( r, s) S r s r s sendo S plano euclidiano. RELAÇÕES

Tamanho: px
Começar a partir da página:

Download "( r, s) S r s r s sendo S plano euclidiano. RELAÇÕES"

Transcrição

1 RELAÇÕES 1. Produto cartesiano Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto de todo os pares ordenados ( xy, ) com x A e y B. Notação: A B ( x, y) x A e y B. Relação binária Denomina-se relação binária de A em B a todo subconjunto de A B. Se ( xy, ) indicamos por x y e ( xy, ) indicamos por x y.. Domínio e imagem Seja uma relação binária de A em B. Denomina-se domínio de o subconjunto de A, dos elementos de x A para os quais existe algum y em B com x y. Denomina-se imagem de o subconjunto de B, dos elementos de y B para os quais existe algum x em A com x y. Im y B x A: x y 4. Propriedades das relações Seja A B. i) Reflexiva Dizemos que é reflexiva se x ( x A x x ) ou x ( x A ( x, x ) ) Exemplo 1: Mostremos que as relações dadas são reflexivas. a) Seja ( a, a),( b, b),( c, c),( a, c),( b, a ) sobre A a, b, c. é reflexiva, pois a a, b b ec c. b) Seja c) Seja ( x, y) x y é reflexiva, pois para x, x x ( r, s) S r s r s sendo S plano euclidiano. é reflexiva, pois para r S, r r 1

2 ii) Simétrica Dizemos que é simétrica se, e somente se x, y A ( x y y x ). Exemplo : Mostremos que as relações dadas são simétricas. a) Seja ( a, a),( b, b),( a, b),( b, a) sobre A a, b. é simétrica, pois a b b a. b) Seja a relação de perpendicularidade definida por: (, ) r s S r s r s sendo S plano euclidiano. é simétrica, pois r s s r. Dizemos que é transitiva se, e somente se ( x, y, z)(( x y e y z) x z ). Exemplo : Mostremos que a relação ( a, a),( a, b),( b, c),( a, c ) sobre A a, b, c é transitiva. iv) Anti-simétrica é transitiva pois, ( a b e b c) a c. Dizemos que é anti-simétrica se, e somente se x, y A (( x y e y x) x y ) ou equivalente x, y A ( x y ( x y ou y x )). Exemplo 4: Mostremos que a relação ( a, a),( b, b),( a, b),( a, c) sobre A a, b, c é antisimétrica. A sentença ( a b e b a) a b é verdadeira, pois F F é verdadeira. Exemplo : A relação ( a, a),( b, b),( a, b),( b, a),( c, c) sobre A a, b, c não é anti-simétrica. Não é anti-simétrica pois, a b ( a b e b a ). Observação: Se A é um conjunto finito com poucos elementos, é possível visualizar as propriedades por meio dos diagramas.

3 Reflexiva: Em cada ponto do diagrama deve ter um laço. Simétrica: Toda flecha deve ter duas pontas. a b a b c c d Transitiva: Todo par de flechas consecutivas deve existir uma flecha cuja origem é a primeira e extremidade é a segunda. Anti-simétrica: Não há flechas com duas pontas. a b a b c d c d. Relação de equivalência Uma relação sobre A não vazio denomina-se relação de equivalência sobre A se, e somente se, for reflexiva, simétrica e transitiva. Exemplo 6: A relação ( a, a),( b, b),( c, c),( c, a),( a, c) sobre A a, b, c é de equivalência pois, valem as três propriedades: reflexiva, simétrica e transitiva. Exemplo 7: Seja A. A relação definida por x y x y, x, y é de equivalência. A relação é reflexiva pois, ( x)( x x x ) A relação é simétrica pois, ( x, y )( x y y x )

4 A relação é transitiva pois, ( x, y, z )( x y e y z) x z ) Exemplo 8: A relação de paralelismo no plano euclidiano S é uma relação de equivalência. Assim ( r, s S)( r s r s ) A relação é reflexiva pois, ( r)( r S r r ) A relação é simétrica pois, ( r, s S)( r s s r ) A relação é transitiva pois, ( r, s, t S)( r s e s t) r t ). Exercícios de Aplicação 1: Diga quais propriedades são válidas para as relações definidas a seguir. 1) ( a, a),( b, b),( c, c),( c, a) sobre A a, b, c iv) Anti-simétrica ) ( a, a),( a, b) sobre A a, b iv) Anti-simétrica 4

