SEM Aula 7 Equacionamento de Mecanismos. Prof. Dr. Marcelo Becker

Tamanho: px
Começar a partir da página:

Download "SEM Aula 7 Equacionamento de Mecanismos. Prof. Dr. Marcelo Becker"

Transcrição

1 SEM Aula 7 Equacionamento de Mecanismos Prof. Dr. Marcelo Becker SEM - EESC - USP

2 Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia Recomendada 2

3 Notação Complexa Formas de representação: Exponencial Im R = OP.e i θ Senos e Cosenos O R = OP.(i.sin θ + cos θ) R P θ Re 3

4 Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia Recomendada 4

5 Equacionamento Links Rígidos Derivada Primeira Exponencial.. R = OP.iθ.e i θ Senos e Cosenos.. R = OP.θ.(i.cos θ - sin θ). R Im O R P θ Re 5

6 Equacionamento Links Rígidos Derivada Segunda Exponencial. R = OP.(i 2 θ 2.e i θ + iθ.e i θ ) Senos e Cosenos. R n R t R = - OP.θ 2.(cos θ + i.sin θ) + OP.θ.(i.cos θ sin θ) R t Im O R R n P θ Re 6

7 Equacionamento Links Rígidos Determinação do Módulo de R: R Re = - OP.(θ 2.cos θ - θ.sin θ). R Im = - OP.(θ 2.sin θ + θ.cos θ) R = R Im R Re R β R t R n Im R O P θ Re 7

8 Equacionamento Links Rígidos Determinação da fase de R: tan(β) = R Im R Re R β R t R n Im R O P θ Re 8

9 Equacionamento Links não Rígidos Formas de representação: Exponencial Im R 1 = R 1.e i θ1 Senos e Cosenos O R 1 = R 1.(i.sin θ 1 + cos θ 1 ) A R 1 θ 1 Re 9

10 Equacionamento Links não Rígidos Derivada Primeira Exponencial... R 1 = R 1.iθ 1.e i θ 1 + R 1.e i θ 1.. R 1t R 1n Senos e Cosenos... R 1 = R 1.θ.(i.cos θ - sin θ) + R 1.(cos θ + i.sin θ) Im. R 1t O. R 1n A R 1 θ 1 Re 10

11 Equacionamento Links não Rígidos Derivada Segunda Exponencial. R t. R 1 = R 1.(i 2 θ 12.e i θ 1 + i.θ 1.e i θ 1 ) + R 1.(i.θ 1.e i θ 1 + e i θ 1 ). + R 1.i.θ 1.e i θ 1 R n Im R 1t O R 1 R 1n A θ1 Re 11

12 Equacionamento Links não Rígidos Im A Derivada Segunda Seno e Coseno R 1t R 1 θ1. R = - R 1.θ 1 2.(cos θ 1 + i.sin θ 1 ) +..+ R 1 θ 1.(i.cos θ 1 sin θ 1 ) R 1.θ 1.(i.cos θ 1 - sin θ 1 ) +..+ R 1.(i.sin θ 1 + cos θ 1 ) O R 1n Re EESC-USP M. Becker

13 Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia Recomendada 13

14 Equacionamento 4 Barras - Posição Im R 3 R 2 R 4 R 1y R 1x R 2 + R 3 + R 4 = R 1y + R 1x Re 14

15 Equacionamento 4 Barras - Posição Im R 3 θ 4 θ 1y R 2 R 4 θ 2 θ 3 R 1y R 1x Re R 2.(cosθ 2 + i.sinθ 2 ) + R 3.(cosθ 3 + i.sinθ 3 ) R 4.(cosθ 4 + i.sinθ 4 ) = -i.r 1y + R 1x 15

16 Equacionamento Mecanismos Simples 4 Barras 1 o Determinar os ângulos A γ R R 2 4 θ 3 δ O 2 θ 2 R 1 R 3 B O4 L 2 : link motor L 1 : solo L 3 : link acoplador L 4 : link seguidor θ 2 : âng. da barra motriz δ: âng. da barra seguidora θ 3 : âng. da barra acopladora γ: âng. de transmissão 16

