Palavras Chave: Materiais Compósitos, Contato imperfeito,comportamento Não linear, Método de Homogeneização Assintótica 1.

Tamanho: px
Começar a partir da página:

Download "Palavras Chave: Materiais Compósitos, Contato imperfeito,comportamento Não linear, Método de Homogeneização Assintótica 1."

Transcrição

1 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. ISSN OBTENÇÃO DA LEI EFETIVA PARA O FLUXO DE CALOR EM UMA BARRA BIFÁSICA, PERIÓDICA, NÃO LINEAR E COM BARREIRA TÉRMICA ENTRE AS FASES, ATRAVÉS DO MÉTODO DE HOMOGENEIZAÇÃO ASSINTÓTICA Robrto Martins da Silva Décio Júnior robrto.dcio.jr@gmail.comil Univrsidad Fdral d Plotas, Campus Porto, Plotas, RS, Brasil Lsli Darin Pérz Frnándz lsli.frnandz@ufpl.du.br Univrsidad Fdral d Plotas, Campus Capão do Lão, Capão do Lão, RS, Brasil Julián Bravo Castillro jbravo@matcom.uh.cu Univrsidad d Havana, Faculdad d Matmática Computação, San Lazaro y Vdado, 040. Havana, Cuba. Rsumo. O prsnt trabalho aprsnta a aplicação do Método d Homognização Assintótica na obtnção d uma li ftiva para o fluo d calor d uma barra bifásica, priódica, não linar com uma barrira térmica ntr as fass. A li obtida foi avaliada m situaçõs d condução até isolamnto prfitos, analisando su comportamnto m rlação a difrnts parâmtros, ond constatou-s a sua validad d acordo com a corência aprsntada nos rsultados obtidos Palavras Chav: Matriais Compósitos, Contato imprfito,comportamnto Não linar, Método d Homognização Assintótica. INTRODUÇÃO O comportamnto d um matrial frnt a alguma intrfrência do ambint (sja aplicação d tnsão, transfrência d calor, ntr outras) dpnd dirtamnt das propridads físicas químicas qu aprsnta. É important lmbrar qu o dsmpnho m srviço é dtrminado não apnas plo matrial scolhido, mas também plas modificaçõs advindas do procssamnto (FERRANTE, 009). O studo das propridads térmicas d um dado matrial s faz ncssário dvido à fort influência dstas no su comportamnto. A vibração térmica dos átomos do matrial é a principal causa do aparcimnto d anormalidads na strutura cristalina do sólido. Espcificamnt, a concntração d tais dfitos crsc ponncialmnt com a tmpratura (SHACKELFORD, 009), como os movimntos d átomos no sólido ocorrm através do dslocamnto dsts pontos dfituosos, a taa d difusão do stado sólido também crsc ponncialmnt com a tmpratura. A variação d tmpratura no matrial também é rsponsávl pla variação do volum do msmo. Porém, sta dilatação (ou contração) ocorr d forma difrnt no intrior do sólido 6

