03 de Agosto de 2017 Notas de aula e trabalhos Márcio Vital de Arruda

Curso de Matemática Aplicada - MCC03 Algebra Linear. Iniciado em 03 de Agosto de 2017 Notas de aula e trabalhos Márcio Vital de Arruda Curso de Matemática Aplicada - MCC03 Algebra Linear Iniciado em 03 de Agosto de 2017 Notas de aula e trabalhos Márcio Vital de Arruda Versão 26 de setembro de 2017 1 Sumário 1 Sistemas de Equações Lineares

Leia mais

Computação Paralela: Algoritmos e Aplicações

Computação Paralela: Algoritmos e Aplicações Computação Paralela: Algoritmos e Aplicações Prof. Amit Bhaya, Programa de Engenharia Elétrica, COPPE/UFRJ 06/05/2003 -- 09/05/2003 http://www.nacad.ufrj.br/~amit/ NACAD = Núcleo de Computação de Alto

Leia mais

Sistemas Lineares - Eliminação de Gauss

Sistemas Lineares - Eliminação de Gauss 1-28 Sistemas Lineares - Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-28

Leia mais

MÉTODO DE FATORAÇÃO LU PARA SOLUÇÃO DE SISTEMAS LINEARES

MÉTODO DE FATORAÇÃO LU PARA SOLUÇÃO DE SISTEMAS LINEARES MÉTODO DE FATORAÇÃO LU PARA SOLUÇÃO DE SISTEMAS LINEARES LU FACTORIZATION METHOD FOR SOLVING LINEAR SYSTEMS Natalia Rodrigues da Silva Fernando Pereira de Souza Edivaldo Romanini Universidade Federal de

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do

Leia mais

Consideremos um sistema linear de n equações lineares e n incógnitas, do tipo:

Consideremos um sistema linear de n equações lineares e n incógnitas, do tipo: 58 3. Resolução de Sistemas Lineares MÉTODOS DIRETOS: são métodos que determinam a solução de um sistema linear com um número finito de operações. Entre os métodos diretos (Eliminação de Gauss, Eliminação

Leia mais

Cálculo Numérico, Notas de aula, c Departamento de Computação, Universidade Federal de Ouro Preto. Sistemas Lineares

Cálculo Numérico, Notas de aula, c Departamento de Computação, Universidade Federal de Ouro Preto. Sistemas Lineares Cálculo Numérico, Notas de aula, 018. c Departamento de Computação, Universidade Federal de Ouro Preto. Sistemas Lineares Marcone Jamilson Freitas Souza, Departamento de Computação, Instituto de Ciências

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um

Leia mais

Matriz de Admitância e Cálculo de Redes

Matriz de Admitância e Cálculo de Redes Matriz de Admitância e Cálculo de Redes Matriz de Admitância e Fatoração LU Joinville, 22 de Abril de 2013 Escopo dos Tópicos Abordados Matriz de Admitância e Cálculo de Redes Matriz de Admitância; Eliminação

Leia mais

SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS.

SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé Lista 1: Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = ( 3, 1, 8, 2) T, calcule v 1,

Leia mais

Capítulo 2 - Sistemas de Equações Lineares

Capítulo 2 - Sistemas de Equações Lineares Capítulo 2 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos

Leia mais

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 1 Preliminares MAP3121 - Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 A decomposição de Cholesky aplicada a Finanças O exercício-programa

Leia mais

Tema: Método da Eliminação de Gauss

Tema: Método da Eliminação de Gauss Universidade Federal de Uberlândia Faculdade de Computação GMA038 Introdução à Ciência da Computação Prof. Renato Pimentel Trabalho de implementação 25,0 pontos Prazo máximo para entrega: 15 de julho (até

Leia mais

SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé. Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. x y z

SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé. Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. x y z SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = (, 1, 8, 2) T, calcule v 1, v 2 e v. 2. Dada a matriz: A = 5 7 2

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Cálculo Numérico Algoritmos

Cálculo Numérico Algoritmos Cálculo Numérico Algoritmos Valdenir de Souza Junior Abril de 2007 Sumário 1 Introdução 1 2 Raízes de Equações 1 2.1 Método da Bisseção......................... 2 2.2 Método de Newton-Raphson.....................

