MÉTODO DOS ELEMENTOS FINITOS
|
|
|
- Sara Rios Viveiros
- 7 Há anos
- Visualizações:
Transcrição
1 MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo Setembro 2017 Faculdade de Engenharia Universidade do Porto 1
2 Caso mais simples Método dos deslocamentos Comportamento linear elástico Pequenos deslocamentos Carregamento quase-estático 2
3 Estudos mais complexos Comportamento não-linear material Grandes deslocamentos Ações/comportamento dinâmico Instabilidade Interação sólido-fluido 3
4 Tipos de estrutura Reticuladas (treliças/pórticos) Laminares (paredes/lajes/cascas) Sólidos tridimensionais 4
5 Estruturas reticuladas Barras prismáticas Treliça 3D Pórtico 3D Elementos de 2 ou 3 nós 5
6 Estruturas laminares Paredes Lajes Cascas h pequeno Superfície média 6
7 Estado plano de tensão Estrutura laminar Superfície média plana Ações/esforços de membrana, i.e., paralelos à superfície média Ex: parede (shear wall) 7
8 Laje Estrutura laminar Superfície média plana Ações normais à superfície média Comportamento à flexão e corte Ex: laje fungiforme 8
9 Casca Estrutura laminar Superfície média qualquer Ações quaisquer Comportamento de membrana, flexão e corte Ex: cúpula esférica, edifício túnel 9
10 Estado plano de deformação Sólido estudado como um problema plano Superfície média plana Ações paralelas à superfície média Deformações desprezáveis na direção normal à superfície média (grande dimensão ou impedimento) Ex: barragem gravidade, muro de suporte 10
11 Estado plano de deformação (cont.) Supõe-se que todos os deslocamentos são paralelos à superfície média Tensão normal à superfície média depende apenas das restantes tensões Só a superfície média é discretizada Superfície média 11
12 Estado axissimétrico Sólido de revolução Estuda-se uma secção plana Ações axissimétricas Deformações axissimétricas Ex: depósito circular sujeito à pressão hidrostática 12
13 Estado axissimétrico (cont.) Depósito circular Eixo de axissimetria Só a secção plana é discretizada Secção plana 13
14 Elem. finitos para problemas planos Elementos triangulares 3 nós Elementos isoparamétricos 4 nós 8 nós 9 nós 14
15 Caso geral Sólido tridimensional Ex: maciço de encabeçamento de estacas 15
16 Elementos finitos para sólidos 3D Elementos tetraédricos 4 nós Elementos isoparamétricos 8 nós 20 nós 16
17 Ações em cada caso de carga Nós Elementos Forças concentradas * Deslocamentos prescritos * Gravíticas * Distribuídas * Concentradas * Térmicas * Possui componentes em correspondência com os graus de liberdade (referencial depende do tipo de elemento) 17
18 Resolução de um problema Leitura e validação dos dados Cálculo das matrizes de rigidez dos elementos Cálculo das ações nodais equivalentes Assemblagem na matriz de rigidez global Introdução das condições fronteira Resolução do sistema de equações Cálculo dos esforços/tensões nos elementos 18
19 Dados - geometria y # Elemento 2 (material 7; secção 9) # Coordenadas (xy) do nó x 19
20 Dados - apoios y # x y # 4º apoio - nó fixo 0 - livre 3 x 20
21 Dados - materiais, secções tipo e-3 1e-5 # Material 7 # Mód. Young Coef. Poisson Peso esp. Coef. dilat. # (MPa) (adim.) (MN/m 3 ) ( o C -1 ) # Secção tipo 9 - espessuras # metros
22 Dados - ações # 3ª carga distribuída - elemento 2 # (t) (n) # Nó 3: # MN/m # Nó 6: n t MN/m 0.26 MN/m t - tangencial n - normal 22
23 Matriz de rigidez de um elemento [K] = (8x8) (Simétrica) K 11 K K ij... K 18 K 88 K ij Força aplicada segundo i quando o elemento está sujeito apenas a um deslocamento unitário segundo j 23
24 Ações nodais equivalentes F F 3 F 1 [F] = (8x1) F i [F] Forças nodais equivalentes a ações complexas F 8 24
25 Assemblagem - mat. rig. global (1) (2) (1) 11 (1) 21 (1) 41 (1) 12 (1) 14 (1) 13 (1) 22 (2) 11 (2) 21 (1) 42 (2) 12 (2) 22 (1) 24 (1) 44 (1) 23 (2) 14 (2) 24 (1) 43 (2) 13 (2) 23 A cada nó corresponde uma submatriz 2x2 5 6 (1) 31 (1) 32 (2) 41 (2) 31 (2) 42 (2) 32 (1) 34 (1) 33 (2) 44 (2) 34 (2) 43 (2) 33 25