2 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. nas porçõs priféricas, dst comportamnto rsultam tnsõs rsiduais qu, dpndndo do gradint d tmpratura do matrial, podm lvar à sua fratura. Entr as principais variávis considradas no studo das propridads térmicas d um sólido stão: tmpratura ( su gradint ao longo do matrial); condutividad térmica fluo do calor. Matmaticamnt, a condutividad térmica é a razão ntr o fluo d calor o gradint d tmpratura, numa msma dirção. Matriais compósitos são matriais htrogênos formados a partir da distribuição d domínios ocupados por dois ou mais matriais homogênos constituints difrnts chamados d fass, tais qu a scala da distribuição (scala microscópica) sja, simultanamnt, muito maior qu a scala molcular, muito mnor qu a scala do compósito (scala macroscópica). Isto prmit qu o compósito sja considrado como um mio contínuo lh associar propridads macroscópicas ou ftivas. O objtivo da produção d um compósito é obtr, num único matrial, novas /ou mlhors propridads físicas, as quais não sriam obtidas com os matriais constituints sparados. Basicamnt, sts matriais s constitum na inclusão d um matrial numa matriz, a fim d rforçá-la, sndo conhcidos como compósitos do tipo matriz-inclusão. Um dos principais mplos dst tipo d matrial é a fibra d vidro, ond a força d fibras d vidro d diâmtro pquno é combinada com a ductilidad d uma matriz polimérica. No contto térmico, por mplo, tm-s o problma da dgradação das propridads d um polímro quando submtido a tmpraturas próimas às considradas críticas. Nst caso, o rforço com fibras não impd a dgradação, mas o aumnto da rsistência mcânica obtido com a combinação faz com qu tal dgradação ocorra sob tmpraturas mais lvadas. Assim, inúmros avanços cintíficos tcnológicos rcnts m divrsas áras como aronáutica, arospacial, ptroquímica, naval, biongnharia, automobilística, construção civil d artigos sportivos, ntr outras, somnt s tornaram viávis após o advnto dos matriais compósitos (LEVY NETO & PARDINI, 006). Matmaticamnt, o comportamnto físico do compósito é modlado mdiant um problma d valors d contorno iniciais no qual as quaçõs difrnciais aprsntam coficints rapidamnt oscilants. Tais oscilaçõs rápidas são causadas plo carátr microscópico da distribuição dos constituints fazm com qu a rsolução numérica dirta, quando possívl, tnha um alto custo computacional. Por mplo, a aplicação dum método d malha como o método d lmntos finitos rqur qu a malha sja trmamnt fina. Uma altrnativa para ncontrar o comportamnto ftivo do compósito consist m mprgar algum procdimnto d homognização, a qual consist m studar um matrial homogêno quivalnt ao compósito, no sntido d qu as propridads ftivas dst são as propridads daqul, numa microscala stablcida, dpois passar as informaçõs obtidas para a macroscala do matrial. Em particular, nst trabalho mprgarmos o método d homognização assintótica (MHA), o qual s basia no dsnvolvimnto assintótico m scala dupla da solução do problma d valors d contorno iniciais qu modla o comportamnto físico do compósito. Esta solução assintótica considrada aprsnta uma atidão muito boa, sndo dmonstrado matmaticamnt m (LAZZARI t al., 04) qu tal aproimação é da ordm do parâmtro pquno stablcido para a microscala, no caso da quação unidimnsional do calor. Assim, obtém-s uma squência rcorrnt d problmas cujo limit é o modlo do matrial homogêno quivalnt, ou sja, um problma d valors d contorno iniciais com coficints constants. Est método é rlvant sobrtudo quando o compósito aprsnta microstrutura priódica, prmit studar divrsos fnômnos tais como vibraçõs lásticas, fluo d calor, difusão, prcolação d fluidos, oscilaçõs ltromagnéticas radiação, ntr outros. Além disso, quando o uso d métodos numéricos 6

