Distribuição Normal. Prof. Herondino
|
|
|
- Joaquim Filipe Camilo
- 9 Há anos
- Visualizações:
Transcrição
1 Distribuição Normal Prof. Herondino
2 Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva normal, é a curva em forma de sino (Fig. ) que aproximadamente descreve muitos fenômenos que ocorrem na natureza, indústria e pesquisa. Figura Curva normal
3 Distribuição Normal Em 733, Abraham De Moivre desenvolveu a equação matemática da curva normal. Ele forneceu uma base a partir da qual grande parte da teoria de estatísticas indutivas é fundamentada. A distribuição normal é muitas vezes referida como a distribuição de Gauss, em homenagem a Karl Friedrich Gauss que também derivou sua equação. De Moivre Gauss
4 Distribuição Normal A equação matemática para a distribuição de probabilidade da variável normal depende de dois parâmetros, μ e σ, a sua média e desvio padrão, respectivamente. Figura Curva normal
5 Distribuição Normal A equação matemática para a distribuição de probabilidade da variável normal depende de dois parâmetros, μ e σ, a sua média e desvio padrão, respectivamente. A densidade da variável aleatória X normal com média μ e variância σ, é n( x;, ) e ( x) Figura Curva normal
6 Distribuição Normal A equação matemática para a distribuição de probabilidade da variável normal depende de dois parâmetros, μ e σ, a sua média e desvio padrão, respectivamente. x A densidade da variável aleatória X normal com média μ e variância σ, é n( x;, ) e ( x) Figura Curva normal onde π = e e =
7 Distribuição Normal A equação matemática para a distribuição de probabilidade da variável normal depende de dois parâmetros, μ e σ, a sua média e desvio padrão, respectivamente. x Figura Curva normal A densidade da variável aleatória X normal com média μ e variância σ, é n( x;, ) e ( x) onde π = e e = Daí, que denotam os valores da densidade de X por n (x; μ, σ).
8 Distribuição Normal - Exemplo Uma vez que μ e σ são especificados, a curva normal é completamente determinada. Por exemplo, se μ = 50 e σ = 5, então as coordenadas n (x, 50, 5) podem ser calculadas para vários valores de x e a curva traçada. x Figura Curva normal
9 Tipos de Curvas Normais Na Fig., há esboçado duas curvas normais com o mesmo desvio padrão, mas diferentes meios. As duas curvas são idênticas na forma, mas são centradas em diferentes posições ao longo do eixo horizontal. Figura Curvas Normal com μ < μ e σ = σ.
10 Tipos de Curvas Normais Na Fig. 3, há duas curvas normais com a mesma média, mas diferentes desvios-padrão. Desta vez, vemos que as duas curvas são centrados exatamente na mesma posição no eixo horizontal, mas a curva com o maior desvio padrão é menor e se espalha mais Figura 3 Curvas Normal com μ = μ e σ < σ. Lembrar que a área sob a curva de probabilidade deve ser igual a, e, portanto, a mais variável do conjunto de observações, será a mais baixa e mais larga da curva correspondente.
11 Tipos de Curvas Normais A Fig. 4 mostra duas curvas normais com diferentes meios e desvios padrão diferentes. Claramente, estão centrados em diferentes posições no eixo horizontal e as suas formas refletem os dois valores diferentes de σ. Figura 4 Curvas Normal com μ < μ e σ < σ.
12 Propriedades da Curva Normal Com base em uma exame das Figuras a 4 e através da análise da primeira e segunda derivadas de n(x; μ, σ), listamos as seguintes propriedades da curva normal:. O ponto sobre o eixo horizontal, onde a curva tem um valor máximo, ocorre em x = μ.. A curva é simétrica em torno de um eixo vertical que passa pelo meio μ. 3. A curva tem seus pontos de inflexão em x = μ ± σ; é côncava para baixo se μ-σ <X <μ + σ e é côncava para cima de outra forma 4. A curva normal se aproxima do eixo horizontal assintoticamente como derivamos em qualquer direção que se afasta a partir da média. 5. A área total sob a curva e acima do eixo horizontal é igual a.