26 Introdução das condições fronteira Graus de liberdade com o deslocamento prescrito (nulo ou não nulo) A lista de deslocamentos prescritos não depende do caso de carga O valor do deslocamento prescrito pode variar com o caso de carga 26
27 Resolução do sistema de equações Método direto Método iterativo Eliminação de Gauss Malhas de pequena e média dimensão Gradientes conjugados Malhas de grande dimensão Mais de 5000 equações 27
28 Cálculo das tensões num elemento s y t xy t xy s x t xy t xy s x Ponto de Gauss s y Elemento infinitesimal localizado em cada ponto de Gauss 28
29 Cálculo das tensões (cont.) Tensões principais s 2 Representação gráfica por cruzetas s 1 s 1 a Proporcional a s 2 a t 12 = 0 s 2 Proporcional a s 1 29
30 Lajes - graus de liberdade D z z q y y q x x 30
31 Lajes - esforços em pontos de Gauss z Referencial geral Q yz M zy y Q xz x M zx M xy Momentos principais M 1 e M 2 31
32 Cascas - referenciais Geral x z y Eixo normal ao elemento Eixo normal ao elemento Tangente Nodal 32
33 Cascas - graus de liberdade Deslocamentos nodais sempre no referencial geral Rotações nodais: Nós de aresta Nós coplanares referencial geral referencial nodal Em nós coplanares só existem duas rotações 33
34 Cascas - graus de liberdade (cont.) D z D z q z q y q y D y D y q x D x Nós de aresta q x D x Nós coplanares 34
35 Cascas - esforços em p. de Gauss Referencial tangente Esforços de membrana, flexão e corte: N x M z y Q x z N y M z x Q y z N x y M x y 35
Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.fe.up.pt/~alvaro Novembro 2000 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
EXAME NORMAL. Análise Avançada de Estruturas Sem consulta (exceto formulário fornecido) Duração: 3h00m
EXAME NORMAL Análise Avançada de Estruturas Sem consulta (exceto formulário fornecido) DEPARTAMENTO DE ENGENHARIA CIVIL SECÇÃO DE ESTRUTURAS Duração: h00m (. val.) Considere a laje de betão armado que
Universidade de Coimbra Faculdade de Ciências e Tecnologia 2001/02 Estruturas II (aulas teóricas)
Sumário da 1ª lição: Sumário da 2ª lição: - Apresentação. - Objectivos da Disciplina. - Programa. - Avaliação. - Bibliografia. - Método dos Deslocamentos. - Introdução. - Grau de Indeterminação Cinemática.
TESTE FINAL. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m
TESTE FINAL Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) DEPARTAMENTO DE ENGENHARIA CIVIL SECÇÃO DE ESTRUTURAS Duração: h00m 1 - (.0 val.) Considere a laje de betão armado
Análise Matricial de Estruturas com orientação a objetos
Análise Matricial de Estruturas com orientação a objetos Prefácio... IX Notação... XIII Capítulo 1 Introdução... 1 1.1. Processo de análise... 2 1.1.1. Modelo estrutural... 2 1.1.2. Modelo discreto...
EXAME NORMAL. x 2 B D. x 1 C. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m
EXAME NORMAL Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) DEPARAMENO DE ENGENHARIA CIVIL SECÇÃO DE ESRUURAS Duração: h00m - (.5 val.) Considere a laje de betão armado representada
PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta
Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos
Exame de. Licenciatura em Engenharia Civil 21 de Junho de ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre
Exame de Licenciatura em Engenharia Civil 21 de Junho de 1997 1ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre Observações: Duração de 3 horas; Consulta livre; Inicie cada um dos problemas numa folha
CONTEÚDOS PROGRAMADOS. (Análise Computacional de Tensões EEK 533)
(Análise Computacional de Tensões EEK 533) - AULAS POR UNIDADE 1 - Princípios Variacionais 1.1 - Princípio dos Trabalhos Virtuais 1.2 - Princípios da Mínima Energia Total e da Mínima energia complementar.
ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS
LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito
Sumário e Objectivos. Método dos Elementos Finitos 3ªAula. Setembro
Sumário e Objectivos Sumário: Método dos Resíduos Pesados. Princípio Variacional. Discretização Pelo Método dos Elementos Finitos (MEF). Objectivos da Aula: Apreensão do Processo de Discretização pelo
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1
PME-235 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 6.1. Introdução O objetivo destas notas é apresentar, de forma um pouco mais detalhada,
Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções
Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1 11.1. Introdução Recebem a denominação geral de folhas as estruturas nas quais duas dimensões predominam sobre uma terceira
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
Análise de Tensões em Placas, Cascas e Reservatórios
Análise de Tensões em Placas, Cascas e Reservatórios J.F. Silva Gomes Professor Catedrático Faculdade de Engenharia, Universidade do Porto Edições INEGI Porto, 2007 Edição e Distribuição INEGI-Instituto
Departamento de Engenharia Civil e Arquitectura MECÂNICA I
Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE
Prefácio... Notação... XIII
Sumário Prefácio... IX Notação... XIII Capítulo 1 Introdução... 1 1.1. Processo de análise... 2 1.1.1. Modelo estrutural... 2 1.1.2. Modelo discreto... 3 1.1.3. Modelo computacional... 1.2. Organização
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
CLME Software no Ensino e no Projecto de Estruturas. Moçambique, Agosto 2003
CLME 2003 Moçambique, 19-21 Agosto 2003 Álvaro Azevedo 1 Joaquim Barros 2 José Sena Cruz 2 Ventura Gouveia 3 1 Dep. Engenharia Civil, Faculdade de Engenharia da Universidade de Porto, PORTUGAL 2 Dep. Engenharia
3 Implementação Computacional
3 Implementação Computacional Neste trabalho considerou-se o estudo da instabilidade elástica e inelástica de estruturas planas como vigas, colunas, pórticos e arcos. No estudo deste tipo de estruturas
Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.
4 Método Numérico Foi utilizado o método dos elementos finitos como ferramenta de simulação com a finalidade de compreender e avaliar a resposta do tubo, elemento estrutural da bancada de teste utilizada
Resistência dos Materiais, MA, IST,
11ª Aula Flexão Flexão elástica recta Define-se barra ou peça linear como todo o corpo cujo material se confina à vizinhança de uma linha do espaço a que se chama eixo. Segundo o Vocabulário de Teoria
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
Mecânica dos Sólidos I Parte 2
Departamento de Engenharia Mecânica arte 2 rof. Arthur M. B. Braga 2006.1 arte II Barras carregadas axialmente (Cap. 1 e 2) Cisalhamento (Cap. 1) Torção de eixos cilíndricos (Cap. 3) Mecânica dos Sólidos
Professor: Estevam Las Casas. Disciplina: MÉTODOS DE ELEMENTOS FINITOS MEF TRABALHO
UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA GRADUAÇÃO EM ENGENHARIA MECÂNICA Professor: Estevam Las Casas Disciplina: MÉTODOS DE ELEMENTOS FINITOS MEF TRABALHO Análise de deformação de um
MORFOLOGIA DAS ESTRUTURAS
I - ESTRUTURAS RESISTENTES MORFOLOGIA DAS ESTRUTURAS É um conjunto de elementos ligados entre si que tem a finalidade de suportar cargas e transferi-las ao solo. Os esforços externos ativos ou cargas que
O que é Resistência dos Materiais?
Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades
Prof. Dr. Eduardo Lenz Cardoso
Elementos Finitos I Análise Estática Prof. Dr. Eduardo Lenz Cardoso [email protected] Sumário Revisão de trabalho e energia; Definição de Energia Potencial Total; Princípio da Mínima Energia Potencial
LOM Teoria da Elasticidade Aplicada
Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações
6 TORÇÃO SIMPLES. Equação 6.1. Ou, uma vez que df = da, com sendo a tensão de cisalhamento do elementos de área da, Equação 6.2
6 TORÇÃO SIMPLES Torção simples ocorre quando a resultante na seção for um binário cujo plano de ação é o da própria seção. Considerando a barra de seção circular AB submetida em A e B a toques iguais
Universidade Federal do Ceará. Mecânica para Engenharia Civil II. Profa. Tereza Denyse. Agosto/ 2010
Universidade Federal do Ceará Mecânica para Engenharia Civil II Profa. Tereza Denyse Agosto/ 2010 Roteiro de aula Introdução Estruturas Esforços externos Esforços internos Elementos estruturais Apoios
