MÉTODO DE ELEMENTOS FINITOS (MEF)
|
|
|
- Diogo Fragoso Varejão
- 9 Há anos
- Visualizações:
Transcrição
1 3 0 Exercício Programa de PMR 2420 Data de entrega: 17/06/2013 (até as 17:00hs) MÉTODO DE ELEMENTOS FINITOS (MEF) 1) Considere a estrutura da figura abaixo sujeita a duas cargas concentradas F 3 (t) e F 6 aplicadas nos pontos 3 e 6, respectivamente. Além disso, o pórtico é submetido a um momento concentrado M 2 (t) no ponto 2. A força F 6 é constante em toda a análise e sua magnitude é de 5 kn. a) Utilizando o software ANSYS (ou similar): a.1) Obtenha e plote os 6 primeiros modos de vibrar e frequências de ressonância da estrutura (sem amortecimento);
2 a.2) Obtenha a resposta transiente da estrutura utilizando o método direto Newmark. Considere os coeficientes de amortecimento do modelo de Rayleigh = 3x10-1 e = 3x10-2 ([C]=[M]+[K]). Plote (utilizando um gráfico por caso) o deslocamento δ x e δ y dos pontos 2, 3 e 6 indicados na figura em função do tempo até 6s. Condição inicial: velocidades e deslocamentos nulos; a.3) Discuta a influência da discretização da malha nos valores de frequência de ressonância e da discretização do tempo t no deslocamento do ponto 6. b) Utilizando o software SCILAB (ou MATLAB): b.1) Desenvolva um programa específico de MEF para resolver o problema acima baseando-se nos programas listados na apostila a doc; b.2) Resolva os itens a.1) e a.2) novamente utilizando o seu programa; b.3) Compare os resultados do ANSYS (ou similar) com os resultados do seu programa (por exemplo, plote ambos os resultados no mesmo gráfico). 2) Considere a peça simétrica da figura abaixo. Resolva o problema usando o programa ANSYS (ou similar) considerando estado plano de tensões ( plane stress ), ou seja: a) Plote a estrutura deformada e identifique o máximo valor de deslocamento e onde ocorre;
3 b) Plote as tensões mecânicas de von Mises na estrutura e obtenha os valores de tensão nos pontos A, B, C, D, E e F. Verifique a influência da discretização da malha nos resultados; c) Suponha que a tensão de escoamento do material é 250 MPa. Determine a partir do modelo de MEF, a espessura mínima da placa para que a tensão de von Mises não seja ultrapassada em nenhum ponto da estrutura; d) Identifique o máximo valor de tensão de von Mises e onde ocorre, bem como os demais pontos onde ocorrem concentração de tensões na estrutura. Sugira modificações na estrutura para reduzir a concentração de tensões; OPTATIVO Esse exercício (EX) é optativo e entrará no cálculo da média final da seguinte forma: MF=0,8M+0,2EX, onde M é a média calculada como descrito no programa do curso e EX a nota desse exercício. A nota desse exercício somente será levada em conta caso aumente a média M (independentemente de seu valor). MÉTODO DE ELEMENTOS FINITOS (MEF) Em regime estacionário, o fenômeno de condução elétrica em duas dimensões e em meios contínuos (Modelo de correntes estacionárias) é regido pela equação de Laplace: 2 2 V V (1) x y sendo V(x,y) o potencial elétrico que é dado em Volts e, a condutividade elétrica do material. A densidade de corrente elétrica J (x,y) (em A/m 2 ) que flui no meio é calculada por: V V J V grad ( V ) (, ) (2) x y Considere a barra prismática constituída por dois materiais A e B descrita na figura acima, com dimensões indicadas na figura em metros e profundidade igual a 0,4 m. A condutividade elétrica do material A é = 5,85x10 7 S/m, e do material B = 6,4x10 6 S/m. O bloco é submetido a uma diferença de potencial elétrico igual a 200 V que faz com que circule uma corrente elétrica por ele. O problema está sujeito às seguintes condições de contorno: a) nos pontos em y = 0,0 m o potencial elétrico V vale V2 = 0 V; b) nos pontos em y = 0,24 m o potencial elétrico V vale V1 = 200 V; c) Nas demais fronteiras