5 ) ( a, a),( b, b),( b, a) sobre A a, b iv) Anti-simétrica 4) ( a, a),( b, b),( c, c),( a, b),( b, a ) sobre A a, b, c iv) Anti-simétrica ) Seja ( x, y) x y 1, quais propriedades são válidas para as relação. iv) Anti-simétrica 6. Classe de equivalência Seja uma relação de equivalência sobre A. Dado a A, denomina-se classe de equivalência determinada por a, o subconjunto de A formado dos elementos x tal que x a. Simbolicamente a x A x a

6 7. Conjunto quociente O conjunto das classes de equivalência denomina-se conjunto quociente e se indica por A / Exemplo 9: A relação ( a, a),( b, b),( c, c),( c, a),( a, c) sobre A a, b, c é de equivalência.determinemos suas classes de equivalência começando por a, assim: a a, c,pois, a a e a c e c a b b,pois, b b c c, a,pois, c c e a c e c a, logo podemos ver que a classe a c, assim temos duas classes, e indicamos por: A/ a, b a, c, b Exemplo 10: Seja a relação de equivalência sobre A a, b, c, d, e, f ( a, a),( b, b),( a, b),( b, a),( c, c),( d, d),( d, e),( e, d),( e, e),( e, f ),( f, e),( f, f ),( f, d),( d, f ) Determinemos suas classes de equivalência. a a, b,pois, a a e a b e b a c c pois, c c d d, e, f pois, d d e d f e d e,... e escrevemos o conjunto quociente: A/ a, b, c d, e, f 8. Partição de um conjunto Seja A um conjunto não vazio. Diz-se que a classe dos subconjuntos de A é uma partição de A se, e somente se 1) ( r)( B ) r r s B B ou B B ) Se r s r s ) n r 1 B r A Exemplo 11: Utilizando o exemplo 10 podemos escrever que A a, b, c, d, e, f e A/ a, b, c d, e, f, assim A / forma uma partição de A pois. Denominando 6

7 B a, b 1 B c B d, e, f, tem-se ( r)( B ) r r 1 B r Ae a intersecção de dois a dois é sempre vazia e Exemplo 1: Sejam A e definida por ( a, b) ( c, d) a d b c. a) Verifique se é uma relação de equivalência. b) Caso afirmativo dar a classe de (,). Deixamos a cargo do leitor a demonstração a)( a, b) ( c, d) a d b c ( c, d) ( e, f ) c f d e, adicionando membro a membro e simplificando tem-se; ( a f b e) ( a, b) ( e, f ), logo é transitiva e portanto é uma relação de equivalência. b) Classe de (,) = x, y ( x, y ) (,) = x, y x y = (,),(1,),(,4),... Exercícios de aplicação 0: * 1)Sejam A e definida por ( a, b) ( c, d) ad bc. a) Verifique se é uma relação de equivalência b) Caso afirmativo, dar a classe de (,). 7

8 ) Seja a relação de equivalência sobre definida por n m n m i i, i 1 a) Verifique se é uma relação de equivalência b) Caso afirmativo dar /. ) Seja * f :,definida por f ( x) 1 x. a) Mostre que * (, ) ( ) ( ) equivalência. a b af b bf a é de b) Caso afirmativo dar a classe. 4)Sejam A e definida por ( a, b) / a b.(lê-se divide a-b) a) Verifique se é uma relação de equivalência. b) Caso afirmativo, dar / 8

9 ) Seja A a, b, c, d, complete o quadro Relação Reflexiva Simétrica transitiva = ( a, a),( b, b),( c, c),( d, d ) = ( a, c),( c, a),( c, c),( a, d ) = ( a, a),( b, b),( a, b),( b, a),( b, d),( d, b ) 6) Seja a relação de equivalência sobre (conjunto dos números complexos)definida por ( x yi) ( z ti) x y z t, i 1 Descreva geometricamente a classe de equivalência determinada por i 7) Seja f :, e a relação * ( a, b) af ( b) bf ( a ) a) Mostre que é de equivalência. b)sendo f ( x) x, dar a classe. 8) Em, definimos a relação de equivalência por ( x, y) ( a, b) k x ka e y kb Descreva geometricamente 9

