Introdução à Programação Paralela
|
|
|
- Maria de Lourdes Arruda Rosa
- 8 Há anos
- Visualizações:
Transcrição
1 Programação em Problemas Simulação e Gerenciamento de Reservatórios Pós Graduação em Engenharia Civil CTG/UFPE 2 o Trimestre de 2015
2 Equação de Poisson Programação em Considerando um problema em regime permanente em duas dimensões, todas as propriedades físicas constantes e um monte de simplificações que não vamos discutir, a equação de transferência pode ser simplificada para u = f, ou 2 u x u y 2, = f, onde u(x,y) é a temperatura e f(x,y) é um termo fonte.
3 Diferenças Finitas Programação em Podemos aproximar as derivadas parciais por diferenças finitas: e 2 u x u i 1,j 2u i,j + u i+1,j 2 x 2 2 u y 2 u i,j 1 2u i,j + u i,j+1 y 2. Introduzindo estes termos na EDP podemos resolver para u i,j u i,j = (u i 1,j + u i+1,j ) y 2 + (u i,j 1 + u i,j+1 ) x 2 x 2 y 2 f i,j 2( x 2 + y 2 ) Com condições de contorno adequadas podemos iterar esta expressão até que seja obtida uma solução dentro da precisão necessária.
4 Programa Programação em Faça um programa em para resolver aproximadamente a equação de Poisson com o método das diferenças finitas. O programa deve: Tratar apenas domínios retangulares. Ler de um arquivo as dimensões do domínio e o número de pontos em cada direção. Ler do mesmo arquivo o termo forçante. Considerar apenas condições de contorno de temperatura prescrita nas fronteiras do domínio. O programa deve ainda poder iterar como: Jacobi Gauss-Seidel Red-Black
5 Resultados Programação em Aplique o programa para um domínio retangular [0,1] [0,1], considerando o termo fonte f(x,y) = 8π 2 sin(2πx)sin(2πy). com a temperatura prescrita como zero em todo o contorno. Escolha uma malha de densidade adequada, e faça gráficos da taxa de convergência para cada tipo de iteração. Faça um gráfico da solução convergida também.
6 Programação em Malha de Elementos Finitos Um dos métodos mais versáteis para simulação computacional de problemas de engenharia é o método dos elementos finitos. Este método usa uma malha, que, para nosso uso simplificado, um conjunto de elementos planos triangulares que não se sobrepõe e cobrem totalmente o domínio computacional de interesse. Para descrever cada elemento, precisamos das identidades e das coordenadas dos 3 nós que definem cada elemento. A estrutura de dados clássica (há inúmeras) para armazenar malhas usa duas matrizes, a matriz de coordenadas nodais e a matriz de conectividades.
7 Exemplo Programação em Exemplo de malha de elementos finitos típica gerada com o programa GMSH.
8 GMSH Programação em O formato ASCII do arquivo de saída do GMSH está documentado em: O exemplo mostrado na figura anterior está em: slides/malhaexemplo/at_download/file Descarreguem estes dois arquivos!
9 Programação em GMSH Formato ASCII $MeshFormat $EndMeshFormat $Nodes $EndNodes $Elements
10 Exercício Programação em Escrever um programa em que: Leia um arquivo do GMSH, apenas os elementos triangulares planos; Retorne uma matriz com as coordenadas nodais e uma matriz com as conectividades nodais; Identifique o elemento com a maior área e com a menor área na malha; Calcule a área total da malha; Cuidado que os nós e elementos podem não estar numerados consecutivamente!