4 Considere as constantes dadas e resolva a equação (1) no domínio da figura utilizando o método de elementos finitos (MEF) com malha triangular (x = y) do tipo sugerida na figura (elementos triangulares retângulos), mas a malha pode ser mais discretizada: a) Implemente um programa em SCILAB (ou MATLAB) que resolve a equação de Laplace (1); b) Resolva o problema aproveitando a simetria do sistema e determine as condições de contorno requeridas para tornar o problema simétrico; c) Plote a distribuição de V(x,y) no bloco. Verifique a influência da discretização sobre a solução (explique a discretização utilizada); d) Plote o vetor densidade de corrente elétrica J (x,y) (use o comando apropriado no SCILAB ou MATLAB); e) Calcular a resistência elétrica R do bloco acima, sabendo que: R V onde I m é a corrente I m elétrica média dada por J. nds e J. n é a componente de J na direção do vetor normal a I m superfície, e S é a área da superfície. Se escolhida a superfície y=0,24 tem-se:
5 m 0,16. 0,4 n y0,24 uma vez que ds = 0,4dx. Se escolhida a superfície y=0,0 tem-se: 0 I J nds J dx m 0,16. 0,4 n y0 uma vez que ds = 0,4dx (O limite superior nas integrais é definido 0 I J nds J dx conforme a simetria). A integral deve ser resolvida usando um dos métodos de integração estudados no curso (trapézio, Simpson, etc.). Note que pela equação da continuidade: 0,16 0,16 J dx J dx 0. n y0,24 n y0 0 0 APRESENTAÇÃO DE RESULTADOS Os resultados devem ser apresentados da seguinte forma: a) Inicialmente, apresente o equacionamento do problema a ser implementado no SCILAB (ou MATLAB). b) NÃO será aceita a utilização de comandos prontos do SCILAB (ou MATLAB) para a solução da equação de derivadas parciais acima. c) Todos os resultados do tipo f(x,y) devem ser plotados usando-se funções do SCILAB (ou MATLAB) como mesh, contour, surf, etc (escolha uma) (coloque título e legenda nos gráficos). NÃO será aceita a simples apresentação de tabelas ou a listagem dos valores da função nos nós da malha. d) A geração da malha de elementos finitos pode ser feita de forma simples e específica para esse problema. e) O sistema matricial final pode ser resolvido simplesmente usando-se um comando do SCILAB (ou MATLAB) do tipo x=a/b. No entanto, caso o tamanho da matriz seja maior do que o máximo permitido pelo SCILAB (ou MATLAB) use um método iterativo como Gauss-Seidel ou Sobrerelaxação. f) NÃO use os comandos de manipulação simbólica do SCILAB (ou MATLAB) na solução desse problema. g) Entregue os arquivos *.sci (ou *.m), os quais devem estar decentemente comentados. h) Qualquer discussão ou comparação deve ser acompanhada de gráficos e/ou outras indicações que o levou às conclusões. i) Entregue o relatório impresso. NÃO será aceita a entrega do relatório em formato digital ou por e- mail. j) Para cada dia de atraso serão descontados 2,0 pontos na nota do EP.
3 0 Exercício Programa de PMR 2420 Data de entrega: 21/06/2012 (até as 17:00hs) Método de Elementos Finitos (MEF)
,3 m,8 m 3 Exercício Programa de PMR 242 Data de etrega: 21/6/212 (até as 17:hs) Método de Elemetos Fiitos (MEF) 1) Cosidere a estrutura da figura abaixo sujeita a uma carga cocetrada F 3 variado o tempo
Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções
Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.