10 9. Relação de ordem Seja A um conjunto não vazio. Diz-se que a relação é de ordem parcial sobre A se, e somente se, for reflexiva, anti-simétrica e transitiva, isto é, são verdadeiras as propriedades: i) é reflexiva se x ( x A x x ) ii) é anti-simétrica se, e somente se x, y A (( x y e y x) x y ) iii) é transitiva se, e somente se ( x, y, z)(( x y e y z) x y ). Notação: Se a b e é uma relação de ordem parcial escrevemos a b, lê-se a precede b ou a antecede b Se a relação é de ordem parcial sobre A, então dizemos que A é parcialmente ordenado. Elementos comparáveis Se a relação é de ordem parcial sobre A. Os elementos a e b de A, se dizem comparáveis se 10. Ordem total a b ou b a. Se a relação é de ordem parcial sobre A e os elementos a e b de A, forem comparáveis isto é, a b ou b a, então é de ordem total. Nesse caso o conjunto A se diz totalmente ordenado. Exemplo 1: Sejam A e a relação definida por x y x y (menor ou igual é uma relação de ordem total, denominada ordem habitual). Mostremos que é uma relação de ordem total. i) é reflexiva, pois x ( x x x ) ii) é anti-simétrica, pois x, y (( x y e y x) x y ) iii) é transitiva, pois ( x, y, z )(( x y e y z) x z ). Portanto é de ordem parcial sobre. Verifiquemos se é de ordem total; x, y (se x, y x y ou y x ),logo é de ordem total. 11. Limites superiores e inferiores Seja A um conjunto parcialmente ordenado mediante a relação. Seja B um subconjunto de A. Chamamos de limite superior de B a todo elemento L A x L, x B Chamamos de limites inferior de B a todo elemento l A l x, x B 10

11 1. Máximo e Mínimo Sejam B A e uma relação de ordem parcial. Se L B, então L é máximo. Se l B, então l é mínimo. 1. Supremo e Ínfimo Seja A um conjunto parcialmente ordenado mediante a relação. Seja B um subconjunto de A. Chama-se supremo de B o mínimo do conjunto dos limites superiores de B (caso exista) Chama-se ínfimo de B o máximo do conjunto dos limites superiores de B (caso exista). 11. Boa ordem é boa ordem sobre A se, qualquer subconjunto de A possuir mínimo Exemplo 1: Sejam, A ] 1,] e a ordem habitual. Determinar a) Limites superiores de A, LS(A)= L L b) Máximo de A, Max(A)= c) Supremo de A, Sup(A)= d) Limites inferiores de A, LI(A)= l l 1 e) Mínimo de A, não existe Min(A) f) Ínfimo de A, Inf(A)= 1 Exemplo 14: Sejam A a, b, c, d, e e o diagrama simplificado da pré-ordem. Determinar os conjuntos indicados. ( no diagrama vê-se que a c) a b c e d a) Max(A)= a b) Sup(A)= a c) Min(A) = não existe d) Inf(A) = não existe 11

12 Exemplo 1: Seja A 1,,,4,,6,7,8 e B,6,7, diagrama Em A consideremos a pré-ordem definida pelo Determinar i) a) LS(B)={7} b) Max(B)={7} c) Sup(B)= {7} d) LI(B)={,4,,8 } c) Min(B) ={} d) Inf(B)= {,4,,8} ii) B é parcialmente ordenado (justifique) a) Reflexiva vale, pois, é pré-ordenado. b) Transitiva: Todo par de flechas consecutivas tem uma flecha cuja origem é a primeira e extremidade é a segunda. c) Anti-simétrica: Devemos verificar se vale a propriedade para o conjunto B. ( 7 7 ) 7, F F é verdadeira. Analogamente para e 6 e 6 e 7. iii) B é totalmente ordenado (justifique) Como B é pré-ordenado, devemos verificar se todos os elementos de B são comparáveis ou (V) ou (V) ou (V), logo, é totalmente ordenado. 1