13 Área na Curva Normal A curva continua de distribuição de probabilidade ou função densidade é construída na área dentro da curva por dois valores x e x para igual probabilidade da variável aleatória X ocorrer : A área sob a curva entre quaisquer dois valores deverão então também dependem do μ valores e σ. Figura 5 P( x < X <x ) é igual a região pintada.
14 Cálculo por Tabelas A dificuldade em resolver integrais de funções normais de densidade, requer a tabulação das áreas de curva normal para rápida referência. Pode ser feita a transformação de todas as observações de qualquer variável aleatória X normal, em um novo conjunto de observações de uma variável aleatória Z normal com média 0 e variância. Isto pode ser feito por meio da transformação Z X
15 Integral de área Sempre que X assume um valor x, o valor correspondente de Z é dada por. Z ( X ) Portanto, se X cai entre os valores x = x e x = x, a variável aleatória Z será entre os valores correspondentes a Z x ) e Z x ). ( (
16 Integral de área Sempre que X assume um valor x, o valor correspondente de Z é dada por. Z ( X ) Portanto, se X cai entre os valores x = x e x = x, a variável aleatória Z será entre os valores correspondentes a Z x ) e Z x ). ( ( Consequentemente podemos escrever: P( x X x ) x x e ( x) dx
17 Integral de área Sempre que X assume um valor x, o valor correspondente de Z é dada por. Z ( X ) Portanto, se X cai entre os valores x = x e x = x, a variável aleatória Z será entre os valores correspondentes a Z x ) e Z x ). ( ( Consequentemente podemos escrever: P( x X x ) x x e ( x) dx z z e z dz
18 Integral de área Sempre que X assume um valor x, o valor correspondente de Z é dada por. Z ( X ) Portanto, se X cai entre os valores x = x e x = x, a variável aleatória Z será entre os valores correspondentes a Z x ) e Z x ). ( ( Consequentemente podemos escrever: P( x X x ) x x e ( x) dx z z e z dz z z n( z;0,) dz P( z Z z)
19 A Distribuição Normal Transfomada Figura 6 a original e a distribuição normal transformada.
20 Tabela Área dentro da Curva Normal
21 Uso da Tabela Para ilustrar o uso desta tabela, vamos descobrir a probabilidade de que Z é menor a,74, ou seja, P(Z<,74) P( Z,74) 0,959
22 Exemplo : Dada uma distribuição normal padrão, encontre a área da curva que: a) encontra-se a direita de Z,84 b) está entre. Z,97 e Z 0,86 Figura 7: Área do exemplo.
23 Solução: Dada uma distribuição normal padrão, encontre a área da curva que: a) encontra-se a direita de Z, 84 P( Z,84) 0,967 P( Z,84) 0,039
24 Exemplo: Dada uma distribuição normal padrão, encontre a área da curva que: b) está entre Z,97 e Z 0,86. P(,97 Z 0,86) 0,805??
25 Exemplo : Dada uma distribuição normal padrão, encontre a área da curva que: b) está entre Z,97 e Z 0,86. P(,97 Z 0,86) 0,805 0,044 P(,97 Z 0,86) 0,7807
26 Exemplo Dada uma distribuição normal padrão, encontre o valor de k de forma que: a) P( Z k) 0,305 b) P( k Z 0,8) 0,497 e Figura 8: Área do exemplo.