3 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. para a rsolução dos problmas na squência rcorrnt é invitávl, sua aplicação s caractriza plo baio custo computacional (BAKHVALOV & PANASENKO, 989). O MHA tm sido aplicado com sucsso m divrsos problmas físicos linars, porém, comportamntos não linars têm sido pouco studados, assim como matriais qu aprsntam contato imprfito ntr suas fass. Em compósitos, as propridads a fração volumétrica d cada fas são importants, também a tnsão da conctividad ntr as fass dv sr conhcida (ASKELAND & PHULÉ, 008). Em particular, o studo das propridads mcânicas ftivas do compósito stá rlacionado, por mplo, à prvnção d falhas struturais, como o dano a fratura, os quais podm rsultar m fitos advrsos lvando a prdas conômicas ou d vidas (COURTNEY, 005). Eistm vários mcanismos d fratura d um corpo sólido, mas, d forma gral, ocorrm dvido à qubra d ligaçõs químicas na sua strutura atômica dpndm d condiçõs como tmpratura tnsão, assim as condiçõs do ambint m qu stá insrido o matrial. Dssa forma, studar o comportamnto matrial ftivo prant a variação dstas grandzas s faz trmamnt ncssário para a prvnção d falhas. Assim, st trabalho tm por objtivo dtrminar avaliar, via algoritmo basado no MHA, a li ftiva qu modla o fluo d calor numa barra bifásica com strutura priódica, não linar, considrando a istência duma barrira térmica ntr as fass constituints.. METODOLOGIA.. Formulação do problma Sja uma barra bifásica infinita obtida da rplicação priódica da célula básica,, d comprimnto, ond r é a rgião ocupada pla fas constituint r, (o matrial d tipo r ) é o ponto d é o conjunto numrávl d pontos d contato ntr as fass contato das fass. Assim, i i da barra na variávl spacial macroscópica. Sjam u as variávis do fluo d calor da tmpratura, rspctivamnt, assumidas continuamnt difrnciávis para i. Assim, a li qu dscrv o comportamnto constitutivo da barra é dada por: u, ( ) u ( ) u () ond, A ( ) A, o índic indica difrnciação, u ( ) r r são a rlação constitutiva a função caractrística da fas r, rspctivamnt. Supõ-s qu a barra stá m quilíbrio, ou sja, u, f ( ), com i, () ond f( ) é uma font d calor atuando na barra. Supõ-s também qu, nas intrfacs i, o fluo d calor é contínuo, ou sja, u, 0, (3) i 63

4 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. qu a tmpratura tm dscontinuidads d salto finito d magnitud proporcional ao fluo na fas, ou sja, u u, (4) i i ond o colcht duplo dnota o oprador do "salto" ou "contrast" da grandza ao passar d uma fas à outra através d i, 0 é a condutância térmica da intrfac. A condição da Eq. (4) é chamada d barrira térmica. Not qu, 0 corrspondm, rspctivamnt, aos casos d isolamnto térmico prfito ntr as fass da barra d condução prfita da tmpratura nas intrfacs... Homognização assintótica Introduz-s uma scala microscópica mdiant a variávl local dfinida pla rlação. Assim, m, 0,c, c,, c é o ponto d contato das fass na célula d priodicidad. Procuramos a solução do problma Eq. ()-(4) na forma da assintótica truncada u u u u u () () [] ( ) (, ) (, ), (5) ond u ( ), u () (, ) u () (, ) são funçõs continuamnt difrnciávis, m rlação à, -priódicas m rlação a. Agora tomamos os dois primiros trmos da séri d Taylor da tnsão, na vizinhança do ponto u () u,, isto é: () () (), u u, u u, u u, (6) ond u é o gradint d tmpratura. Logo, substituindo Eq. (5) m Eq. (6), lvando A A A, sgu qu, m conta a rgra da cadia u [], (), () () (), u u u u u u O. (7) Agora, substituindo Eq. (7) na quação d quilíbrio Eq. () tmos a igualdad assintótica u u, u u u u u u f O () 0 () () () (),, 0, c, (8) dond obtmos qu u () u, 0, c (0,) \{ }, (9) 64

5 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. () () () (),, u u u u u u f, c (0,) \{ }. (0) Por outro lado, substituindo Eq. (7) na condição d continuidad m Eq. (3) sgu qu u () u, 0 () c u u u u () () (), 0. () Analogamnt, substituindo Eq. (5) na condição d contato imprfito Eq. (4) sgu qu c () () u u u c c (3) () u c 0. (4) () Dado u, Eqs. (9), () (3) dfinm o chamado problma local para obtr u m () trmos d u. Similarmnt, dados u u, Eqs. (0), () (4) dfinm o problma () () para obtr u m trmos d u u. A condição ncssária suficint para a istência () () unicidad d u u soluçõs -priódicas dos problmas acima dfinidos é qu o valor médio sobr a célula priódica dos lados diritos d Eq. (9) Eq. (0) sja nulo (BAKHVALOV & PANASENKO, 989), dond sgu a quação homognizada para u : u f, (5) ond é a li ftiva da barra qu rlaciona o fluo d calor médio o gradint d tmpratura médio u u é dada por,, (6) ond A A d é o oprador d valor médio, local para cada dado. 0 u... Algoritmo para obtr a li ftiva N N é a solução do problma Sja N, a solução do problma local. Então d Eq. (9) sgu qu,, não dpnd d, ou sja, N 65