Aula 04 MÉTODO DAS FORÇAS. Classi cação das estruturas quanto ao seu equilíbrio estático. ² Isostática:
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 04
Introdução aos Sistemas Estruturais
Introdução aos Sistemas Estruturais Tipos de Elementos Estruturais Com uma dimensão predominante: (vigas; cabos; tirantes; pilares; e bielas (barras bi-rotuladas comprimidas). Com duas dimensões predominantes:
Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2
Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:
Introdução ao Método dos Elementos Finitos
Introdução ao Método dos Elementos Finitos Estruturas Aeroespaciais II (10373) 2014 1. Introdução O Método dos Elementos Finitos (MEF), cuja génese se verificou por volta de 1940, é uma ferramenta matemática
MÉTODO DE ELEMENTOS FINITOS (MEF)
3 0 Exercício Programa de PMR 2420 Data de entrega: 17/06/2013 (até as 17:00hs) MÉTODO DE ELEMENTOS FINITOS (MEF) 1) Considere a estrutura da figura abaixo sujeita a duas cargas concentradas F 3 (t) e
Anexo 4. Resistência dos Materiais I (2º ano; 2º semestre) Objetivos. Programa
Resistência dos Materiais I (2º ano; 2º semestre) Objetivos O aluno deverá ficar apto a conhecer os fundamentos do comportamento mecânico de sólidos deformáveis sujeitos a acções exteriores e, em particular
Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9
Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta
CONCEÇÃO E PROJETO DE UMA PONTE PEDONAL SOBRE A VIA DE CINTURA INTERNA
MESTRADO INTEGRADO ENGENHARIA CIVIL ESPECIALIZAÇÃO EM ESTRUTURAS CONCEÇÃO E PROJETO DE UMA PONTE PEDONAL SOBRE A VIA DE Maria Mafalda Costa Gomes Eugénio Cardoso Orientador: Professor Doutor Álvaro Ferreira
Equações de Navier-Stokes
Equações de Navier-Stokes Para um fluido em movimento, a pressão (componente normal da força de superfície) é diferente da pressão termodinâmica: p " # 1 3 tr T p é invariante a rotação dos eixos de coordenadas,
4 Deslocamentos gerados pela escavação
4 Deslocamentos gerados pela escavação 4.1. Introdução Neste capítulo são analisados os campos de deslocamentos gerados no maciço rochoso devido à escavação da mineração Pampa de Pongo, Peru, que atualmente
RESISTÊNCIA DE MATERIAIS II
RESISTÊNCIA DE MATERIAIS II - 014-015 Problema 1 PROBLEMAS DE TORÇÃO A viga em consola representada na figura tem secção em T e está submetida a uma carga distribuída e a uma carga concentrada, ambas aplicadas
I MÓDULO ANÁLISE ESTRUTURAL
Ementas: I MÓDULO ANÁLISE ESTRUTURAL MECÂNICA DOS SÓLIDOS E TEORIA DA ELASTICIDADE 20h Introdução: Noções básicas da teoria da elasticidade. Estudo de tensões e deformações. Relação tensão-deformação.
Módulo de elasticidade ou módulo de Young
CAPÍTULO FLEXÃO DE VIGA Antecedendo a apresentação da formulação de diversos tipos de elementos de viga, efectua-se em seguida uma revisão dos fundamentos da flexão de vigas. Apenas são consideradas as
Caderno de Estruturas em Alvenaria e Concreto Simples
Caderno de Estruturas em Alvenaria e Concreto Simples CONTEÚDO CAPÍTULO 1 - RESISTÊNCIA DO MATERIAL 1.1. Introdução 1.2. Definição: função e importância das argamassas 1.3. Classificação das alvenarias
MECÂNICA APLICADA II
Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a
Capítulo I Introdução ao Sistema SALT
Capítulo I Introdução ao Sistema SALT O Sistema SALT-Sistema de Análise de Estruturas, é um sistema para análise de estruturas, com uma Interface Gráfica (IG), veja figura I.1, que facilita a modelagem,
Estruturas de Betão Armado II. 3 Lajes - Análise
Estruturas de Betão Armado II 1 TEORIA DE COMPORTAMENTO ELÁSTICO DE LAJES FINAS HIPÓTESES DO MODELO DE COMPORTAMENTO (1) 1) Laje de pequena espessura (deformação por corte deprezável - h
ESTRUTURAS NOÇÕES BÁSICAS
ESTRUTURAS NOÇÕES BÁSICAS Profa. Ana Maria Gontijo Figueiredo 1) TERMINOLOGIA Estrutura: Parte resistente de uma construção ou de uma máquina, objeto ou peça isolada, cuja função básica é o transporte
Prof. Alfredo Gay Neto Prof. Miguel Bucalem PEF 5716
Prof. Alfredo Gay Neto Prof. Miguel Bucalem PEF 5716 017 Um modelo é uma representação aproximada da realidade Problema físico Modelo físico Modelo matemático Idealização Abstração Regras de representação
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio
2 Casca cilíndrica delgada