17 Equacionamento Mecanismos Simples 4 Barras Aplicar Lei dos Cosenos A γ R R 2 4 θ α δ 2 β R 1 R 3 B O 2 O 4 ABO 4 AO 2 O 4 17

18 Equacionamento Mecanismos Simples 4 Barras Mecanismos Cruzados Descruzar o Mecanismo e seguir o equacionamento 18

19 Equacionamento 4 Barras - Velocidade Im R 3 θ 4 θ 1y R 1y R 2 R 4 θ 2 θ 3 R 1x.. Re R 2.θ 2.(-sinθ. 2 + i.cosθ 2 ) + R 3.θ 3.(-sinθ 3 + i.cosθ 3 ) R 4.θ 4.(-sinθ 4 + i.cosθ 4 ) = 0 19

20 Equacionamento 4 Barras - Velocidade Dividir em Re e Im... R 2.θ 2.(-sinθ 2 + i.cosθ 2 ) + R 3.θ 3.(-sinθ 3 + i.cosθ 3 ) R 4.θ 4.(-sinθ 4 + i.cosθ 4 ) = 0 Re Im... -R 2.θ 2.sinθ 2 - R 3.θ 3.sinθ 3 - R 4.θ 4.sinθ 4 = 0... R 2.θ 2.cosθ 2 + R 3.θ 3.cosθ 3 + R 4.θ 4.cosθ 4 = 0 20

21 Equacionamento 4 Barras - Aceleração Im R 3 θ 4 θ 1y R 1y θ 3 R 2 R 4 θ 2 R 1x Re R 2.θ 2.(-sinθ 2 + i.cosθ 2 ) + R 3.θ 3.(-sinθ. 3 + i.cosθ 3 ) R 4.θ. 4.(-sinθ 4 + i.cosθ 4 ) R 2.θ. 22.(cosθ 2 + i. sinθ 2 ) R 3.θ 32.(cosθ 3 + i. sinθ 3 ) R 4.θ 42.(cosθ 4 + i. sinθ 4 ) = 0 21

22 Equacionamento 4 Barras - Aceleração Re Im Dividir em Re e Im... R 2.θ 2.(-sinθ 2 + i.cosθ 2 ) + R 3.θ 3.(-sinθ 3 + i.cosθ 3 ) R 4.θ 4.(-sinθ 4 + i.cosθ 4 ) R 2.θ 22.(cosθ 2 + i. sinθ 2 ) R 3.θ 32.(cosθ 3 + i. sinθ 3 ) R 4.θ 42.(cosθ 4 + i. sinθ 4 ) = R 2.θ 2.sinθ 2 - R 3.θ 3.sinθ 3 - R 4.θ 4.sinθ R 2.θ 22.cosθ 2 - R 3.θ 32.cosθ 3 - R 4.θ 42. cosθ 4 = 0 R 2.θ 2.cosθ. 2 + R 3.θ 3.cosθ. 3 + R 4.θ 4.cosθ. 4.. R 2.θ 22.sinθ 2 -R 3.θ 32.sinθ 3 R 4.θ 42.sinθ 4 = 0 22

23 Mecanismos Simples Biela-Manivela Exemplos de Aplicação: Motores de Combustão Interna, Máquinas Ferramenta, Compressores, etc. Deslocamento do Pistão Velocidades Aceleração Pistão Biela Manivela 23

24 Mecanismos Simples Biela-Manivela Equacionamento A R 2 R 3 O 2 R 1 B 24

25 Mecanismos Simples Biela-Manivela Equacionamento A O 2 θ 2 θ 3 R 2 R 3 R 1 B R 2 + R 3 = R 1 25

26 Mecanismos Simples Biela-Manivela - Posição Equacionamento A O 2 θ 2 θ 3 R 2 R 3 R 1 R 2.(cosθ 2 + i.sinθ 2 ) + R 3.(cosθ 3 + i.sinθ 3 ) = R 1 B EESC-USP M. Becker

27 Mecanismos Simples Biela-Manivela - Velocidade Equacionamento A O 2 θ 2 θ 3 R 2 R 3 R 1... R 2.θ 2.(i.cosθ 2 - sinθ 2 ) + R 3.θ 3.(i.cosθ 3 - sinθ 3 ) = R 1 B EESC-USP M. Becker