6 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04.,,. (7) N D calcular a invrsa com rlação ao primiro argumnto na Eq. (7) aplicar o oprador d valor médio lvando m conta a condição m Eq. (3), sgu qu, (8), dond a li ftiva sgu d rsolvr Eq. (8) com rlação a. 3. RESULTADOS E DISCUSSÃO No primiro caso considrado, tm-s a sguint rlação constitutiva para o fluo d calor : ( [ N(, )], ) ( ) a ( [ N(, )] ) ( ) a [ N(, )], (9) ond a a são as condutividads térmicas dos matriais constituints. Aplicando à rlação acima o algoritmo dscrito, obtém-s a prssão para a li ftiva, normalizada por a : c 4 c, a c Bi c c Bi a c ond c c é a concntração do constituint não linar, Bi é o a c Númro d Biot. A Fig. aprsnta a variação dsta li ftiva com rlação ao númro d Biot. Os casos trmos são: Bi 0 ( 0 ) Bi ( ). O significado físico do primiro caso, analisando junto à condição m Eq. (4), pod sr visto como a prsnça d um isolant térmico prfito ntr as duas fass, dado qu a dscontinuidad tnd a nst N c caso. Est isolamnto pod sr dvido à prsnça d algum isolant térmico ntr as fass como também à ruptura do matrial, o qu também impdiria o fluo térmico na barra. Est comportamnto é obsrvado no gráfico, quando a li ftiva dtrminada tnd a 0 juntamnt com Bi, uma vz qu não há mais fluo d calor ntr as barras dvido a tal isolant. Já no caso m qu Bi, d acordo com a condição d contato dada no problma local, tm-s qu a dscontinuidad na intrfac tnd a 0, o qu fisicamnt significa qu o calor flui prfitamnt ntr as fass, ou sja, não há barrira térmica nss ponto. 66

7 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. Figura - Avaliação da li ftiva obtida para difrnts valors d Bi,, (= ) c. A li ftiva obtida analiticamnt quando Bi, é prssa na quação abaio: c 4 c a c c c () Nas Fig., 3 4, é analisado o comportamnto da li na Eq. () frnt às três variávis do problma:, c. Na Fig., obsrva-s qu a mdida qu aumnta-s a concntração do matrial não linar no compósito, a li ftiva s aproima da li do matrial, vic-vrsa, o qu rforça a validad da quação obtida através do algoritmo. Além disso, para valors difrnts d tal comportamnto s mantém. Figura - Li ftiva m função d (= ) para difrnts valors d c. Na Fig. 3 obsrva-s novamnt qu aumntando a quantidad do matrial na barra, a li ftiva tnd à do msmo matrial, a rcíproca também ocorr. É visto também qu a vlocidad d variação da li ftiva aumnta para valors maiors d. 67

8 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. Figura 3 - Li ftiva m função d c para (= ) fio difrnts valors d. Finalmnt, da Fig. 4, tm-s qu a li ftiva crsc à mdida qu a razão crsc. Obsrva-s também um ponto d invrsão das propridads dos dois matriais para 0,, o qu, dvido às dfiniçõs d, ocorrrá smpr nos pontos m qu gráfico da dirita é nfatizado o fato d qu a tndência d propridad do matrial cuja concntração stá aumntando. a. No sgu sndo para a Figura 4 - Li ftiva m função d para (= ) fio difrnts valors d c. 4. CONCLUSÕES A li ftiva para a condução do calor da barra bifásica priódica não linar foi obtida com sucsso via MHA, pod sr avaliada sob o ponto d vista d cada parâmtro nvolvido no problma, considrando as condiçõs d barrira térmica ntr as fass da barra. Além 68