27 Exemplo Dada uma distribuição normal padrão, encontre o valor de k de forma que: a) P( Z k) 0,305 e k 0,5 Para a esquerda a área será 0,6985. Buscando na Tabela
28 Exemplo Dada uma distribuição normal padrão, encontre o valor de k de forma que: b) P( k Z 0,8) 0,497 A área de -0,8 é -0,574 =0,486. Então subtraindo 0,486-0,497=0,0089. Para poder utilizar a tabela novamente no lado invertido -0,0089= 0,99
29 Exemplo b) P( k Z 0,8) 0,497 A Para poder utilizar a tabela novamente no lado invertido -0,0089= 0,99 que informa k= -,37
30 Exemplo 3: Dada uma variável randomica X e uma distribuição normal com μ = 50 and σ = 0, encontre a probabilidade de X assumir valores entre 45 e 6. Solução: Os valores correspondentes a z são encontrados pela transformação: Z X
31 Exemplo 3: Dada uma variável randomica X e uma distribuição normal com μ = 50 and σ = 0, encontre a probabilidade de X assumir valores entre 45 e 6. Solução: Os valores correspondentes a z são encontrados pela transformação: Z X Aplicando: Z e Z
32 Exemplo 3: Dada uma variável randomica X e uma distribuição normal com μ = 50 and σ = 0, encontre a probabilidade de X assumir valores entre 45 e 6. Solução: Os valores correspondentes a z são encontrados pela transformação: Z X Aplicando: Z Z Z 0 Z 0
33 Exemplo 3: Dada uma variável randomica X e uma distribuição normal com μ = 50 and σ = 0, encontre a probabilidade de X assumir valores entre 45 e 6. Solução: Os valores correspondentes a z são encontrados pela transformação: Z X Aplicando: Z 0 5 Z 0 Z 0, Z 0 Z 0 Z,
34 Exemplo 3 Figura 9 : Área do exemplo 3 Portanto, P(45 < X < 6) = P( 0,5 < Z <,). P( 0,5 < Z <,) é mostrado pela área da região pintada, ou seja, P(45 < X < 6) = P( 0,5 < Z <,) = P(Z <,) P(Z < 0,5)
35 Exemplo 3 P(45 < X < 6) = P( 0,5 < Z <,) = P(Z <,) P(Z < 0,5) =????? ( P(Z < 0,5))
36 Exemplo 3 P(45 < X < 6) = P( 0,5 < Z <,) = P(Z <,) P(Z < 0,5) = 0,8849 ( P(Z < 0,5)) = 0,8849 (?????) =
37 Exemplo 3 P(45 < X < 6) = P( 0,5 < Z <,) = P(Z <,) P(Z < 0,5) = 0,8849 ( P(Z < 0,5)) = 0,8849 ( 0,695) = 0,8849 0,3085
38 Exemplo 3 P(45 < X < 6) = P( 0,5 < Z <,) = P(Z <,) P(Z < 0,5) = 0,8849 ( P(Z < 0,5)) = 0,8849 ( 0,695) = 0,8849 0,3085 = 0,5764
39 Exemplo 4: Dado que X tem um distribuição normal com μ = 300 e σ = 50, encontre a probabilidade que X assume valores maior que 36. Z ,4 Figura 0 : Área do exemplo 4
40 Usando a curva normal na reversa Da transformação Z X x Z obtém-se:
41 Usando a curva normal na reversa Da transformação X obtém-se: Exemplo: Dada uma distribuição normal com μ = 40 e σ = 6, encontre o valor de x que tem a) 45% de sua área para a esquerda Z x Z
42 Usando a curva normal na reversa Da transformação X obtém-se: Exemplo: Dada uma distribuição normal com μ = 40 e σ = 6, encontre o valor de x que tem a) 45% de sua área para a esquerda Z x Z
43 Usando a curva normal na reversa Da transformação X obtém-se: Exemplo: Dada uma distribuição normal com μ = 40 e σ = 6, encontre o valor de x que tem a) 45% de sua área para a esquerda Z x Z P(Z < -0,3)=0,45
44 Usando a curva normal na reversa x Z x 6( 0,3) 40
45 Usando a curva normal na reversa x Z x 6( 0,3) 40 x 0, ,
46 A área em verde escuro está a menos de um desvio padrão(σ) da média. Em uma distribuição normal, isto representa cerca de 68% do conjunto, enquanto dois desvios padrões desde a média (verde médio e escuro) representam cerca de 95%, e três desvios padrões (verde claro, médio e escuro) cobrem cerca de 99.7%. Este fato é conhecido como regra , ou a regra empírica, ou a regra dos 3-sigmas.
47 Referência Bibliográfica Walpole, Ronald E et al. Probability & statistics for engineers & scientists/ronald E. Walpole... [et al.] 9 th. Ed. ISBN Boston-USA/0.
