Teorema do Limite Central
|
|
|
- Adelina Álvares
- 6 Há anos
- Visualizações:
Transcrição
1 O Teorema do limite central (TLC) demonstra a tendência de aproximação das variáveis aleatórias com a distribuição normal. 2 O teorema do limite central é básico para a maioria das aplicações do controle estatístico da qualidade. A partir do teorema do limite central, sabe-se que a distribuição amostral das médias apresenta os seguintes parâmetros: População Amostra Média µ x Desvio-padrão σ S 3 1
2 A média dos dois dados resulta aproximadamente em uma distribuição Normal. A aproximação da distribuição Normal melhora na medida que se fizesse a média do lançamento de mais dados. 4 A distribuição Normal fica completamente caracterizada por dois parâmetros: a média e o desvio-padrão (variabilidade). Diferentes médias e desvio-padrões originam curvas normais distintas. Amostras Dados Localização ( x ) Variabilidade (R) A x = 14 R = 8 B x = 26 R = 8 C x = 14 R = 16 Variabilidade (amplitude total, DP, variância...) R é a amplitude média 5 f(x) A C a) da distribuição A para B muda a tendência central, mas a variabilidade é constante; b) da distribuição A para C muda a variabilidade, mas a tendência central é constante; c) da distribuição B para C muda a tendência central e a variabilidade. B x 6 2
3 A distribuição Normal é a mais importante das distribuições estatísticas, tanto na teoria como na prática: Representa a distribuição de freqüência de muitos fenômenos naturais; As médias e as proporções de grandes amostras seguem a distribuição Normal; 7 A distribuição Normal é em forma de sino, simétrica em relação à sua média e tende cada vez mais ao eixo horizontal à medida que se afasta da média. Teoricamente os valores da variável aleatória podem variar de - a +. 8 A área abaixo da curva Normal representa 100% de probabilidade associada a uma variável. A probabilidade de uma variável aleatória tomar um valor entre dois pontos quaisquer é igual à área compreendida entre esses dois pontos. 9 3
4 A área total abaixo da curva é considerada como 100%. Isto é, a área total abaixo da curva é 1. área=1 área=0,5 área=0,5 10 Percentuais da distribuição Normal: 99,73% 95,44% 68,26% σ +1 σ -2 σ +2 σ -3 σ +3 σ 11 O mundo de Z A área sob a curva entre um ponto qualquer e a média é função somente do número de desvios-padrões que o ponto está distante da média. Como existem uma infinidade de distribuições normais (uma para cada média e desvio-padrão), transformamos a unidade estudada seja ela qual for (peso, espessura, tempo, etc.) na unidade Z, que indica o número de desvios-padrão a contar da média. 12 4
5 O cálculo de probabilidades (área sob a curva) pode ser realizado através de uma distribuição Normal padronizada, onde o parâmetro é a variável reduzida Z (aproximação). A distribuição Normal pode ser representada por uma equação matemática dada por: 1 2 x µ 1 f ( x) = e 2 σ σ 2Π o número irracional: e = 2, (base do logaritmo neperiano) 13 A distribuição Normal acumulada é obtida calculando a probabilidade de X ser menor que um dado valor x: A solução está apresentada em tabelas da distribuição Normal padronizada onde se entra com a variável reduzida Z (número de desvios-padrões distantes da média) e encontra-se F(Z) (área) ou vice-versa. P x P ( X x) = F( x) = f ( x) dx x µ { X x} = P Z = F( Z) Tabelado σ 14 O mundo de Z é mais fácil de ser compreendido do que se imagina. 15 5
6 A variável reduzida mede a magnitude do desvio em relação à média, em unidades de desvio padrão. Z = 1,5 significa, simplesmente, uma observação está desviada 1,5 desvios padrão a cima da média. 16 A variável reduzida é muito útil para comparar distribuições e detectar dados atípicos. Dados são considerados atípicos quando Z > 3 ou Z < -3. x x Z = s 17 Para sabermos o valor da probabilidade, utilizamos a tabela da distribuição Normal. Essa tabela nos fornece a área acumulada até o valor de Z. Por exemplo: Z =1 tem-se uma área de 0,84 Z=1 Área=0,84 Z 1, ,84 0,84 = 84% de probabilidade ocorrência dos valores menores que Z 0,0 18 6
7 As áreas correspondentes as probabilidades da distribuição normal padrão estão tabeladas. Z Probabilidade de ocorrência de valores abaixo de Z Z =1,16 tem-se uma área de 0,87 19 Uma vez calculada a variável reduzida Z, Consulta-se a tabela Normal padronizada Identificar a probabilidade acumulada à esquerda de Z Ou seja, a probabilidade de ocorrerem valores menores ou iguais a um certo valor de Z consultado. 20 O cálculo da variável reduzida Z faz uma transformação dos valores reais em valores codificados. A transformação é feita descontando-se a média para eliminar o efeito de localização (tendência central) e dividindo-se pelo desviopadrão para eliminar o efeito de escala (variabilidade). x x Z = s 21 7
