Prefácio... Notação... XIII
|
|
|
- Matheus Rico
- 7 Há anos
- Visualizações:
Transcrição
1 Sumário Prefácio... IX Notação... XIII Capítulo 1 Introdução Processo de análise Modelo estrutural Modelo discreto Modelo computacional Organização dos capítulos Sugestão para leitura Capítulo 2 Discretização no Método da Rigidez Direta Solução global discreta e solução local de engastamento perfeito Dados de entrada típicos de um programa de computador Resultados típicos de um programa de computador Sistemas de coordenadas generalizadas Graus de liberdade e forças generalizadas globais Graus de liberdade e forças generalizadas locais nas direções dos eixos locais Relação entre a numeração de coordenadas generalizadas locais e globais Capítulo 3 Organização de Classes Classes, objetos e encapsulamento de dados Diagrama de classes Tipos de relacionamentos entre objetos Tipo abstrato de dados e construtores... 47
2 XXVI Análise Matricial de Estruturas com Orientação a Objetos Drv Material Section Node Elem Lelem Anm Print Capítulo 4 Idealização do Comportamento de Barras Campo de deslocamentos Campo de tensões e esforços internos Relações de compatibilidade entre deslocamentos e deformações em barras Deformações axiais Teoria de vigas de Navier Teoria de vigas de Timoshenko Distorções por efeito cortante Distorções por torção Relações diferenciais de equilíbrio Condição de equilíbrio na torção Lei constitutiva linear para o material Equações diferenciais dos modelos analíticos de barras Equação diferencial para o comportamento axial
3 Sumário XXVII cisalhamento Equação diferencial para o comportamento à torção Consideração de efeitos de variação de temperatura Deformações generalizadas iniciais provocadas por variação de temperatura Equação diferencial para o comportamento axial para variação de temperatura siderar deformações por cisalhamento rando deformações por cisalhamento Capítulo 5 Interpolação de Deslocamentos em Barras Funções de forma para interpolação de deslocamentos e rotações em barras Funções de forma para comportamento axial Funções de forma no plano xy sem articulação Funções de forma no plano xy com articulação na extremidade inicial Funções de forma no plano xy sem articulação Funções de forma para comportamento à torção Capítulo 6 Formulação do Problema Discreto
4 XXVIII Análise Matricial de Estruturas com Orientação a Objetos Capítulo 7 Matriz de Rigidez Local Matrizes de rigidez locais para cada modelo de análise Expressão genérica para a matriz de rigidez de barra no sistema de eixos locais Matrizes de deformação para barras de pórtico plano e grelha Submatrizes de rigidez locais para comportamentos elementares de uma barra Comportamento axial xy Barra sem articulação Barra com articulação na extremidade inicial Barra com articulação nas duas extremidades xz Barra sem articulação Barra com articulação na extremidade inicial Barra com articulação nas duas extremidades Comportamento à torção Implementação computacional da matriz de rigidez local Capítulo 8 Cargas Equivalentes Nodais Locais Reações de engastamento de barra isolada para solicitações externas no sistema local Reações de engastamento locais para forças distribuídas axiais e transversais Reações de engastamento locais para variação de temperatura Cargas equivalentes nodais de barra isolada no sistema de eixos globais Implementação computacional das cargas equivalentes nodais Capítulo 9 Solução do Problema Global Discreto Operações iniciais para análise e diagrama de sequência Montagem da matriz de rigidez global Montagem das cargas nodais combinadas no vetor das forças generalizadas globais
5 Sumário XXIX Capítulo 10 Obtenção de Resultados de Análise Determinação de reações de apoio Determinação de esforços internos nas barras Capítulo 11 Introdução ao Método dos Elementos Finitos Problema analítico do estado plano de tensão Equação diferencial matricial de compatibilidade Equação diferencial matricial de equilíbrio Relação constitutiva do estado plano de tensão para material elástico-linear Condições de contorno naturais Concepção do problema global discreto em deslocamentos para o meio contínuo bidimensional Aproximação para o campo de deslocamentos Satisfação das condições de compatibilidade Aproximação para o campo de tensões Formulação do problema global discreto para modelos contínuos Cargas equivalentes nodais Resumo da formulação em deslocamentos do MEF Critérios de continuidade (ou compatibilidade) Condições de completitude Condições para aproximação assintótica Apêndice A Funções de Forma A.1 Parâmetros utilizados A.2 Comportamento axial xy A.3.1 Barra sem articulação A.3.2 Barra com articulação na extremidade inicial A.3.4 Barra com articulação nas duas extremidades xz A.4.1 Barra sem articulação A.4.2 Barra com articulação na extremidade inicial A.4.4 Barra com articulação nas duas extremidades... A.5 Comportamento à torção...