28 Equacionamento Biela-Manivela - Velocidade Dividir em Re e Im.. R 2.θ 2.(i.cosθ 2 - sinθ 2 ) + R 3. θ 3.(i.cosθ 3 - sinθ 3 ) = R 1. Re Im... -R 2.θ 2.sinθ 2 - R 3.θ 3.sinθ 3 = R 1.. R 2.θ 2.cosθ 2 + R 3.θ 3.cosθ 3 = 0 EESC-USP M. Becker

29 Mecanismos Simples Biela-Manivela - Aceleração Equacionamento A R 2 R 3 O 2 θ 2 θ 3 R 1 R 2.θ 2.(-sinθ. 2 + i.cosθ 2 ) + R 3.θ 3.(-sinθ. 3 + i.cosθ 3 ) -..- R 2.θ 22.(cosθ 2 + i.sinθ 2 ) - R 3.θ 32.(cosθ 3 + i.sinθ 3 ) = R 3 B EESC-USP M. Becker

30 Equacionamento Biela-Manivela - Aceleração Dividir em Re e Im.. R 2.θ 2.(-sinθ 2 + i.cosθ 2 ) + R 3.θ 3.(-sinθ 3 + i.cosθ 3 ) -..- R 2.θ 22.(cosθ 2 + i.sinθ 2 ) - R 3.θ 32.(cosθ 3 + i.sinθ 3 ) = R 3 Re Im. -R 2.θ 2.sinθ. 2 - R 3.θ 3.sinθ 3 - R 2.θ 22.cosθ R 3.θ 32.cosθ 3 = R 3. R 2.θ 2.cosθ. 2 + R 3.θ 3.cosθ 3 - R 2.θ 22.sinθ R 3.θ 32.sinθ 3 ) = 0 30

31 Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia Recomendada 31

32 Mecanismos Complexos Mecanismo Toggle Barras CB e BO 4 com mesmo comprimento O 2 C B A O 4 32

33 Mecanismos Complexos Mecanismo Toggle Equacionamento: Dividir em 2 mecanismos Simples O 2 4 Barras: O 2 ABO 4 Biela-Manivela: CBO 4 C α B A α O 4 33

34 Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia Recomendada 34

35 Enunciado do Problema Guindaste Um guindaste utilizado em docas consiste em um mecanismo 4 barras (A 0 ABCB 0 ), sendo C um ponto da barra ABC. O link AA 0 é acionado por um motor acoplado em A 0, cuja velocidade é de 720 rpm (c te ), através de um redutor de i=1430:1. Calcule a velocidade da carga e a variação em sua elevação quando o link AA 0 gira de φ=60 o a φ=140 o (em passos de 10 o ). 35

36 Dados do Problema Guindaste a = 22,05 m b = 9,75 m c = 28,95 m e = 7,95 m f = 9,60 m L = 33,75 m CB = 24 m A 0 B 0 = d Im A a A 0 e f φ b B 0 c B ψ Re C 36

37 Equacionamento Guindaste - Posição Im a A θ 3 b B θ 4 C A 0 e f φ B 0 ψ c Re a + b + c = f + e a.(cosφ + i.sinφ) + b.(cosθ 3 + i.sinθ 3 ) c.(cosθ 4 + i.sinθ 4 ) = -i.e + f 37

38 Equacionamento Recordação 4 Barras 1 o Determinar os ângulos Z = fç(φ + δ) Im A B C γ A 0 Z φ δ B 0 ψ Re 38

39 Equacionamento Recordação 4 Barras Aplicar Lei dos Co-senos!! Im A 0 δ A B ABB 0 C γ Z φ AA 0 B 0 ψ B 0 Re 39

40 Equacionamento Guindaste - Posição Im a A θ 3 b B θ 4 C A 0 e f φ B 0 ψ c Re a.(cosφ + i.sinφ) + b.(cosθ 3 + i.sinθ 3 ) c.(cosθ 4 + i.sinθ 4 ) = -i.e + f a + b + c = f + e 40