Leia mais

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/ INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: / ANÁLISE NUMÉRICA Exercícios Considere o sistema linear 6 x 5 y = a)

Leia mais

Cálculo Numérico. Aula 8 Sistemas de Equações Lineares / Parte /04/2014. Prof. Guilherme Amorim*

Cálculo Numérico. Aula 8 Sistemas de Equações Lineares / Parte /04/2014. Prof. Guilherme Amorim* Cálculo Numérico Aula 8 Sistemas de Equações Lineares / Parte 1 2014.1-29/04/2014 Prof. Guilherme Amorim* gbca@cin.ufpe.br * Com algumas modificações pelo Prof. Sergio Queiroz Perguntas... O que é um sistema

Leia mais

Cálculo Numérico. Aula 10 Sistemas de Equações Lineares / Parte 3 Jacobi & Gauss-Seidel. Prof. Guilherme Amorim

Cálculo Numérico. Aula 10 Sistemas de Equações Lineares / Parte 3 Jacobi & Gauss-Seidel. Prof. Guilherme Amorim Cálculo Numérico Aula 10 Sistemas de Equações Lineares / Parte 3 Jacobi & Gauss-Seidel Prof. Guilherme Amorim gbca@cin.ufpe.br 2014.1-15/05/2014 Aula passada... Método da Decomposição LU Seja o sistema

Leia mais

Universidade Federal do Espírito Santo - UFES

Universidade Federal do Espírito Santo - UFES Universidade Federal do Espírito Santo - UFES Centro Universitário Norte do Espírito Santo - CEUNES Departamento de Matemática Aplicada - DMA Prof. Isaac P. Santos - 2018/1 Aula: Métodos Iterativos Para

Leia mais

Problema 5a by

Problema 5a by Problema 5a by fernandopaim@paim.pro.br Resolva o sistema linear por escalonamento S = x y z=1 x y z= 1 2x y 3z=2 Resolução Utilizaremos quatro métodos para ilustrar a resolução do sistema linear acima.

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0) MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 13 04/2014 Sistemas de Equações Lineares Parte 3 MÉTODOS ITERATIVOS Cálculo Numérico 3/44 MOTIVAÇÃO Os métodos iterativos

Leia mais

Lista de Exercícios. 3x 1 + 2x 2 5x 3 = 0 2x 1 3x 2 + x 3 = 0 x 1 + 4x 2 x 3 = 4. 3x 1 + 4x 2 + 3x 3 = 10 x 1 + 5x 2 x 3 = 7 6x 1 + 3x 2 + 7x 3 = 15

Lista de Exercícios. 3x 1 + 2x 2 5x 3 = 0 2x 1 3x 2 + x 3 = 0 x 1 + 4x 2 x 3 = 4. 3x 1 + 4x 2 + 3x 3 = 10 x 1 + 5x 2 x 3 = 7 6x 1 + 3x 2 + 7x 3 = 15 Universidade Federal de Santa Catarina Centro Tecnológico Depto de Informática e Estatística Disciplina: INE5202-Cálculo Numérico Cap. 3 - Sistemas Lineares Lista de Exercícios 3.2 - Eliminação Gaussiana.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

Algoritmos para o Método dos Mínimos Quadrados

Algoritmos para o Método dos Mínimos Quadrados Algoritmos para o Método dos Mínimos Quadrados Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2210 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP)

Leia mais

Métodos numéricos para soluções de sistemas lineares

Métodos numéricos para soluções de sistemas lineares Métodos numéricos para soluções de sistemas lineares FACIP/UFU 1 de Junho de 2017 (FACIP/UFU) Métodos numéricos para soluções de sistemas lineares 1 de Junho de 2017 1 / 7 Motivação Os métodos numéricos

Leia mais

a 11 a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ Os elementos da diagonal principal são: a ij para i = j

a 11 a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ Os elementos da diagonal principal são: a ij para i = j Cap. 2.- Matrizes e Sistemas Lineares 2.. Definição Matriz é um conjunto organizado de números dispostos em linhas e colunas. Representações Matriz retangular A, m x n (eme por ene) a a 2 a n a A=[ 2 a

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Aula 8 Variações da Eliminação de Gauss/Fatoração LU.