4 Método Numérico Foi utilizado o método dos elementos finitos como ferramenta de simulação com a finalidade de compreender e avaliar a resposta do tubo, elemento estrutural da bancada de teste utilizada
MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL
UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear
PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta
Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos
MÉTODO DOS ELEMENTOS FINITOS
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.alvaroazevedo.com Setembro 2017 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo
6 Análise Dinâmica. 6.1 Modelagem computacional
6 Análise Dinâmica O presente capítulo apresenta um estudo do comportamento dinâmico da coluna de aço estaiada, abrangendo análises modais para determinação da freqüência natural, com e sem protensão [32]
Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.fe.up.pt/~alvaro Novembro 2000 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
Ezequias Martins França Paulo Giovanni de Souza Carvalho. Resolução dos problemas 2.4 e 2.6 da lista de exercícios
Ezequias Martins França Paulo Giovanni de Souza Carvalho Resolução dos problemas 2.4 e 2.6 da lista de exercícios Brasil 2017 Ezequias Martins França Paulo Giovanni de Souza Carvalho Resolução dos problemas
MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano
MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos
Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando Armazenamento Especial
Universidade Federal do Espírito Santo Departamento de Informática Algoritmos Numéricos 2016/2 Profa. Claudine Badue Trabalho 1 Objetivos Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando
3.1 CRIAR A GEOMETRIA/MALHA;
72 3 METODOLOGIA A metodologia adotada no presente trabalho foi a de utilizar a ferramenta de dinâmica dos fluidos computacional (CFD) para simular dispositivos microfluídicos de diferentes geometrias
Equações diferencias ordinárias - Exercícios
Página 1 de 5 Equações diferencias ordinárias - Exercícios 1) A lei do resfriamento de Newton diz que a temperatura de um corpo varia a uma taxa proporcional à diferença entre a temperatura do mesmo e
Quarta lista de exercícios: Potenciais e campos.
Quarta lista de exercícios: Potenciais e campos. 12 de abril de 2016 Docente Responsável: Prof. Dr. Antônio C. Roque Monitor: Cristiano Granzotti Os exercícios desta lista devem ser resolvidos em Matlab.
3 Implementação Computacional
3 Implementação Computacional Neste trabalho considerou-se o estudo da instabilidade elástica e inelástica de estruturas planas como vigas, colunas, pórticos e arcos. No estudo deste tipo de estruturas
Professor: Juan Julca Avila. Site:
Professor: Juan Julca Avila Site: http://professor.ufabc.edu.br/~juan.avila Bibliografia Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis, John Wiley, New York, Fourth
UNIVERSIDADE ESTADUAL PAULISTA. LMAEE Laboratório de Matemática Aplicada a Engenharia Elétrica
unesp UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE GUARATINGUETÁ DEPARTAMENTO DE ENGENHARIA ELÉTRICA LMAEE- - Laboratório de Matemática Aplicada a Engenharia Elétrica LAB. 3 RESOLUÇÃO, DE EQUAÇÕES DIFERENCIAIS
Introdução ao Método dos Elementos de Contorno
Introdução ao Método dos Elementos de Contorno Prof. Raul Bernardo Vidal Pessolani Depto de Eng Mecânica - PGMEC niversidade Federal Fluminense [email protected] Programa 1. Aspectos Gerais Dedução da Eq.
4 Validação do uso do programa ABAQUS
4 Validação do uso do programa ABAQUS Os resultados de simulações do programa numérico de elementos finitos ABAQUS foram verificados por meio de três exercícios de simulação numérica de casos da literatura.
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios o semestre de 009/00 - LEMat e MEQ Resolução de sistemas lineares. Inuência dos erros de arredondmento. Consideremos o sistema linear A x = b, onde 0 6 0 A = 0 6,
Introdução aos Métodos Numéricos
Métodos Numéricos para Mecânica dos Fluidos Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Bibliografia: J. H. Ferziger and M. Peric, 'Computational Methods for Fluid Dynamics', Springer
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE
7. COMPARAÇÃO DOS MODELOS DE CÁLCULO
Estudo de Pontes de Madeira com Tabuleiro Multicelular Protendido 169 7. COMPARAÇÃO DOS MODELOS DE CÁLCULO Neste item é realizada a comparação entre os três modelos de cálculo estudados, Modelo de Viga
6 MÉTODO DE ELEMENTOS FINITOS - MEF
6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios
SME Cálculo Numérico. Lista de Exercícios: Gabarito
Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado
Capítulo III Sistemas de equações
Capítulo III Sistemas de equações III1 - Condicionamento de sistemas lineares 1 Seja 1 0 0 10 6 e considere o sistema Ax = b, com b = 1 10 6 T, que tem por solução exacta x = 1 1 T (a) Determine cond(a)
Prof. MSc. David Roza José 1/35
1/35 Métodos Iterativos Objetivos: Compreender a diferença entre os métodos de Gauss-Seidel e Jacobi; Saber analisar a dominância diagonal e entender o quê significa; Reconhecer como a relaxação pode ser
Segunda Lista - Lei de Gauss
Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2018/2019 2º Semestre
Exercício 6 - Método dos Deslocamentos ANÁLISE DE ESTRUTURAS I Ano lectivo de 018/019 º Semestre Problema 1 (1 de Janeiro de 000) Considere o pórtico e a acção representados na figura 1. 1.a) Indique o
Map05 - Métodos Matriciais Computacionais Mat Álgebra Matricial Computacional Primeiro Exercicio Computacional, entregar ao Prof: 22/10/2012
Mat0050 - Álgebra Matricial Computacional Primeiro Exercicio Computacional, entregar ao Prof: 22/0/202 Assunto: Normais vetoriais, BLAS e Fortran90 Objetivo: Completar estudo dirigido que não pode ser
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
Universidade de São Paulo Eletromagnetismo ( ) Prova 1
Instituto de Física de São Carlos Universidade de São Paulo Eletromagnetismo 760001) 3 de abril de 018 Prof. D. Boito Mon.:. Carvalho 1 sem. 018: Bacharelados em Física Nome e sobrenome: n. USP: Prova
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. Exercícios sobre Sistemas de Equações Lineares.