13 Exercícios de aplicação 0: 1) Seja A 1,,,4,,6,7,8,9,10 e B,, pelo diagrama Em A consideremos a pré-ordem definida 10 8 Determinar i) a) LS(B)={ } b) Max(B)={ } c) Sup(B)= { } d) LI(B)={ } c) Min(B) ={ } d) Inf(B)= { } ii) ( B, ) é totalmente ordenado? )Seja A 1,,,4,,6,7 e B 4,,7 diagrama. 7. Em A consideremos a pré-ordem definida pelo Determine i) a) LS(B)={ } b) Max(B)={ } c) Sup(B= { } d) LI(B)= { } e) Min(B) ={ } f) Inf(B)= { } ii) ( B, ) é totalmente ordenado? (justifique) iii) O que se deve fazer para ser ( B, ) parcialmente ordenado 1

14 iv) ( B, ) é bem ordenado se todos seus subconjuntos têm mínimo. Verifique se B é bem ordenado. Em A consideremos a pré-ordem definida pelo diagrama. )Seja A 1,,,4, e B 1,, 1 4 Determine i) a) LS(B)={ } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } ii) ( B, ) é totalmente ordenado? (justifique) 4) Seja A 1,,,4,,6,7,8 e B 0,1,, diagrama Em A consideremos a pré-ordem definida pelo 8 4 Determine 1) a) LS(B)={ } b) Max(B)={ } c) Sup(B= { } d) LI(B)= { } c) Min(B) = { } d) Inf(B)= { } ) ( B, ) é totalmente ordenado? (justifique) 14

15 Exercícios de aplicação 04: 1) Seja {( x, y) x( x 1) y( y 1)}. a) Determinar x 1, tal que x. b) Verifique se é anti-simétrica. ) Seja f :, e a relação dada por ( a, b) f ( a) f ( b) a b a) Verifique se é uma relação de equivalência b) Sendo f ( x) x 1, determinar. ) Em, definimos a relação de por ( x, y) ( x, y ) y y ( x x ) a) Verifique se é de equivalência b) Descreva geometricamente 1

16 4) Em, definimos a relação de por ( x, y) ( x, y ) y y ( x x ) a) Verifique se é de equivalência b) Determine ( k,0), k. c) Descreva geometricamente * ) Sejam A e relação de equivalência definida por ( a, b) ( c, d) a b c d. Determine os valores de k, para que (, k) ( k 1,) 16

17 Exercícios de aplicação 04: 1) Seja A 1,,,4,,6 e B,,4 A consideremos a pré-ordem definida pelo diagrama. 1 4 B. Em Determinar i) a) LS(B)= { } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } ii) ( B, ) é parcialmente ordenado? 6 iii) ( B, ) é totalmente ordenado? ) Seja A 1,,,4,,6 e B,4, A consideremos a pré-ordem definida pelo diagrama. B. Em Determinar i) a) LS(B)= { } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } 6 ii) ( B, ) é parcialmente ordenado? 1 4 iii) ( B, ) é totalmente ordenado? 17

18 ) Seja A 1,,,4,,6,7,8 e B,,,8. Em A consideremos a préordem definida pelo diagrama. 8 B Determinar i) a) LS(B)= { } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } 7 ii) ( B, ) é parcialmente ordenado? iii) ( B, ) é totalmente ordenado 4) Seja A 1,,,4,,6 e B 1,,6 A consideremos a pré-ordem definida pelo diagrama. 4 6 B. Em Determinar i) a) LS(B)= { } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } ii) ( B, ) é parcialmente ordenado? 1 18

19 ) Em A { a,, c, d, e, f }, considere a préordem definida pelo diagrama que segue b c a B Determinar i) a) LS(B)= { } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } ii) ( B, ) é parcialmente ordenado? d e f B não é boa ordem, eliminando qual B passa a ser boa ordem? iii) (, ) seta (, ) Seja A 1,,,4,,6,7,8 e B,6,7,. Em A consideremos a pré-ordem definida pelo diagrama Determinar i) a) LS(B)= { } b) Max(B)={ } c) Sup(B)= { } d) LI(B)= { } c) Min(B) ={ } d) Inf(B)= { } ii) ( B, ) é parcialmente ordenado? 19

20 0

Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto

Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto RELAÇÕES 1. PRODUTO CARTESIANO Sejam A e conjuntos não vazios. Chama-se produto cartesiano de A por o conjunto xy com x A e y. Notação: de todo os pares ordenados (, ) A ( x, y) x A e y Exemplo 1: Sejam

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 19 de Agosto de 2018 Curso de Ciência da Computação Relações Binárias Sejam A e B dois conjuntos. Definição: Chama-se relação binária

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1 Relações binárias Laura Goulart UESB 7 de Março de 2018 Laura Goulart (UESB) Relações binárias 7 de Março de 2018 1 / 1 Produto Cartesiano Dados E, F conjuntos quaisquer não vazios, denimos o produto cartesiano

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA

Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT 131 - INTRODUÇÃO À ÁLGEBRA 1. Seja A = {1, 3, 5, 7, 11}. Verifique quais das seguintes proposições são verdadeiras ou falsas.