41 Equacionamento Guindaste - Posição Dividir em Re e Im a.(cosφ + i.sinφ) + b.(cosθ 3 + i.sinθ 3 ) c.(cosθ 4 + i.sinθ 4 ) = -i.e + f Re Im a.cosφ + b.cosθ 3 + c.cosθ 4 = f a.sinφ + b.sinθ 3 + c.sinθ 4 = - e 41

42 Equacionamento Guindaste - Velocidade Im a A θ 3 b B θ 4 C A 0 e f φ c ψ B 0 Re.. a.φ.(-sinφ. + i.cosφ) + b.θ 3.(-sinθ 3 + i.cosθ 3 ) c.θ 4.(-sinθ 4 + i.cosθ 4 ) = 0 42

43 Equacionamento Guindaste - Velocidade Dividir em Re e Im... Re Im a.φ.(-sinφ + i.cosφ) + b.θ 3.(-sinθ 3 + i.cosθ 3 ) c.θ 4.(-sinθ 4 + i.cosθ 4 ) = a.φ.sinφ - b.θ 3.sinθ 3 - c.θ 4.sinθ 4 = 0... a.φ.cosφ + b.θ 3.cosθ 3 + c.θ 4.cosθ 4 = 0 43

44 Equacionamento Guindaste - Aceleração Im a A θ 3 b B θ 4 C φ c A 0 ψ e f B 0 Re a.φ.(-sinφ + i.cosφ) + b.θ 3.(-sinθ 3 + i.cosθ 3 ) c.θ. 4.(-sinθ 4 + i.cosθ 4 ) a.φ 2.(cosφ + i. sinφ) b.θ 32.(cosθ 3 + i. sinθ 3 ) c.θ 42.(cosθ 4 + i. sinθ 4 ) = 0 44

45 Equacionamento 4 Barras - Aceleração Re Im Dividir em Re e Im... a.φ.(-sinφ + i.cosφ) + b.θ 3.(-sinθ 3 + i.cosθ 3 ) c.θ 4.(-sinθ 4 + i.cosθ 4 ) a.φ 2.(cosφ + i. sinφ) b.θ 32.(cosθ 3 + i. sinθ 3 ) c.θ 42.(cosθ 4 + i. sinθ 4 ) = 0 -a.φ.sinφ. - b.θ 3.sinθ. 3 - c.θ 4.sinθ a.φ 2.cosφ - b.θ 32.cosθ 3 - c.θ 42. cosθ 4 = 0 a.φ.cosφ. + b.θ 3.cosθ. 3 + c.θ 4.cosθ. 4.. a.φ 2.sinφ -b.θ 32.sinθ 3 c.θ 42.sinθ 4 = 0 45

46 Velocidade e Aceleração Guindaste Ponto C (ponta da lança) Lembrar que: V C = V A + V C/A V A = a.φ.. φ = 2π. N 60 i. V C/A = L.θ 3 Im A 0 e A a f φ b B 0 c B ψ Re C 46

47 Velocidade e Aceleração Guindaste Ponto C (ponta da lança) Assim: V C = V A + V C/A. V A = a.φ.(-sinφ + i.cosφ). V C/A = L.θ 3.(-sinθ 3 + i.cos θ 3 ).. V C 2 = (-a.φ.sinφ - L.θ 3.sinθ 3 ) (a.φ.cosφ + L.θ 3.cos θ 3 ) 2 47

48 Velocidade e Aceleração Guindaste Ponto C (ponta da lança) Assim: A C = A A + A C/A. A A = a.φ.(-sinφ + i.cosφ) a.φ 2.(cosφ + i. sinφ). A C/A = L.θ 3.(-sinθ 3 + i.cosθ 3 ) - L.θ 32.(cosθ 3 + i. sinθ 3 ).. A C 2 = (-a.φ.sinφ - a.φ 2.cosφ - L.θ 3.sinθ 3 - L.θ 32.cosθ 3 ) (a.φ.cosφ - a.φ 2.sinφ + L.θ 3.cosθ 3 - L.θ 32. sinθ 3 ) 2 48