Distribuições de Probabilidade
Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)
Distribuição T - Student. Prof. Herondino S. F.
Distribuição T - Student Prof. Herondino S. F. Distribuição T-Student A distribuição T de Student é uma distribuição de probabilidade estatística, publicada por um autor que se chamou de Student, pseudônimo
14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas
4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,
( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas
Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira
Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira
Lucas Santana da Cunha 12 de julho de 2017
DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,
Distribuição Gaussiana
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição
Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017
padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições
Vamos conversar sobre BRUNI
Vamos conversar sobre Aviso importante!!! Estes slides apresentam o conteúdo do livro Estatística Aplicada à Gestão Empresarial, de Adriano Leal Bruni, publicado pela Editora Atlas Capítulo 7 Distribuição
GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais
Universidade Federal Fluminense Instituto de Matemática e Estatística GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana
Aula 2 A distribuição normal
Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse
Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Distribuições de probabilidade normal slide 1 Descrição do capítulo 5.1 Introdução à distribuição normal e distribuição normal padrão 5.2 Distribuições normais: encontrando probabilidades 5.3
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Variáveis Aleatórias Contínuas Distribuição de Probabilidade Contínua Modelo Normal Modelo t de Student
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume
Distribuição Normal. Apontamentos para a disciplina de Estatística I. Tomás da Silva, 2003/2006
Distribuição Normal Apontamentos para a disciplina de Estatística I Tomás da Silva, 2003/2006 Introdução: Curvas normais e distribuições normais A regra 689599,7 A distribuição normal padronizada (ou:
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014
Estatística Aplicada
Estatística Aplicada Distribuição Normal Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES NORMAL Distribuição Normal É uma distribuição teórica de frequências onde
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Ensino de Estatística
Ensino de Estatística Distribuição Normal Lupércio França Bessegato Ronaldo Rocha Bastos Departamento de Estatística/UFJF Exploração de Dados Univariados Visualize graficamente seus dados Busque padrão
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)
Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:
Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011
Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução
Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ
Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Teorema do Limite Central
O Teorema do limite central (TLC) demonstra a tendência de aproximação das variáveis aleatórias com a distribuição normal. 2 O teorema do limite central é básico para a maioria das aplicações do controle
Aproximação da Distribuição Binomial pela Distribuição Normal
Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.
Departamento de Matemática Escola Superior de Tecnologia de Viseu
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
Probabilidade Aula 08
332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável
PARTE 3. Profª. Drª. Alessandra de Ávila Montini
PARTE 3 Profª. Drª. Alessandra de Ávila Montini Distribuições Contínuas 2 Conteúdo Principais Distribuições de Probabilidade para Variáveis Quantitativas Contínuas: Exponencial Normal T de Student Qui-quadrado
b) Variáveis Aleatórias Contínuas
Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Distribuição Normal. Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por:
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
Distribuições Importantes. Distribuições Contínuas
Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de
Estatística - aulasestdistrnormal.doc 13/10/05
Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos
Distribuições Contínuas de Probabilidade
Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item
ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:
Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.
O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Distribuições Contínuas Prof. Walter Sousa
Estatística Distribuições Contínuas Prof. Walter Sousa DISTRIBUIÇÕES CONTÍNUAS Uma variável aleatória XX é contínua se assumir um número infinito não numerável de valores. Assim, fica definida uma função,
1 Distribuição Uniforme
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme
DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma:
DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)
Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável
Distribuições de probabilidade de variáveis aleatórias contínuas
Distribuições de probabilidade de variáveis aleatórias contínuas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Distribuição Exponencial Introdução É utilizada frequentemente como modelo para
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Variável Aleatória Contínua:
Distribuição Contínua Normal Prof. Tarciana Liberal Departamento de Estatística UFPB x x Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável
aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal
DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal
Teste de hipóteses para uma média populacional com variância conhecida e desconhecida
Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida Tomando-se como exemplo os dados de recém-nascidos
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.
Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia
Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Distribuição t de Student
Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas
AULA 02 Distribuição de probabilidade normal
1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)
Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.
Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
2.1 Variáveis Aleatórias Discretas
4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da