9 XX EREMAT - Encontro Rgional d Estudants d Matmática da Rgião Sul Fundação Univrsidad Fdral do Pampa (UNIPAMPA), Bagé/RS, Brasil. 3-6 nov. 04. disso, nssa avaliação, foi obsrvada a validad da li obtida através d dtrminadas caractrísticas dos gráficos grados para tal studo. Diant disso, conclui-s qu o studo das propridads dos matriais não linars dv prossguir, dada a scassz d trabalhos acrca do assunto o sucsso na aplicação do MHA ralizada nst trabalho. Além disso, dv sr continuado considrando mais caractrísticas do matrial qu tornm o modlo matmático obtido cada vz mais ato. Agradcimntos Agradcmos o apoio do projto CAPES nº /03-0 intitulado "Dsnvolvimnto Aplicaçõs d Métodos Matmáticos d Homognização". REFERÊNCIAS ASKELAND, D. R., PHULÉ, P. P. Ciência Engnharia dos Matriais. São Paulo: Cngag Larning, 008. BAKHVALOV, N. S.; PANASENKO, G. P., Homognisation: Avraging Procsss in Priodic Mdia. Dordrcht: Kluwr Acadmic Publishrs, 989. COURTNEY, T. H. Mchanical Bhavior of Matrials. Illinois: Wavland Prss, 005. FERRANTE, M. Slção d matriais. São Carlos: UFScar, 009. LAZZARI, L.; FERNANDEZ, L. dos S.; LIMA, M. P. d; FERNÁNDEZ, L. D. P.; CASTILLERO, J. B. Homognização Assintótica da quação unidimnsional do calor. In: ENCONTRO DE PÓS-GRADUAÇÃO UFPEL, 6. Plotas, 04. Anais do XVI ENPOS. Plotas: UFPl, 04. p. 4. LEVY NETO,F.; PARDINI, L. C. Compósitos Estruturais: Ciência Tcnologia. São Paulo. Bluchr, 006. SHACKELFORD, J. F. Introduction to matrials scinc for nginrs. Nw Jrsy: Parson,

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais Anális Modal Mcânica Estrutural (1091/1411) 018 1. Introdução Um problma d valors próprios é dfinido como sndo um problma m qu dsjamos obtr os valors do parâmtro l d forma qu a quação A( u) lb( u) é satisfita

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

2 Mecânica da Fratura Linear Elástica

2 Mecânica da Fratura Linear Elástica 5 Mcânica da Fratura Linar lástica A Mcânica da Fratura aprsnta difrnts ramos, tndo o tamanho da zona plástica m frnt à ponta da trinca como fator dtrminant para a scolha do ramo mais adquado. Dsta forma,

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Eletrônica de Potência II Capítulo 3. Prof. Cassiano Rech

Eletrônica de Potência II Capítulo 3. Prof. Cassiano Rech Eltrônica d otência II Capítulo 3 rof. Cassiano Rch cassiano@i.org rof. Cassiano Rch 1 Convrsor flyback O convrsor flyback é drivado do convrsor buck-boost, pla substituição do indutor d acumulação d nrgia

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR CAMPUS CORNÉLIO PROCÓPIO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR CAMPUS CORNÉLIO PROCÓPIO MINISÉRIO DA EDUCAÇÃO UNIVERSIDADE ECNOLÓGICA FEDERAL DO PARANÁ - UFPR CAMPUS CORNÉLIO PROCÓPIO PR UNIVERSIDADE ECNOLÓGICA FEDERAL DO PARANÁ Noçõs básicas d unçõs d várias variávis FUNÇÕES DE VARIAS VARIÁVEIS