Leia mais

Reticulados e Álgebras de Boole

Reticulados e Álgebras de Boole Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua

É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua RELAÇÕES É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem Continua Continuação O eixo x é denominado eixo das abscissas e o eixo y é o eixo das ordenadas. Esses eixos dividem

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Aula 3 Vetores no espaço

Aula 3 Vetores no espaço MÓDULO 1 - AULA 3 Aula 3 Vetores no espaço Objetivos Ampliar a noção de vetor para o espaço. Rever as operações com vetores e sua representação em relação a um sistema ortogonal de coordenadas cartesianas.

Leia mais

Apontamentos de Matemática Discreta

Apontamentos de Matemática Discreta Apontamentos de Matemática Discreta Ano Lectivo 2014/2015 Henrique Cruz Conteúdo 1 Agrupar Objectos: Conjuntos 1 1.1 Teoria intuitiva de conjuntos............................. 1 1.2 Conjunto universal

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34 Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Algebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019

Algebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019 Álgebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019 Sumário Introdução 4 1 Relações, aplicações e operações 5 1.1 Terminologia básica dos conjuntos.......................... 5 1.2 Números inteiros....................................

Leia mais

Matemática Discreta - Departamento de Matemática - EST-IPV / III

Matemática Discreta - Departamento de Matemática - EST-IPV / III Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 III - 1 Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - III 1. Conjuntos Conjuntos, relações e funções Axioma

Leia mais

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z)

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z) Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, que é baseada em um conjunto de axiomas (ou postulados). Veremos também algumas leis ou propriedades de álgebras booleanas.

Leia mais

Teoria intuitiva de conjuntos

Teoria intuitiva de conjuntos Teoria intuitiva de conjuntos.................................... 1 Relação binária............................................ 10 Lista 3................................................. 15 Teoria intuitiva

Leia mais

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,

Leia mais

Introdução às Funções

Introdução às Funções UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Introdução às Funções Prof.:

Leia mais

1.1 Conjuntos parcialmente ordenados (c.p.o. s)

1.1 Conjuntos parcialmente ordenados (c.p.o. s) Capítulo 1 PRELIMINARES Neste primeiro capítulo podemos encontrar algumas definições e proposições que para além de nos familiarizar com a notação que iremos utilizar também têm como finalidade a referência

Leia mais

Notas sobre Relações

Notas sobre Relações 1 / 1 Notas sobre Relações Fonte: livro de Kenneth Rosen (ref. completa na página) Centro de Informática Universidade Federal de Pernambuco CIn-UFPE 2 / 1 Seja S um conjunto de pessoas. Digamos que queremos

Leia mais

Plano Cartesiano. Relação Binária

Plano Cartesiano. Relação Binária Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

MAT TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME

MAT TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME MAT 330 - TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME LISTA 2 1. Prove que (a, b) ( ({a, b, })) e a, b (a, b). Mais geralmente, se a A e b A, então (a, b) ( (A)). 2. Prove que (a, b), (a,

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

CAPÍTULO 1 - Teoria dos conjuntos

CAPÍTULO 1 - Teoria dos conjuntos TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918). Como na Geometria Euclidiana adota-se ponto, reta e plano como conceitos primitivos

Leia mais

1.2 Axioma do Supremo

1.2 Axioma do Supremo 1.2 Axioma do Supremo EXERCÍCIOS RESOLVIDOS 1. Verifique que se n N é ímpar, então n 2 é também ímpar. O que pode concluir de n N sabendo que n 2 é par? RESOLUÇÃO Seja n N ímpar, com n = 2k+1, para algum

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008 ÁLGEBRA I Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Junho de 2007 Revisão em Fevereiro de 2008 Sumário Introdução... 3 Parte 1 - Preliminares... 5 Seção 1 - Noções