6 XXX Análise Matricial de Estruturas com Orientação a Objetos Apêndice B Soluções Locais de Engastamento B.1 Parâmetros utilizados B.2 Solicitações axiais B.2.1 Barra solicitada por força axial linearmente distribuída B.2.2 Barra solicitada por variação uniforme de temperatura B.3.1 Barra solicitada por força transversal linearmente distribuída no plano local xy B.3.2 Barra solicitada por força transversal linearmente distribuída no plano local xz B.3.3 Barra solicitada por gradiente transversal de temperatura no plano local xy B.3.4 Barra solicitada por gradiente transversal de temperatura no plano local xz... Apêndice C Códigos QR para endereços URL Índice de Assuntos Índice de Autores
7 O cálculo dos deslocamentos e tensões é uma das atividades mais importantes da Engenharia, pois é responsável pela segurança das pessoas e Atualmente, essa atividade é realizada com o uso de computadores e, portanto, a disciplina de Análise Matricial das Estruturas se tornou fundamental para nos desenvolvam programas para compreender os conceitos e algoritmos to de sistemas complexos, essa metodologia já é consagrada nos cursos de O livro é um marco no ensino de Análise Matricial e também importante para conceitos de ambas as disciplinas se complementam, uns servindo de exem- MARCELO GATTASS Professor titular do Departamento de Informática/PUC-Rio Diretor do Instituto Tecgraf de Desenvolvimento de Software
Análise Matricial de Estruturas com orientação a objetos
Análise Matricial de Estruturas com orientação a objetos Prefácio... IX Notação... XIII Capítulo 1 Introdução... 1 1.1. Processo de análise... 2 1.1.1. Modelo estrutural... 2 1.1.2. Modelo discreto...
ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS
ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS Luiz Fernando Martha Capítulo 0 Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio Departamento de Engenharia Civil Rua Marquês de São Vicente,
Aula 04 MÉTODO DAS FORÇAS. Classi cação das estruturas quanto ao seu equilíbrio estático. ² Isostática:
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 04
CONTEÚDOS PROGRAMADOS. (Análise Computacional de Tensões EEK 533)
(Análise Computacional de Tensões EEK 533) - AULAS POR UNIDADE 1 - Princípios Variacionais 1.1 - Princípio dos Trabalhos Virtuais 1.2 - Princípios da Mínima Energia Total e da Mínima energia complementar.
Universidade de Coimbra Faculdade de Ciências e Tecnologia 2001/02 Estruturas II (aulas teóricas)
Sumário da 1ª lição: Sumário da 2ª lição: - Apresentação. - Objectivos da Disciplina. - Programa. - Avaliação. - Bibliografia. - Método dos Deslocamentos. - Introdução. - Grau de Indeterminação Cinemática.
LOM Teoria da Elasticidade Aplicada
Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações
O Método dos Deslocamentos baseia-se em Equações de Equilíbrio de Nós.
FORMULAÇÃO MATRICIAL DO MÉTODO DOS DESLOCAMENTOS OU DA RIGIDEZ Pedro Sá O Método dos Deslocamentos baseia-se em Equações de Equilíbrio de Nós. direções de ações e deslocamentos de nós, no elemento de pórtico
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido.
Exercícios de Análise Matricial de Estruturas ) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Dicas: - Obtenção da energia de deformação do sistema estrutural
3 Implementação Computacional
3 Implementação Computacional Neste trabalho considerou-se o estudo da instabilidade elástica e inelástica de estruturas planas como vigas, colunas, pórticos e arcos. No estudo deste tipo de estruturas
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari
Engenharia Biomédica EN310 MODEAGEM, SIMUAÇÃO E CONTROE APICADOS A SISTEMAS BIOÓGICOS Professores: Ronny Calixto Carbonari Janeiro de 013 Método de Elementos Finitos (MEF): Elementos de Treliça Objetivo
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções
Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho
ANÁLISE MATRICIAL DE ESTRUTURAS: APLICADA A MODELOS LINEARES
ANÁLISE MATRIIAL E ESTRUTURAS: APLIAA A MOELOS LINEARES Lui Fernando Martha Pontifícia Universidade atólica do Rio de Janeiro PU-Rio epartamento de Engenharia ivil Rua Marquês de São Vicente, 225 - Gávea
Professor: Juan Julca Avila. Site:
Professor: Juan Julca Avila Site: http://professor.ufabc.edu.br/~juan.avila Bibliografia Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis, John Wiley, New York, Fourth
5 Formulação Dinâmica Não Linear no Domínio da Frequência
129 5 Formulação Dinâmica Não Linear no Domínio da Frequência No Capítulo 2, foram apresentadas as formulações para a análise dinâmica de estruturas reticuladas no domínio do tempo, sendo uma informação
LOM Teoria da Elasticidade Aplicada
Departamento de Engenaria de Materiais (DEMAR) Escola de Engenaria de Lorena (EEL) Universidade de São Paulo (USP) LOM310 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações
CURSO DE ENGENHARIA CIVIL. Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia HIPERESTÁTICA
CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS Tópico: Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia - 2014 O projeto estrutural tem como objetivo a concepção de uma estrutura
6. MÉTODO DOS DESLOCAMENTOS
6. MÉTODO DOS DESLOCAMENTOS Conforme foi introduzido na Seção.3 do Capítulo, o Método dos Deslocamentos pode ser considerado como o método dual do Método das Forças. Em ambos os métodos a solução de uma
AULAS DE MECÂNICA DO CONTÍNUO INTRODUÇÃO PROF. ISAAC NL SILVA
AULAS DE MECÂNICA DO CONTÍNUO INTRODUÇÃO PROF. ISAAC NL SILVA 1 EMENTA Introdução. Cálculo variacional e funcional. Métodos aproximados. Método dos elementos finitos. Discretização do domínio. Interpolação
APLICAÇÃO DO MÉTODO DA RIGIDEZ DIRETA NA ANÁLISE MATRICIAL DE TRELIÇAS PLANAS INDETERMINADAS ESTATICAMENTE
APLICAÇÃO DO MÉTODO DA RIGIDEZ DIRETA NA ANÁLISE MATRICIAL DE TRELIÇAS PLANAS INDETERMINADAS ESTATICAMENTE Luís F. dos Santos Ribeiro¹ (EG), Eliana Carla Rodrigues¹ (PQ), Lucas Silveira F. Silva¹ (EG),
Modelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff
Resumo odelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff aniel ias onnerat 1 1 Hiperestática Engenharia e Projetos Ltda. /[email protected] A teoria clássica ou teoria de Kirchhoff
ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS
LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito
FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: S2 Data: 24/NOV/
UFRJ SR-1 - CEG FORMULÁRIO CEG/03. CENTRO: de Tecnologia UNIDADE: Escola Politécnica DEPARTAMENTO: de Engenharia Mecânica.
DEPARTAMENTO: de ANÁLISE COMPUTACIONAL DE TENSÕES EEK533 T: 45 P: T+P: 45 3 EEK332 (Mecânica dos Sólidos II) 9 OBJETIVOS GERAIS DA : Introduzir a análise de tensões, deformações e critérios de falha de
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta
CIV 27 ANÁLISE DE ESRUURAS II 2º Semestre 2002 Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta ª Questão (6,0 pontos) Considere a estrutura hiperestática abaixo, onde também está indicado
O que é Resistência dos Materiais?
Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades
6 MÉTODO DE ELEMENTOS FINITOS - MEF
6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios
PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta
Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos
EXAME NORMAL. x 2 B D. x 1 C. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m
EXAME NORMAL Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) DEPARAMENO DE ENGENHARIA CIVIL SECÇÃO DE ESRUURAS Duração: h00m - (.5 val.) Considere a laje de betão armado representada
Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.
4 Método Numérico Foi utilizado o método dos elementos finitos como ferramenta de simulação com a finalidade de compreender e avaliar a resposta do tubo, elemento estrutural da bancada de teste utilizada
Aula 05. Conteúdo. 1. Introdução 1.1 Grau de indeterminação cinemática: ² Exemplo:
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 05
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
UFERSA / Departamento de Ciências Exatas / 2. UFERSA / Departamento de Ciências Exatas /
Método dos Deslocamentos para Análise de Estruturas: Resoluções Numéricas de Equações Lineares Rodolfo de Azevedo Palhares 1, Rafael de Azevedo Palhares 2, Lisarb Henneh Brasil 3, Dylson Junyer de Sousa
ANÁLISE MATRICIAL DE PÓRTICOS ESPACIAIS COM IMPLEMENTAÇÃO COMPUTACIONAL WILLAMIS DE JESUS OLIVEIRA FILHO 1 ; RODOLFO SANTOS DA CONCEIÇÃO 2
Congresso Técnico Científico da Engenharia e da Agronomia CONTECC 2018 Maceió - AL 21 a 24 de agosto de 2018 ANÁLISE MATRICIAL DE PÓRTICOS ESPACIAIS COM IMPLEMENTAÇÃO COMPUTACIONAL WILLAMIS DE JESUS OLIVEIRA
UNIVERSIDADE POSITIVO ADRIANO DA CONCEIÇÃO MACHADO WYLLER SILVEIRA FERNANDES
UNIVERSIDADE POSITIVO ADRIANO DA CONCEIÇÃO MACHADO WYLLER SILVEIRA FERNANDES DESENVOLVIMENTO DE FERRAMENTA ON-LINE EDUCACIONAL PARA CÁLCULO DE ESTRUTURAS RETICULADAS VIA MÉTODO DOS DESLOCAMENTOS EM FORMULAÇÃO
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁISE DE ESTRUTURAS II 2º Semestre 02 Terceira Prova 25/11/02 Duração: 2:30 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga de ponte, cujo modelo estrutural é apresentado abaixo, calcule
3. IDEALIZAÇÃO DO COMPORTAMENTO DE BARRAS
3. IDEALIZAÇÃO DO COMPORTAMENTO DE BARRAS Como discutido no Capítulo 1, a análise estrutural de estruturas reticuladas está fundamentada na concepção de um modelo matemático, aqui chamado de modelo estrutural,
Exame de. Licenciatura em Engenharia Civil 21 de Junho de ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre
Exame de Licenciatura em Engenharia Civil 21 de Junho de 1997 1ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre Observações: Duração de 3 horas; Consulta livre; Inicie cada um dos problemas numa folha
Programa Analítico de Disciplina MEC494 Introdução à Análise por Elementos Finitos
0 Programa Analítico de Disciplina Departamento de Engenharia de Produção e Mecânica - Centro de Ciências Exatas e Tecnológicas Número de créditos: 4 Teóricas Práticas Total Duração em semanas: 15 Carga
Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49
1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão
LISTA DE EXERCÍCIOS PARA VE
ISTA DE EXERCÍCIOS PARA VE ) A partir das relações de primeira ordem entre ações e deslocamentos da barra bi-articulada e da definição de coeficiente de rigidez, pede-se a matriz de rigidez da estrutura
2 Casca cilíndrica delgada
Vibrações livres não lineares de cascas cilíndricas com gradação funcional 29 2 Casca cilíndrica delgada Inicia-se este capítulo com uma pequena introdução sobre cascas e, em seguida, apresenta-se a teoria
Introdução ao Método dos Elementos Finitos
Introdução ao Método dos Elementos Finitos Estruturas Aeroespaciais II (10373) 2014 1. Introdução O Método dos Elementos Finitos (MEF), cuja génese se verificou por volta de 1940, é uma ferramenta matemática
MÉTODO DOS ELEMENTOS FINITOS
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.alvaroazevedo.com Setembro 2017 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
ANÁLISE DE PÓRTICOS ESPACIAIS PELO MÉTODO DA RIGIDEZ: CONSIDERAÇÃO DOS EFEITOS DA DEFORMAÇÃO POR CORTE
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Fabricio Deives Kummer ANÁLISE DE PÓRTICOS ESPACIAIS PELO MÉTODO DA RIGIDEZ: CONSIDERAÇÃO DOS EFEITOS DA
Equações diferenciais
Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
4 SOLUÇÕES ANALÍTICAS
4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,
Prof. Dr. Eduardo Lenz Cardoso
Elementos Finitos I Análise Estática Prof. Dr. Eduardo Lenz Cardoso [email protected] Sumário Revisão de trabalho e energia; Definição de Energia Potencial Total; Princípio da Mínima Energia Potencial
Teoria Clássica das Placas
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO
IV.5 Solução de Treliça Plana Visando sua Implementação Computacional
Curso de Análise Matricial de struturas IV. olução de Treliça Plana Visando sua Implementação Computacional O exemplo roteirizado a seguir busca a apretação dos passos e metodologias a serem adotados no
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)
PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal
Capítulo 1. INTRODUÇÃO
Capítulo 1. INTRODUÇÃO A simulação numérica de problemas de engenharia ocupa atualmente uma posição de destaque no cenário mundial de pesquisa e desenvolvimento de novas tecnologias. O crescente interesse,
MODELAGEM NUMÉRICA DE REFORÇO EM PERFIS METÁLICOS DO TIPO GRELHA E PÓRTICO ESPACIAL PARA VIABILIZAÇÃO DE PROJETO ESTRUTURAL ESPECIAL
MODELAGEM NUMÉRICA DE REFORÇO EM PERFIS METÁLICOS DO TIPO GRELHA E PÓRTICO ESPACIAL PARA VIABILIZAÇÃO DE PROJETO ESTRUTURAL ESPECIAL Martinatti, Yago Wilton Pacheco Fontes Filho, José Carlos de Carvalho
Figura 1 Viga poligonal de aço estrutural
PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1 11.1. Introdução Recebem a denominação geral de folhas as estruturas nas quais duas dimensões predominam sobre uma terceira
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio
Programa Analítico de Disciplina CIV354 Concreto Armado I
0 Programa Analítico de Disciplina CIV354 Concreto Armado I Departamento de Engenharia Civil - Centro de Ciências Exatas e Tecnológicas Número de créditos: 5 Teóricas Práticas Total Duração em semanas:
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS CURSO DE ENGENHARIA CIVIL COORDENAÇÃO DO CURSO DE ENGENHARIA CIVIL PLANO DE ENSINO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS CURSO DE ENGENHARIA CIVIL COORDENAÇÃO DO CURSO DE ENGENHARIA CIVIL ESCOLA DE ENGENHARIA CIVIL PLANO DE ENSINO IDENTIFICAÇÃO DISCIPLINA: Análise Estrutural
UNIVERSIDADE POSITIVO i. Erica Damasceno de Almeida. Michele Fonsaca
7 UNIVERSIDADE POSITIVO i Erica Damasceno de Almeida Michele Fonsaca CRIAÇÃO DE CÓDIGO COMPUTACIONAL DIDÁTICO PARA CÁLCULO DE ESTRUTURAS RETICULADAS ESPACIAIS VIA MÉTODO DOS DESLOCAMENTOS EM FORMULAÇÃO
Teoria das Estruturas I - Aula 08
Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;
6. Conclusões e Sugestões
101 6. Conclusões e Sugestões 6.1. Conclusões Este trabalho analisou modelos numéricos representativos de lajes nervuradas a fim de permitir ao engenheiro civil o cálculo dos deslocamentos e esforços internos
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
MÉTODOS BÁSICOS DA ANÁLISE DE ESTRUTURAS
MÉTODOS BÁSICOS DA ANÁLISE DE ESTRUTURAS Luiz Fernando Martha Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio Departamento de Engenharia Civil Rua Marquês de São Vicente, 225 - Gávea CEP 22453-900
Sergio Persival Baroncini Proença
ula n.4 : ESTUDO D FLEXÃO São Carlos, outubro de 001 Sergio Persival Baroncini Proença 3-) ESTUDO D FLEXÃO 3.1 -) Introdução No caso de barras de eixo reto e com um plano longitudinal de simetria, quando
Teoria das Estruturas - Aula 17
Teoria das Estruturas - Aula 17 Análise Matricial de Treliças via Método da Rigidez Fundamentos da Análise Matricial; Matriz de Rigidez Elementar de Barra de Treliça; Matrizes de Transformação de Deslocamentos
CRIAÇÃO DE CÓDIGO COMPUTACIONAL PARA CÁLCULO DIDÁTICO DE ESTRUTURAS RETICULADAS PLANAS VIA MÉTODO DOS DESLOCAMENTOS EM FORMULAÇÃO MATRICIAL
UNIVERSIDADE POSITIVO Alysson Fernando Medeiros Paiz Diogo Vanzella Lucas Juliano Possa Gomes CRIAÇÃO DE CÓDIGO COMPUTACIONAL PARA CÁLCULO DIDÁTICO DE ESTRUTURAS RETICULADAS PLANAS VIA MÉTODO DOS DESLOCAMENTOS
ANÁLISE DE CONVERGÊNCIA UM QUADRO DE BICICLETA DO TIPO MOUNTAIN BIKE
ANÁLISE DE CONVERGÊNCIA UM QUADRO DE BICICLETA DO TIPO MOUNTAIN BIKE D. S. da Silva M. A. Melo L. F. L. de Vasconcelos [email protected] [email protected] [email protected]
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2018/2019 2º Semestre
Exercício 6 - Método dos Deslocamentos ANÁLISE DE ESTRUTURAS I Ano lectivo de 018/019 º Semestre Problema 1 (1 de Janeiro de 000) Considere o pórtico e a acção representados na figura 1. 1.a) Indique o
EXAME NORMAL. Análise Avançada de Estruturas Sem consulta (exceto formulário fornecido) Duração: 3h00m
EXAME NORMAL Análise Avançada de Estruturas Sem consulta (exceto formulário fornecido) DEPARTAMENTO DE ENGENHARIA CIVIL SECÇÃO DE ESTRUTURAS Duração: h00m (. val.) Considere a laje de betão armado que
Aula 4: Diagramas de Esforços internos
ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento
Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto
MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.fe.up.pt/~alvaro Novembro 2000 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico
Análise de Tensões em Placas, Cascas e Reservatórios
Análise de Tensões em Placas, Cascas e Reservatórios J.F. Silva Gomes Professor Catedrático Faculdade de Engenharia, Universidade do Porto Edições INEGI Porto, 2007 Edição e Distribuição INEGI-Instituto
Resumo. Palavras-chave. Pontes; distribuição transversal de carga; modelo bidimensional. Introdução
Modelo Bidimensional para Distribuição Transversal de Carga em Tabuleiros de Pontes de Vigas em Concreto Pré-moldado Leandro A. Souza 1, Emerson F. dos Santos 2 1 Universidade Tiradentes /[email protected]
TRELIÇA C/ SISTEMA TENSOR DE CABO
Q) RESPOSTA TRELIÇA C/ SISTEMA TENSOR DE CABO Obtidas as matrizes de rigidez dos elementos estruturais, deve-se remanejar tais coeficientes para a matriz de rigidez da estrutura (graus de liberdade ordenados).
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre 2007 Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta 1ª Questão (5,5 pontos) Determine pelo Método das Forças o diagrama de momentos fletores
AULA 09 AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES
ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES Lista disponibilizada no dia da aula para ser entregue na semana seguinte.
Solicitações e Deslocamentos em Estruturas de Resposta Linear. Solicitações e Deslocamentos em Estruturas de Resposta Linear
Solicitações e Deslocamentos em Estruturas de Resposta Linear i Reitora Nádina Aparecida Moreno Vice-Reitora Berenice Quinzani Jordão Editora da Universidade Estadual de Londrina Diretora Conselho Editorial