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE
Métodos Iterativos para a Solução da Equação de Poisson
Métodos Iterativos para a Solução da Equação de Poisson Valdirene da Rosa Rocho, Dagoberto Adriano Rizzotto Justo, Programa de Pós-Graduação em Matemática Aplicada, PPGMap, UFRGS, 91509-900, Porto Alegre,
Capítulo III Sistemas de equações
Capítulo III Sistemas de equações III1 - Condicionamento de sistemas lineares 1 Seja 1 0 0 10 6 e considere o sistema Ax = b, com b = 1 10 6 T, que tem por solução exacta x = 1 1 T (a) Determine cond(a)
SISTEMAS LINEARES PROF. EDÉZIO
SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x
MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO-
MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO- Curso de Transferência de Calor 1 - FEN03-5190 Prof. Gustavo R. Anjos [email protected] 17 e 23 de junho de 2015 EXEMPLOS - VÍDEOS Escoamento de fluido
Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel. Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME0305
Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME35 Métodos Iterativos Nesta seção, vamos estudar métodos iterativos
4 Modelagem Numérica. 4.1 Método das Diferenças Finitas
4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas
Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando Armazenamento Especial
Universidade Federal do Espírito Santo Departamento de Informática Algoritmos Numéricos 2016/2 Profa. Claudine Badue Trabalho 1 Objetivos Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando
Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados
Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Marina Andretta/Franklina Toledo ICMC-USP 24 de março de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,
INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares
INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do
Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas
Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição
Método de Newton-Raphson
Método de Newton-Raphson Método de Newton-Raphson Joinville, 29 de Abril de 2013 Escopo dos Tópicos Abordados Solução de equações via métodos iterativos Método de Newton-Raphson 2 Operação de Sistemas
Sistemas de Equações Lineares
Capítulo 3 Sistemas de Equações Lineares Um sistema com n equações lineares pode ser escrito na forma : ou na forma matricial onde com a 1,1 x 1 + a 1,2 x 2 + + a x n = b 1 a 2,1 x 1 + a 2,2 x 2 + + a
Cálculo Numérico Algoritmos
Cálculo Numérico Algoritmos Valdenir de Souza Junior Abril de 2007 Sumário 1 Introdução 1 2 Raízes de Equações 1 2.1 Método da Bisseção......................... 2 2.2 Método de Newton-Raphson.....................
MÉTODO DE ELEMENTOS FINITOS (MEF)
3 0 Exercício Programa de PMR 2420 Data de entrega: 17/06/2013 (até as 17:00hs) MÉTODO DE ELEMENTOS FINITOS (MEF) 1) Considere a estrutura da figura abaixo sujeita a duas cargas concentradas F 3 (t) e
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um
Modelagem Computacional. Parte 8 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
Resolução de sistemas de equações lineares: Método do Gradiente
Resolução de sistemas de equações lineares: Método do Gradiente Marina Andretta ICMC-USP 24 de março de 2015 Marina Andretta (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia I 24 de março de 2015
EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.
EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de
Capítulo 1. INTRODUÇÃO
Capítulo 1. INTRODUÇÃO A simulação numérica de problemas de engenharia ocupa atualmente uma posição de destaque no cenário mundial de pesquisa e desenvolvimento de novas tecnologias. O crescente interesse,
INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o
INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)
A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)
MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios o semestre de 009/00 - LEMat e MEQ Resolução de sistemas lineares. Inuência dos erros de arredondmento. Consideremos o sistema linear A x = b, onde 0 6 0 A = 0 6,
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE
Introdução aos Métodos Numéricos
Métodos Numéricos para Mecânica dos Fluidos Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Bibliografia: J. H. Ferziger and M. Peric, 'Computational Methods for Fluid Dynamics', Springer
Palavras-Chave: Autovalores, Matriz, Método de Jacobi. (1)
MSc Alexandre stácio Féo Associação ducacional Dom Bosco - Faculdade de ngenharia de Resende Caixa Postal: 8.698/87 - CP: 75-97 - Resende - RJ Brasil Professor e Doutorando de ngenharia [email protected]
UNIVERSIDADE FEDERAL DO ABC
UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas
Métodos iterativos para sistemas lineares.
Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central
RELATÓRIO DO CURSO DE ELEMENTOS FINITOS : TRANSFERÊNCIA DE CALOR TRANSIENTE PELO MÉTODO DOS ELEMENTOS FINITOS
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL ARQUITETURA E URBANISMO ROMILDO APARECIDO SOARES JUNIOR RELATÓRIO DO CURSO DE ELEMENTOS FINITOS : TRANSFERÊNCIA DE CALOR TRANSIENTE PELO
SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE
15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos
MÉTODO DOS ELEMENTOS FINITOS
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.alvaroazevedo.com Setembro 2017 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
Método de Elementos Finitos - Problema Bidimensional
Método de Elementos Finitos - Problema Bidimensional Prof. Isaac P. Santos Disciplina: Elementos Finitos - 2012/2 Programa de Pós-Graduação em Informática - PPGI - UFES, [email protected] Problema Modelo
Professor: Juan Julca Avila. Site:
Professor: Juan Julca Avila Site: http://professor.ufabc.edu.br/~juan.avila Bibliografia Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis, John Wiley, New York, Fourth
Capítulo 4 - Equações Diferenciais às Derivadas Parciais
Capítulo 4 - Equações Diferenciais às Derivadas Parciais [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação
Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira
Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Método de Jacobi Método iterativo: produz uma sequencia de soluções,,,, que aproximam a solução do sistema a partir de
Cálculo Numérico BCC760
Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita
Aula 3 Volumes Finitos
Universidade Federal do ABC Aula 3 Volumes Finitos EN3224 Dinâmica de Fluidos Computacional Duas metodologias Leis de Conservação Integrais EDPs O Método dos Volumes Finitos (MVF) Leis de Conservação Integrais
Cálculo Numérico Computacional
Cálculo Numérico Computacional Apresentação Prof. Márcio Bueno [email protected] Ementa } Oferecer fundamentos e instrumentos da matemática aplicada e computacional, com a finalidade de permitir
Aula 5 O Método dos Volumes Finitos
Universidade Federal do ABC Aula 5 O Método dos Volumes Finitos EN3224 Dinâmica de Fluidos Computacional Método dos volumes finitos (MVF) Origens: mecânica estrutural, cálculo das variações para condições
Sistemas de equações lineares
É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. Exercícios sobre Sistemas de Equações Lineares.
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ANÁLISE NUMÉRICA Exercícios sobre Sistemas de Equações Lineares Considere as seguintes matrizes: [ 0 3 4 Calcule
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 2 o semestre de 2005/2006 - LEE, LEGI e LERCI Programação em Mathematica 1. Calcule no Mathematica e comente os resultados: (a) 7; (b) 7.0; (c) 14406; (d) cos π 6
Lista de exercícios de MAT / II
1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
SME Cálculo Numérico. Lista de Exercícios: Gabarito
Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado
ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS
LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito
Resolução de Sistemas Lineares. Ana Paula
Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução
Roteiro-Relatório da Experiência N o 03 ANÁLISE DE MALHAS E ANÁLISE NODAL
COMPONENTES DA EQUIPE: Roteiro-Relatório da Experiência N o 03 ANÁLISE DE MALHAS E ANÁLISE NODAL ALUNOS NOTA 1 2 3 Data: /_ /_ :_ h 1. OBJETIVOS: Verificação experimental de ciruitos mistos com três malhas
Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.fe.up.pt/~alvaro Novembro 2000 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
Erros nas aproximações numéricas
Erros nas aproximações numéricas Prof. Emílio Graciliano Ferreira Mercuri Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR [email protected] 4 de março de 2013 Resumo: O objetivo
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados
Tutorial para o uso do aplicativo TransCal 1.1
Tutorial para o uso do aplicativo TransCal 1.1 1 Teoria do aplicativo TransCal 1.1 O aplicativo TransCal é um software com fins educacionais, especialmente projetado para ser um instrumento auxiliar no
MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA INTRODUÇÃO AOS MÉTODOS DE DIFERENÇAS FINITAS E DE VOLUMES
Laboratório de Simulação Matemática. Parte 6 2
Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo III Resolução Numérica de Sistemas de Equações Normas, Erros e Condicionamento.
LOM Teoria da Elasticidade Aplicada
Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações
Distribuição Normal. Prof. Herondino
Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva
1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações
1). Tipos de equações LIÇÃO 7 Introdução à resolução das equações numéricas Na Matemática, nas Ciências e em olimpíadas, encontramos equações onde a incógnita pode ser número, função, matriz ou outros
SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS.
SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé Lista 1: Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = ( 3, 1, 8, 2) T, calcule v 1,
PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta
Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos
Prof. MSc. David Roza José 1/35
1/35 Métodos Iterativos Objetivos: Compreender a diferença entre os métodos de Gauss-Seidel e Jacobi; Saber analisar a dominância diagonal e entender o quê significa; Reconhecer como a relaxação pode ser
Tratamento da geometria e geração de malha com Gmsh para elementos finitos
Tratamento da geometria e geração de malha com Gmsh para elementos finitos Andre Krindges Departamento de Matemática, ICET, UFMT 78060-900, Cuiabá, MT E-mail: krindges@ufmtbr João Frederico da Costa Azevedo