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Criptografia e Segurança das Comunicações. das Comunicações Bases Matemáticas - Relações e Ordens

Criptografia e Segurança das Comunicações. das Comunicações Bases Matemáticas - Relações e Ordens 9 Criptografia e Segurança das Comunicações Bases Matemáticas - Relações e Ordens Teoria Ordem: /22 Relações binárias () 9 Teoria da ordem é o ramo da matemática, dedicada a vária relações binárias, que

Leia mais

1) Verifique as afirmativas abaixo e responda, qual é a correspondente ao conjunto infinito?

1) Verifique as afirmativas abaixo e responda, qual é a correspondente ao conjunto infinito? Resumo Os conjuntos podem ser finitos ou infinitos. Intuitivamente um conjunto é finito se consiste de um número específico de elementos diferentes, isto é, se ao contarmos os diferentes membros do conjunto

Leia mais

Lista 2 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 2 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GAN00140 Álgebra Linear 018.1 Prof a. Ana Maria Luz F. do Amaral Lista - Resolução 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. 1 a) b) 1 3 0 0 1 /. 1 1/ 1

Leia mais

Capítulo 0: Conjuntos, funções, relações

Capítulo 0: Conjuntos, funções, relações Capítulo 0: Conjuntos, funções, relações Notação. Usaremos Nat para representar o conjunto dos números naturais; Int para representar o conjunto dos números inteiros. Para cada n Nat, [n] representa o

Leia mais

Aula 4: Elementos da Teoria de Conjuntos

Aula 4: Elementos da Teoria de Conjuntos 1 / 20 Elementos da Teoria de Conjuntos Bases Matemáticas - 3 o /2018 Dahisy Lima Aula 4: Elementos da Teoria de Conjuntos 2 / 20 Conjuntos Elementos da Teoria de Conjuntos Do ponto de vista ingênuo, um

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x.

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. Matemática Discreta ESTiG\IPB Cap2. Relações. Funções pg 4 Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. então Produto cartesiano do conjunto A pelo conjunto B [cartesian product].

Leia mais

O espaço das Ordens de um Corpo

O espaço das Ordens de um Corpo O espaço das Ordens de um Corpo Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é exibir corpos com infinitas ordens e exibir uma estrutura topológica ao conjunto das ordens de um corpo.

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Matemática Elementar. Matemática Elementar por Inaldo Barbosa de Albuquerque

Matemática Elementar. Matemática Elementar por Inaldo Barbosa de Albuquerque Matemática Elementar i Matemática Elementar por Inaldo Barbosa de Albuquerque Matemática Elementar ii COLLABORATORS TITLE : Matemática Elementar ACTION NAME DATE SIGNATURE WRITTEN BY Inaldo Barbosa de

Leia mais

Relações. Ester Maria Klippel

Relações. Ester Maria Klippel Relações Relações Ligações entre elementos de conjuntos são representados usando uma estrutura chamada relação. No nosso dia-a-dia estamos freqüentemente utilizando o conceito de relações: Comparar objetos

Leia mais

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos Conjuntos AULA 1 Aula 1 Conjuntos Meta conjuntos. Introduzir as noções básicas de conjunto e produto cartesiano de Objetivos Ao final desta aula, você deve ser capaz de: Definir as noções básicas de conjunto

Leia mais

Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem as seguintes propriedades:

Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem as seguintes propriedades: Capítulo 3 Relação de Equivalência e Ordem 3.1 Relações de equivalência e abstracções Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário DIVISÃO NOS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 18 de agosto de 2017 Sumário 1 Divisibilidade 2 Divisão Euclidiana

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

Capítulo 3 - Relações

Capítulo 3 - Relações Capítulo 3 - Relações Uma das principais razões do sucesso e universalidade da teoria de conjuntos na matemática reside no facto de praticamente todas as noções e conceitos da matemática se poderem reduzir,

Leia mais

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE Relações George Darmiton da Cunha Cavalcanti CIn - UFPE Relações Binárias Sejam X e Y dois conjuntos. Uma relação entre X e Y é um subconjunto de produto cartesiano X Y. No caso de X = Y, a uma relação

Leia mais

Capítulo 1. Conjuntos, Relações, Funções

Capítulo 1. Conjuntos, Relações, Funções i Sumário 1 Conjuntos, Relações, Funções 1 1.1 Axiomas e Definições.................................. 2 1.2 Operações com Conjuntos............................... 4 1.3 Relações.........................................