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

2 Fluxo em Meios Saturado e Não Saturados

2 Fluxo em Meios Saturado e Não Saturados 2 Fluxo m Mios Saturado ão Saturados st capítulo aprsnta-s os principais aspctos da formulação utilizada para o modlagm d fluxo saturado não saturado, bm como a mtologia mprgada na solução da quação govrnant

Leia mais

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial:

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial: Lista B Aulas Práticas d Scilab Equaçõs difrnciais Introdução: Considr um corpo d massa m fito d um matrial cujo calor spcífico à prssão constant sja c p. Est corpo stá inicialmnt a uma tmpratura T 0,

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Algumas distribuições de variáveis aleatórias discretas importantes:

Algumas distribuições de variáveis aleatórias discretas importantes: Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2012 Prof. Maurício Fabbri 2ª SÉRIE DE EXERCÍCIOS

FENOMENOS DE TRANSPORTE 2 o Semestre de 2012 Prof. Maurício Fabbri 2ª SÉRIE DE EXERCÍCIOS FENOMENOS DE TRANSPORTE o Smstr d 0 Prof. Maurício Fabbri ª SÉRIE DE EXERCÍCIOS 0. O coficint d transfrência d calor Transport d calor por convcção O transint ponncial simpls Consrvação da nrgia Lia o

Leia mais

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara Instituto d Física USP Física V - Aula 10 Profssora: Mazé Bchara Aula 10 O fito fotolétrico 1. Visão fotônica: a difração o carátr dual da radiação ltromagnética. 2. O qu é, o qu s obsrva. 3. Caractrísticas

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano.

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano. Qustão 5 O squma abaixo rprsnta a distribuição média dos lmntos químicos prsnts no corpo humano. (Adaptado d SNYDER, Carl H. Th xtraordinary chmistry of ordinary things. Nw York: John Wily & Sons, Inc.,

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura:

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura: roblma I (6 val.) ágina I. Considr o problma da dtrminação da dformada d uma viga, ncastrada nas duas xtrmidads, sujita ao carrgamnto squmatizado na figura: q L/ L/ L/ As quaçõs difrnciais qu govrnam a

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

THAIS HELENA SANTANA DE OLIVEIRA ESQUEMAS DE CÁLCULO DA CONDUTIVIDADE TÉRMICA NAS FACES DE VOLUMES FINITOS

THAIS HELENA SANTANA DE OLIVEIRA ESQUEMAS DE CÁLCULO DA CONDUTIVIDADE TÉRMICA NAS FACES DE VOLUMES FINITOS HAIS HELENA SANANA DE OLIVEIRA ESQUEMAS DE CÁLCULO DA CONDUIVIDADE ÉRMICA NAS FACES DE VOLUMES FINIOS rabalo d Graduação aprsntado como rquisito parcial para a conclusão do Curso d Engnaria Mcânica, Stor

Leia mais

Jornadas Sud-Americanas de Ingeniería Estructural CONTROLE ATIVO EM ESTRUTURAS VIA EQUAÇÃO DE RICCATI E ALGORITMOS GENÉTICOS AUTORES:

Jornadas Sud-Americanas de Ingeniería Estructural CONTROLE ATIVO EM ESTRUTURAS VIA EQUAÇÃO DE RICCATI E ALGORITMOS GENÉTICOS AUTORES: 7 a d Mayo d 4 Facultad d Ingniría. Univrsidad Nacional d Cuyo. Mndoza. Argntina. Jornadas Sud-Amricanas d Ingniría Estructural CONTROLE ATIVO EM ESTRUTURAS VIA EUAÇÃO DE RICCATI E ALGORITMOS GENÉTICOS

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Análise de sistemas: uma introdução

Análise de sistemas: uma introdução Anális d sistmas: uma introdução Objtivos Conhcr aprciar a anális d sistmas intgrados. Aprndr a dtrminar os parâmtros d impdância, admitância híbridos para qualqur sistma létrico/ltrônico. Entndr como