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ANÁLISE NUMÉRICA Exercícios sobre Sistemas de Equações Lineares Considere as seguintes matrizes: [ 0 3 4 Calcule
Notas de Aula de Cálculo Numérico
IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números
Determinação dos Parâmetros do Motor de Corrente Contínua
Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar
UNIVERSIDADE FEDERAL DO ABC
UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas
Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari
Engenharia Biomédica EN310 MODEAGEM, SIMUAÇÃO E CONTROE APICADOS A SISTEMAS BIOÓGICOS Professores: Ronny Calixto Carbonari Janeiro de 013 Método de Elementos Finitos (MEF): Elementos de Treliça Objetivo
Cálculo Numérico BCC760
Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita
MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO-
MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO- Curso de Transferência de Calor 1 - FEN03-5190 Prof. Gustavo R. Anjos [email protected] 17 e 23 de junho de 2015 EXEMPLOS - VÍDEOS Escoamento de fluido
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
Introdução ao Método dos Elementos Finitos
Introdução ao Método dos Elementos Finitos Estruturas Aeroespaciais II (10373) 2014 1. Introdução O Método dos Elementos Finitos (MEF), cuja génese se verificou por volta de 1940, é uma ferramenta matemática
6.1.Avaliação da Precisão para Problemas de Fluxo em Estado Permanente
6 EXEMPLOS NUMÉRICOS Neste Capítulo são apresentados alguns exemplos simples da utilização do método híbrido de elementos finitos, tanto para problemas de potencial quanto para problemas de elasticidade,
Exame de. Licenciatura em Engenharia Civil 21 de Junho de ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre
Exame de Licenciatura em Engenharia Civil 21 de Junho de 1997 1ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre Observações: Duração de 3 horas; Consulta livre; Inicie cada um dos problemas numa folha
7 Análise Método dos Elementos Finitos
168 7 Análise Método dos Elementos Finitos No presente capítulo estão apresentados os resultados da análise do problema geotécnico ilustrado no capítulo 5 realizada a partir do método dos elementos finitos.
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados
Lista de exercícios de MAT / I
1 Lista de exercícios de MAT 271-29 / I 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
Utilização de Métodos de Cálculo Numérico em Aerodinâmica
Erro Numérico: - Erro de arredondamento - Erro iterativo - Erro de discretização Três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento
UFF - EEIMVR. Disciplina: Elementos de Máquinas. Lista de Exercícios
UFF - EEIMVR Disciplina: Elementos de Máquinas Lista de Exercícios Prof. Jorge A. R. Duran 6 de Setembro de 2018 Conteúdo 1 Problemas de Revisão 1 2 Fadiga de Estruturas e Materiais 5 3 Respostas 7 1 Problemas
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PPGEM Exame de Ingresso Dezembro/2010. Nome do candidato:
1ª Questão: (Álgebra Linear) Calcule o valor de a para que a matriz abaixo tenha auto-valores 1 e 6. Cálcule os autovetores correspodentes. 4 3 a 3 1 2 2ª Questão: (Álgebra Linear) Cálcule a inversa da
Tutorial para o uso do aplicativo TransCal 1.1
Tutorial para o uso do aplicativo TransCal 1.1 1 Teoria do aplicativo TransCal 1.1 O aplicativo TransCal é um software com fins educacionais, especialmente projetado para ser um instrumento auxiliar no
Lista de exercícios de Análise Numérica
Lista de exercícios de Análise Numérica 1. Calcule 10 log x dx : 6 a) Usando a formula dos trapézios; b) Usando a fórmula do trapézio repetida 8 vezes c) Delimite o erro nos dois casos e compare-os. 2.