Aula 8 Variações da Eliminação de Gauss/Fatoração LU. Aula 8 Variações da Eliminação de Gauss/Fatoração LU. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Sistemas de Equações Lineares Análise Numérica Artur M C Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 5/6 versão de Setembro de 7 Conteúdo Matrizes 3 Operações com Matrizes

Leia mais

Renato Martins Assunção. 9 de agosto de 2016

Renato Martins Assunção. 9 de agosto de 2016 Métodos Numéricos Renato Martins Assunção DCC - UFMG 9 de agosto de 2016 Renato Martins Assunção (DCC - UFMG) Métodos Numéricos 9 de agosto de 2016 1 / 99 Sistema diagonal Solução de sistema diagonal O

Leia mais

Márcio Antônio de Andrade Bortoloti

Márcio Antônio de Andrade Bortoloti Márcio Antônio de Andrade Bortoloti Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia Sumário 1 Definição Uma matriz quadrada de ordem n é definida positiva

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Sistemas Lineares Comuns na engenharia (calculo de estruturas, redes elétricas, solução de equações diferenciais) Forma

Leia mais

Cálculo Numérico. Resumo e Exercícios P1

Cálculo Numérico. Resumo e Exercícios P1 Cálculo Numérico Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Aritmética de ponto flutuante Operar com o número de algarismos significativos exigido. Arredondar após cada conta. Método de escalonamento

Leia mais

Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software

Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software ª Lista de Exercícios (ALGA) Prof. Helder G. G. de Lima Legenda Cálculos Conceitos Teoria Software Questões. Mostre que as afirmações a seguir não são necessariamente verdadeiras para matrizes quadradas

Leia mais

Figura : Monitoria. Monitoria Cálculo Numérico

Figura : Monitoria. Monitoria Cálculo Numérico Monitoria Cálculo Numérico 207-02 NOME Email Dia / Horário Local Ana Sofia Nunez de Abreu nunez.asofia@gmail.com Sex. 0-2h D- Luiz Eduardo Xavier luizeduardosxavier@gmail.com Ter, 5-7h Lab Rafael Mendes

Leia mais

Sistema de Equaçõs Lineares

Sistema de Equaçõs Lineares Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Matrizes e Sistemas lineares

Matrizes e Sistemas lineares Capítulo 5 Matrizes e Sistemas lineares Neste capítulo estudaremos alguns métodos para calcular a solução de sistemas de equações lineares Apenas nos preocuparemos com sistemas quadrados, isto é, aqueles

Leia mais

Legenda. Questões. 1ª Lista de Exercícios (ALI0001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software

Legenda. Questões. 1ª Lista de Exercícios (ALI0001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software ª Lista de Exercícios (ALI) Prof. Helder G. G. de Lima Legenda Cálculos Conceitos Teoria Software Questões. Exiba matrizes quadradas A e B de ordem que exemplifiquem as situações a seguir. Compare com

Leia mais

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1 Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Introdução à Programação Aula 18 Método de eliminação de Gauss

Introdução à Programação Aula 18 Método de eliminação de Gauss Introdução à Programação Aula 18 Método de eliminação de Gauss Pedro Vasconcelos DCC/FCUP 2015 Pedro Vasconcelos (DCC/FCUP) Introdução à Programação Aula 18 Método de eliminação de Gauss 2015 1 / 23 Nesta

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

Métodos Matemáticos II

Métodos Matemáticos II Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 nbastos@mat.estv.ipv.pt http://www.estv.ipv.pt/paginaspessoais/nbastos.

Leia mais