Vibrações livres não lineares de cascas cilíndricas com gradação funcional 29 2 Casca cilíndrica delgada Inicia-se este capítulo com uma pequena introdução sobre cascas e, em seguida, apresenta-se a teoria
UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ELEMENTOS FINITOS PARA ANÁLISE DE ESTRUTURAS
UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ELEMENTOS FINITOS PARA ANÁLISE DE ESTRUTURAS Trabalho Final Grupo: Carlos Alexandre Campos Miranda Diego Franca
ANÁLISE DE TENSÕES EM PLACAS, CASCAS E RESERVATÓRIOS
Sobre o Autor Joaquim Silva Gomes nasceu em V.N. de Gaia a 10 de Janeiro de 1948. Licenciou-se em Engenharia Mecânica pela Faculdade de Engenharia da Universidade do Porto (FEUP) em 1971 e doutorou-se
MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 02: Definições Básicas
Universidade Federal do Rio de Janeiro Faculdade de Arquitetura e Urbanismo Departamento de Estruturas MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 02: Definições Básicas Maria Betânia de Oliveira Professora
Instabilidade e Efeitos de 2.ª Ordem em Edifícios
Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil Capítulo Prof. Romel Dias Vanderlei Instabilidade e Efeitos de 2.ª Ordem em Edifícios Curso: Engenharia Civil Disciplina:
PEF 2502 Introdução à Teoria das Cascas I parte
1. Introdução Apresenta-se texto introdutório sobre a teoria de cascas. Utiliza-se abordagem clássica do problema, e são tratados apenas casos específicos de características geométricas e carregamentos
LOM Introdução à Mecânica dos Sólidos
LOM 3081 - CAP. ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 1 ANÁLISE DE TENSÃO VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE Seja por exemplo uma barra sujeita a um carregamento axial. Ao aplicar o MÉTODO DAS SEÇÕES,
PLANIFICAÇÃO ANUAL. 3º Período Até 16 de junho 2.ª ª ª ª ª º Período 2º Período
ESCOLA SECUNDÁRIA INFAN TA D. MAR IA GEOMETRIA DESCRITIVA 10º ANO PLANIFICAÇÃO ANUAL Ano letivo 2016/17 Dias da semana 1º Período 2º Período 3º Período Até 16 de junho 2.ª 13 12 7 3.ª 12 13 7 4.ª 12 12
MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 02: Definições Básicas
Universidade Federal do Rio de Janeiro Faculdade de Arquitetura e Urbanismo Departamento de Estruturas MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 02: Definições Básicas Profa. Dra. Maria Betânia de Oliveira
MECÂNICA DOS SÓLIDOS E RESISTÊNCIA DOS MATERIAIS
Este livro é o resultado duma compilação de apontamentos e notas de apoio às aulas de Mecânica dos Sólidos, Resistência de Materiais e outras disciplinas afins, os quais têm vindo a ser sucessivamente
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria
Cinemática da partícula fluida
Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática
5 Descrição do modelo estrutural
5 Descrição do modelo estrutural 5.1 Introdução No presente capítulo apresenta-se a descrição do modelo estrutural utilizado para avaliação do conforto humano. Trata-se de um modelo real formado por lajes
MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 02: Definições Básicas
Universidade Federal do Rio de Janeiro Faculdade de Arquitetura e Urbanismo Departamento de Estruturas MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 02: Definições Básicas Maria Betânia de Oliveira Professora
5. Exemplo De Aplicação e Análise dos Resultados
5. Exemplo De Aplicação e Análise dos Resultados Visando uma melhor compreensão do exposto no capítulo anterior, são apresentados dois exemplos de aplicação relacionados ao cálculo de lajes protendidas.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
4 SOLUÇÕES ANALÍTICAS
4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,
ESTÁTICA ENUNCIADOS DE PROBLEMAS PARA AS AULAS PRÁTICAS
ivil Secção de Mecânica strutural e struturas STÁTI NUNIOS PROLMS PR S ULS PRÁTIS PROLM 1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício, e que está sujeita
Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG1011 - Fenômenos de Transporte I Aula 1: Introdução e Manometria O que é um fluido? Área de aplicação da Mecânica de Fluidos Formulação (leis de conservação; leis
Equações diferenciais
Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q
Assentamento da fundação de um silo circular
Manual de engenharia No. 22 Atualização: 06/2016 Assentamento da fundação de um silo circular Programa: MEF Arquivo: Demo_manual_22.gmk O objetivo deste manual é descrever a resolução da análise de assentamento