Leia mais

4. RESULTADOS E DISCUSSÃO

4. RESULTADOS E DISCUSSÃO 4. RESULTADOS E DISCUSSÃO O conjunto d dados original aprsntava alguns valors prdidos, uma vz qu houv a mort d plantas nas parclas ants da colta dos dados, grando assim um conjunto d dados dsalancado,

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

MODELOS CONSTITUTIVOS

MODELOS CONSTITUTIVOS Programa d Pós-Graduação m Engnharia Civil Univrsidad Fdral d Alagoas MODELOS CONSTITUTIVOS Prof. Svrino Prira Cavalcanti Marqus COMPORTAMENTO UNIAXIAL COMPORTAMENTO UNIDIMENSIONAL DE MATERIAIS ESTRUTURAIS

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ NOTAS DE AULA ELABORADA POR: Prof. M.Sc. Armando Paulo da Silva Prof. M.Sc. José Doniztti d Lima Equação comparação d igualdad Equação difrncial é uma quação

Leia mais

Palavras-chave: verificação, aproximação numérica, função de interpolação, equação de Laplace, equação de advecção-difusão.

Palavras-chave: verificação, aproximação numérica, função de interpolação, equação de Laplace, equação de advecção-difusão. AVALIAÇÃO DE ESQUEMAS NUMÉRICOS ARA ROBLEMAS DIFUSIVOS 2D RESOLVIDOS COM VOLUMES FINITOS Nil Franco d Carvalho nil@up.du.br Univrsidad ositivo (U) Curitiba, R, Brasil Carlos Hnriqu Marchi marchi@ufpr.br

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL DEPARTAMENTO DE ENGENHARIA MECÂNICA

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL DEPARTAMENTO DE ENGENHARIA MECÂNICA MINISTÉRIO DA DUCAÇÃO UNIVRSIDAD FDRAL DO RIO GRAND DO SUL DPARTAMNTO D NGNARIA MCÂNICA Aplicação d homognização invrsa para a obtnção d strutura básica ótima para propridads lásticas prscritas por Otávio

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

Teste Intermédio 2014

Teste Intermédio 2014 Tst Intrmédio 2014 Física Química A 11. ano 12.02.2014 Sugstão d rsolução GRUPO I 1. D acordo com o txto, para lvar a tmpratura, d uma dada massa d água, d 100 C, são ncssários 5 minutos, nquanto para

Leia mais

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 1 Eduardo T. D. Matsushita

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 1 Eduardo T. D. Matsushita PGF500 - MECÂNICA QUÂNTICA I 00 Rsolução Comntada da Lista d Problmas Eduardo T. D. Matsushita. a Qurmos dtrminar os autovalors os autostados do oprador Ŝ n para uma partícula d spin /, ond a dirção n

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

DISCIPLINA. PEF 3528 Ferramentas Computacionais na Mecânica das Estruturas Criação e Concepção. Aula 02

DISCIPLINA. PEF 3528 Ferramentas Computacionais na Mecânica das Estruturas Criação e Concepção. Aula 02 DSCPNA PF 358 Frramntas Computacionais na Mcânica das struturas Criação Concpção Aula Valério S Almida - 8 valrioalmida@uspbr MÉTODO DOS MNTOS FNTOS (MF) Prmit rsolvr problmas d difícil gomtria com rlativa

Leia mais

Externalidades 1 Introdução

Externalidades 1 Introdução Extrnalidads 1 Introdução Há várias maniras altrnativas d s d nir xtrnalidads. Considrmos algumas dlas. D nição 1: Dizmos qu xist xtrnalidad ou fito xtrno quando as açõs d um agnt aftam dirtamnt as possibilidads

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Construção modlagm d isotrmas d adsorção no uilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Para procssos qu ocorrm no uilíbrio químico, podm-s