4 Metodologia Método de elementos distintos/discretos
4 Metodologia Para a análise numérica foi utilizado o software comercial 3DEC (Itasca, 2007), versão 4.10. O método numérico que o programa utiliza é o método de elemento distinto, este também apresenta
Capítulo 1. INTRODUÇÃO
Capítulo 1. INTRODUÇÃO A simulação numérica de problemas de engenharia ocupa atualmente uma posição de destaque no cenário mundial de pesquisa e desenvolvimento de novas tecnologias. O crescente interesse,
Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame)
º Teste: Problemas 3, 4 e 5. Exame: Problemas,, 3, 4 e 5. Duração do teste: :3h; Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2014/2015 2º Semestre
Exercício - Método das Forças NÁLISE DE ESTRUTURS I no lectivo de 20/205 2º Semestre Problema (28 de Janeiro de 999) onsidere a estrutura representada na figura. a) Indique qual o grau de indeterminação
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
Resposta dos Exercícios da Apostila
Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes [email protected] 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15
Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a
EXAME NORMAL. x 2 B D. x 1 C. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m
EXAME NORMAL Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) DEPARAMENO DE ENGENHARIA CIVIL SECÇÃO DE ESRUURAS Duração: h00m - (.5 val.) Considere a laje de betão armado representada
Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO
Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO PROF.: KAIO DUTRA Estado Plano de Deformações O estado geral das deformações em determinado ponto de um corpo é representado pela combinação
Estudo de Pontes de Madeira com Tabuleiro Multicelular Protendido O PROGRAMA OTB
Estudo de Pontes de Madeira com Tabuleiro Multicelular Protendido 48 3. O PROGRAMA O primeiro programa para cálculo dos esforços internos de pontes protendidas de madeira foi desenvolvido por Joe Murphy,
Transferência de Calor
Transferência de Calor Condução Bidimensional Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
Introdução à Programação Paralela
Programação em Problemas Simulação e Gerenciamento de Reservatórios Pós Graduação em Engenharia Civil CTG/UFPE 2 o Trimestre de 2015 Equação de Poisson Programação em Considerando um problema em regime
PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP
1 Introdução Introdução ao Projeto de 211v1 são mecanismos compactos utilizados para movimentos cíclicos com deslocamentos de pequena amplitude, normalmente com intervalos de repouso. Comparado aos mecanismos
Lista 10. Indução Eletromagnética
Lista 10 Indução Eletromagnética Q30.1-) Considere que ao movimentar a lâmina existe variação do fluxo do campo magnético sobre a superfície da lâmina. Por outro lado a Lei de Faraday indica que algo deve
Introdução ao MEF. Como um objeto se comporta no mundo real?
Introdução ao MEF Como um objeto se comporta no mundo real? Como eles se deformam quando sujeitos a uma força? Como eles vibram quando excitados? Quão quente eles se tornam quando aquecidos? Que campo
A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)
MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os
Métodos Diretos. 1. Resolva os sistemas lineares utilizando o método de substituição retroativa ou progressiva (sucessiva):
UFOP - Departamento de Computação BCC760- Cálculo Numérico Lista de Exercícios Resolução de Sistemas de Equações Lineares Simultâneas http://www.decom.ufop.br/bcc760/ Métodos Diretos. Resolva os sistemas
Utilização de Algoritmos Genéticos para Otimização de Altura de Coluna da Matriz de Rigidez em Perfil no Método dos Elementos Finitos
Utilização de Algoritmos Genéticos para Otimização de Altura de Coluna da Matriz de Rigidez em Perfil no Método dos Elementos Finitos André Luiz Ferreira Pinto Pontifícia Universidade Católica do Rio de
ESTE Aula 2- Introdução à convecção. As equações de camada limite
Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:
Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.
Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou
4 Modelagem Numérica. 4.1 Método das Diferenças Finitas
4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas