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:

Leia mais

3.4 Álgebra booleana, ordens parciais e reticulados

3.4 Álgebra booleana, ordens parciais e reticulados Notas de aula de MAC0329 (2003) 23 3.4 Álgebra booleana, ordens parciais e reticulados Seja A um conjunto não vazio. Uma relação binária R sobre A é um subconjunto de A A, isto é, R A A. Se (x, y) R, denotamos

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

Produto Cartesiano de dois conjuntos, Relações e Funções

Produto Cartesiano de dois conjuntos, Relações e Funções o Semestre de 9/ Miscelânea Produto Cartesiano de dois conjuntos, elações e Funções Sejam e dois conjuntos e sejam a e b O conjunto a,a,b chama-se par ordenado e designa-se por (a,b) Os elementos a e b

Leia mais

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula

Leia mais

12 AULA. Relações de Ordem LIVRO. META: Apresentar o conceito de relações de ordem e suas propriedades.

12 AULA. Relações de Ordem LIVRO. META: Apresentar o conceito de relações de ordem e suas propriedades. 2 LIVRO Relações de Ordem META: Apresentar o conceito de relações de ordem e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Determinar se uma dada relação é uma relação

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

1 Análise combinatória

1 Análise combinatória Matemática Discreta September 11, 2018 1 1 Análise combinatória 1.1 Alguns princípios básicos Teorema (Princípio da adição). Se {A i },..,N é uma família (finita) de conjuntos FINITOS, mutuamente disjuntos,

Leia mais

MATEMÁTICA DISCRETA TEORIA DOS CONJUNTOS PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA TEORIA DOS CONJUNTOS PROFESSOR WALTER PAULETTE FATEC SP MTEMÁTIC DISCRET TEORI DOS CONJUNTOS PROFESSOR WLTER PULETTE FTEC SP 2009 02 2 2 TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918).

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir dos livros

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA

CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos

Leia mais

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 e pertinência Conjunto é entendido como uma coleção de

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação Curso: Ciência da Computação Turma: 6ª Série Aula 2 Conceitos Básicos da Computação pode ser definida como a solução de um problema ou, formalmente, o cálculo de uma função, através de um algoritmo. A

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Lista de Exercícios 8: Soluções Relações

Lista de Exercícios 8: Soluções Relações UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto

Leia mais

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem

Leia mais

Introdução à Matemática

Introdução à Matemática Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

Linguagem Básica de Conjuntos

Linguagem Básica de Conjuntos Capítulo 1 Linguagem Básica de Conjuntos 1.1 A Noção de Conjunto A teoria dos conjuntos surgiu com os trabalhos de George Cantor no século XIX. Entretanto, tal teoria não se preocupava com muito rigor

Leia mais

EXERCÍCIOS DO CAPÍTULO 1

EXERCÍCIOS DO CAPÍTULO 1 EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos

Leia mais

n. 26 PRODUTO CARTESIANO

n. 26 PRODUTO CARTESIANO n. 26 PRODUTO CARTESIANO Os nomes Plano Cartesiano e Produto Cartesiano são homenagens ao seu criador René Descartes (1596 1650), filósofo e matemático francês. O nome de Descartes em Latim era Renatus

Leia mais

1. GENERALIDADES. binária fechada em S que satisfaz

1. GENERALIDADES. binária fechada em S que satisfaz 1. GENERALIDADES Neste capítulo, apresentamos os conceitos e resultados que entendemos serem necessários à compreensão dos restantes capítulos desta dissertação. Optamos por não apresentar as demonstrações

Leia mais

Centro Educacional Sesc Cidadania. 1º trimestre - Disciplina: Matemática. Números Naturais

Centro Educacional Sesc Cidadania. 1º trimestre - Disciplina: Matemática. Números Naturais Centro Educacional Sesc Cidadania Ensino Fundamental Anos Finais Goiânia, janeiro/fevereiro de 2018 Professora: Mara Rúbia Matias 7º ano 1º trimestre - Disciplina: Matemática Atenção Você deve ter este

Leia mais