Leia mais

Funções de distribuição quânticas

Funções de distribuição quânticas Bos-Einstin: Funçõs d distribuição quânticas f ε) 1 BE ( ε α 1 Frmi-Dirac: f FD (ε) 1 ε-ε F + 1 Boltzmann (clássica): f Boltz (ε) 1 ε α Essas funçõs d distribuição forncm a probabilidad d ocupação, por

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

[Ano] Ciências Econômicas e Administrativas Produção e Custos

[Ano] Ciências Econômicas e Administrativas Produção e Custos [Ano] Ciências Econômicas Unidad: Ciências Econômicas Unidad: Colocar o nom da Ciências Econômicas MATERIAL TEÓRICO Rsponsávl plo Contúdo: Profa. Ms. Andrssa Guimarãs Rgo Rvisão Txtual: Profa. Ms. Alssandra

Leia mais

OTIMIZANDO ELEMENTOS ESTRUTURAIS PLANOS ATRAVES DE METODO ADAPTATIVO

OTIMIZANDO ELEMENTOS ESTRUTURAIS PLANOS ATRAVES DE METODO ADAPTATIVO OTIMIZANDO ELEMENTOS ESTRUTURAIS PLANOS ATRAVES DE METODO ADAPTATIVO Elian Rgina Flôrs Olivira Univrsidad Fdral d Ubrlândia UFU, Instituto d Física INFIS 38400-000 Ubrlândia, MG -mail: lian@infis.ufu.br

Leia mais

Forças de implantação nas pontes estaiadas

Forças de implantação nas pontes estaiadas Forças d implantação nas ponts staiadas Pdro Afonso d Olivira Almida (); Rui Oyamada (); Hidki Ishitani () () Profssor Doutor, Dpartamnto d Engnharia d Estruturas Fundaçõs Escola Politécnica, Univrsidad

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 7

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 7 Oscilaçõs Amortcidas O modlo do sistma massa-mola visto nas aulas passadas, qu rsultou nas quaçõs do MHS, é apnas uma idalização das situaçõs mais ralistas xistnts na prática. Smpr qu um sistma físico

Leia mais

Caderno Algébrico Medição Física

Caderno Algébrico Medição Física Cadrno Algébrico Vrsão 1.0 ÍNDICE MEDIÇÃO FÍSICA 3 1. O Esquma Gral 3 2. Etapas d 5 2.1. Aquisição das informaçõs do SCDE 5 2.2. Intgralização Horária dos Dados Mdidos 6 2.3. Cálculo das Prdas por Rd Compartilhada

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1 Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

EXERCÍCIO: BRECHA ALEATÓRIA

EXERCÍCIO: BRECHA ALEATÓRIA EXERCÍCIO: BRECHA ALEATÓRIA Considr uma manobra qu tm d sr fita nas brchas ntr passagns d vículos do fluxo principal rqur uma brcha mínima d 6 sgundos para qu o motorista possa xcutá-la Uma contagm d tráfgo

Leia mais

Conceitos Fundamentais: Problema Unidimensional

Conceitos Fundamentais: Problema Unidimensional Concitos Fundamntais: Problma Unidimnsional Mcânica Estrutural (7/9/4) 6 Pdro V. Gamboa Dpartamnto d Ciências Arospaciais . Etapas do Método dos Elmntos Finitos Pré-Procssamnto: Dfinição do problma do

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado.

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado. 1. Problma Os dados aprsntados abaixo rlacionam x, o nívl umidad d uma mistura d um dtrminado produto, a Y, a dnsidad do produto acabado. x 7 9 10 13 14 15 16 19 Y 9.07 9.94 10.75 12.45 12.97 13.34 14.25

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO Eam Final Nacional d Matmática A Prova 65.ª Fas Ensino Scundário 09.º Ano d Escolaridad Dcrto-Li n.º 9/0, d 5 d julho Critérios d Classificação 0 Páginas CRITÉRIOS GERAIS DE CLASSIFICAÇÃO A classificação

Leia mais