8 Exemplo 1: Suponha que o limiar diastólico dos pacientes hipertensos do HEJC seja normalmente distribuído com média 100 torr (100 mmhg), e desvio-padrão 10 (mmhg). Então o limiar está em torno de 100 a uma distância as vezes maior, as vezes menor que 10. Qual a probabilidade de um paciente, pego ao acaso, possuir limiar menor que 110 mmhg? 22 Qual a probabilidade de um paciente, pego ao acaso, possuir limiar menor que 110 mmhg? x x Z = s 23 Queremos saber qual a probabilidade de um paciente, pego ao acaso, possuir limiar menor que 110 mmhg: x µ x x Z = = = = 1 σ s 10 P( x <110) = P( Z < 1) = 0,8413 (aproximadamente 84,13%) 24 8
9 Se quiséssemos saber a probabilidade do limiar ser maior que 111,6 mmhg? x x Z = s 25 Se quiséssemos saber a probabilidade do limiar ser maior que 111,6 mmhg, iniciamos calculando o valor de Z: 111,6 100 Z = = 1, Encontramos o valor de probabilidade 0,8770. P( Z > 1,16) = 1 - P(Z < 1,16) = 1-0,8770 = 0,
10 Qual a probabilidade do limiar estar entre 120 e 130 mmhg? teríamos que fazer o seguinte raciocínio: The image cannot be displayed. Your computer may not have enough memory to open x xthe image, or the image Z = may have been corrupted. Restart s your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. 28 Qual a probabilidade do limiar estar entre The image 120 cannot e 130 be displayed. mmhg? Your computer may not have teríamos que fazer o seguinte raciocínio: enough memory to open the P(120 < X < 130) = P(X <130) P(X < 120) = P(Z< 3) P(Z< 2) = 0,9987 0,9772 = 0,0215 image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, x x you may have to delete the Z = = image and then insert s it again. ou seja, 2,15% de chance de um paciente ter limiar entre 120 e 130 mmhg. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. 29 Exemplo 2: O tempo máximo de fonação do fonema A é uma importante ferramenta de avaliação da voz. Sabe-se que esse tempo, na UTfono, segue um modelo Normal com média 30 s e desvio padrão 2 s. Se a literatura estabelece que o TMF do fonema A deve ser maior que 25 s, qual a probabilidade que um paciente escolhido ao acaso produzir o fonema com este tempo? 30 10
11 Cuidados! Z ou de 0 a Z? Tabela Z 31 A soma (e por conseguinte a média) de n variáveis independentes seguirá o modelo Normal, independentemente da distribuição das variáveis individuais. A aproximação melhora na medida em que n aumenta. 32 Se as distribuições individuais não são muito diferentes da Normal, basta n = 4 ou 5 para se obter uma boa aproximação. Se as distribuições individuais forem radicalmente diferentes da Normal, então será necessário n = 20 ou mais
12 Na figura abaixo pode ser visto um desenho esquemático do teorema do limite central. n n 34 Exemplo 4: A distribuição de probabilidade da variável resultante do lançamento de um dado segue a distribuição uniforme, ou seja, qualquer valor (1,2,3,4,5,6) tem a mesma probabilidade (1/6) de ocorrer. No entanto, se ao invés de lançar um dado, sejam lançados dois dados e calculada a média, a média dos dois dados seguirá uma distribuição aproximadamente Normal dado 2 0 dado Soma Média 1 0 dado 2 0 dado Soma Média , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
13 Tabela de freqüência da média dos dois dados Média de dois dados Freqüência 1,0 1 1,5 2 2,0 3 2,5 4 3,0 5 3,5 6 4,0 5 4,5 4 5,0 3 5,5 2 6, Histograma da média dos dois dados f(x) 6/36 5/36 4/36 3/36 2/36 1/36 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 x 38 Confirmação da normalidade da amostra Confirmar 39 13
Distribuição de Probabilidade
Distribuição de Probabilidade ENG09004 2014/2 Prof. Alexandre Pedott [email protected] Introdução O histograma é usado para apresentar dados amostrais extraídas de uma população. Por exemplo, os
Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira
Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira
Distribuições Contínuas de Probabilidade
Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item
ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA
ENGENHARIA DA QUALIDADE A ENG 09008 AULA REVISÃO DE ESTATÍSTICA PROFESSORES: CARLA SCHWENGBER TEN CATEN ROGÉRIO FEROLDI MIORANDO Introdução Em um ambiente industrial, os dados devem formar a base para
CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade
Introdução CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE UFRGS O histograma é usado para apresentar dados amostrais etraídas de uma população. Por eemplo, os 50 valores de uma característica dimensional apresentados
Distribuição Gaussiana
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Lucas Santana da Cunha 12 de julho de 2017
DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
Windows Server 2012. Licenciamento e Preço Todas as Edições
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
A FALHA NÃO É UMA OPÇÃO
FLH NÃO É UM OPÇÃO Eng. José Wagner raidotti Junior raidotti Engenharia e Consultoria Ltda. iretor Técnico de Gestão de tivos Reflexão individual Na empresa que eu trabalho a falha é uma OPÇÃO? Sim ou
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Distribuições de probabilidade normal slide 1 Descrição do capítulo 5.1 Introdução à distribuição normal e distribuição normal padrão 5.2 Distribuições normais: encontrando probabilidades 5.3
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
Distribuições de Probabilidade
Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)
Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)
Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:
CONTROLE QUÍMICO E MECÂNICO DO BIOFILME
INAPÓS - Faculdade de Odontologia e Pós Graduação The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer,
Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ
Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda
Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal
Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Distribuição Normal. Apontamentos para a disciplina de Estatística I. Tomás da Silva, 2003/2006
Distribuição Normal Apontamentos para a disciplina de Estatística I Tomás da Silva, 2003/2006 Introdução: Curvas normais e distribuições normais A regra 689599,7 A distribuição normal padronizada (ou:
Estatística Aplicada
Estatística Aplicada Distribuição Normal Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES NORMAL Distribuição Normal É uma distribuição teórica de frequências onde
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Medidas de Posição ou Tendência Central
Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Fornece medidas que podem caracterizar o comportamento dos elementos de uma série; Possibilitando determinar se um valor
Distribuições Contínuas Prof. Walter Sousa
Estatística Distribuições Contínuas Prof. Walter Sousa DISTRIBUIÇÕES CONTÍNUAS Uma variável aleatória XX é contínua se assumir um número infinito não numerável de valores. Assim, fica definida uma função,
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011
Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução
AULA 02 Distribuição de Probabilidade Normal
1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario
Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável
AÇÕES EM EDUCAÇÃO AMBIENTAL. da Assessoria de Gestão Ambiental da CEDAE
AÇÕES EM EDUCAÇÃO AMBIENTAL da Assessoria de Gestão Ambiental da CEDAE Educação Ambiental entende-se por educação ambiental os processos por meio dos quais o indivíduo e a coletividade constroem valores
AULA 02 Distribuição de probabilidade normal
1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)
Distribuições de Probabilidade. Distribuição Normal
Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno
1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)
Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas
4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
CONSCIENTIZAÇÃO DA NECESSIDADE DO PSA-GUANDU
CEDAE - Companhia Estadual de Águas e Esgotos DG - Diretoria de Produção e Grande Operação CONSCIENTIZAÇÃO DA NECESSIDADE DO PSA-GUANDU 1 CEDAE - Companhia Estadual de Águas e Esgotos DG - Diretoria de
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
5ª FICHA DE AVALIAÇÃO CIÊNCIAS NATURAIS - 7º ANO DE ESCOLARIDADE NOME Nº TURMA. Enc.Ed. Prof. Classif.
5ª FICHA DE AVALIAÇÃO CIÊNCIAS NATURAIS - 7º ANO DE ESCOLARIDADE NOME Nº TURMA DATA / / 2013 Enc.Ed. Prof. Classif. Obs. - Lê com atenção todas as questões e procura responder de forma clara e sucinta
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume
Distribuição Normal. Prof. Herondino
Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas
Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Módulo IV Medidas de Variabilidade ESTATÍSTICA
Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados
Engenharia da Qualidade. Profa. Luciana Rosa Leite
Engenharia da Qualidade Profa. Luciana Rosa Leite Unidade 1 Introdução à Engenharia Da Qualidade 1.1 Evolução da Gestão da Qualidade 1.2 Revisão de conceitos estatísticos Exercícios Evolução da Gestão
AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017
AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal
Distribuições Importantes. Distribuições Contínuas
Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de
HEP-5800 BIOESTATÍSTICA. Capitulo 2
HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Probabilidade Aula 08
332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz
Investimentos O desafio da Universalização. 11 de dezembro de 2013
Investimentos O desafio da Universalização 11 de dezembro de 2013 Estado de São Paulo 248.196.960 km 2 População total: 41.262.199 População urbana: 39.585.251 645 municípios Fonte: IBGE, Censo Demográfico
Os exercícios a seguir são para resolver em sala
Os exercícios a seguir são para resolver em sala i) Uma mulher tem 1/3 de chance de ainda estar viva daqui a 30 anos e seu marido tem 2/5 de chance. Qual é a probabilidade de, daqui a 30 anos: a) Ambos
Intervalos Estatísticos para uma única Amostra - parte I
Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para
Probabilidade e Estatística
Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
METODOLOGIA PARA AVALIAÇÃO DE ESTABILIDADE DE ESCAVAÇÕES EM MEIOS DESCONTÍNUOS, A PARTIR DE TESTEMUNHOS DE SONDAGEM SEMI-ORIENTADOS
METODOLOGIA PARA AVALIAÇÃO DE ESTABILIDADE DE ESCAVAÇÕES EM MEIOS DESCONTÍNUOS, A PARTIR DE TESTEMUNHOS DE SONDAGEM SEMI-ORIENTADOS Lucas Torrent Figueiredo escavações subterrâneas: métodos numéricos (maciços