49 Velocidade e Aceleração Guindaste Gráficos Animação 49

50 Velocidade e Aceleração Guindaste Gráficos Velocidades: Juntas A e B e Ponto E 50

51 Velocidade e Aceleração Guindaste Gráficos Velocidades do Ponto E (vertical e Horizontal): 51

52 Velocidade e Aceleração Guindaste Gráficos Acelerações: Juntas A e B e Ponto E 52

53 Velocidade e Aceleração Guindaste Gráficos Acelerações do Ponto E (vertical e Horizontal): 53

54 Velocidade e Aceleração Guindaste Gráficos Derivada 2ª dos Ângulos θ3 e θ4 54

55 Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia Recomendada 55

56 Bibliografia Recomendada Shigley, JE. e Uicker, JJ., 1995, Theory of Machines and Mechanisms. MABIE, H.H., OCVIRK, F.W. Mecanismos e dinâmica das máquinas. MARTIN, G.H. Cinematics and dynamics of machines. NORTON, R. L. Design of Machinery - An Introduction to the Synthesis and Analysis of Mechanisms and Machines Notas de Aula 56

Equacionamento de Links Mecanismos Simples Mecanismos Complexos Bibliografia Recomendada. EESC-USP M. Becker /36

Equacionamento de Links Mecanismos Simples Mecanismos Complexos Bibliografia Recomendada. EESC-USP M. Becker /36 SEM0104 - Aula 7 Equacionamento de Mecanismos Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Bibliografia Recomendada

Leia mais

Equacionamento de Mecanismos

Equacionamento de Mecanismos SEM0104 - Aula 7 Equacionamento de Mecanismos Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Notação Complexa Equacionamento de Links Mecanismos Simples Mecanismos Complexos Exemplo Bibliografia

Leia mais

SEM Aula 3 Tipos de Mecanismos: Simples e Complexos. Prof. Dr. Marcelo Becker

SEM Aula 3 Tipos de Mecanismos: Simples e Complexos. Prof. Dr. Marcelo Becker SEM0104 - Aula 3 Tipos de Mecanismos: Simples e Complexos Prof. Dr. Marcelo Becker SEM - EESC - USP Pergunta da Aula Passada Quantos GDLs possui o conjunto mão, ante-braço e braço?? 2 Pergunta da Aula

Leia mais

SEM Aula 5 Cálculo da Velocidade: Velocidade Relativa. Prof. Dr. Marcelo Becker

SEM Aula 5 Cálculo da Velocidade: Velocidade Relativa. Prof. Dr. Marcelo Becker SEM0104 - Aula 5 Cálculo da Velocidade: Velocidade Relativa Prof. Dr. Marcelo ecker SEM - EESC - USP Sumário da Aula Método Gráfico Análise de Mecanismos Cálculo de Velocidade Velocidade Relativa Definição

Leia mais

Tipos de Mecanismos: Simples e Complexos

Tipos de Mecanismos: Simples e Complexos SEM0104 - Aula 3 Tipos de Mecanismos: Simples e Complexos Prof. Assoc. Marcelo Becker USP - EESC - SEM LabRoM Prof. Dr. Marcelo Becker - SEM EESC USP Pergunta da Aula Passada Quantos GDLs possui o conjunto

Leia mais

Pergunta da Aula Passada

Pergunta da Aula Passada SEM0104 - Aula 3 Tipos de Mecanismos: Simples e Complexos Prof. Dr. Marcelo Becker SEM - EESC - USP Pergunta da Aula Passada Quantos GDLs possui o conjunto mão, ante-braço e braço? EESC-USP M. Becker 2008

Leia mais

Graus de Liberdade Cadeias Cinemáticas Exercícios Recomendados Bibliografia Recomendada. EESC-USP M. Becker /48

Graus de Liberdade Cadeias Cinemáticas Exercícios Recomendados Bibliografia Recomendada. EESC-USP M. Becker /48 SEM0104 - Aula 2 Graus de Liberdade em Cadeias Cinemáticas Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Graus de Liberdade Cadeias Cinemáticas Exercícios Recomendados Bibliografia

Leia mais

SEM Aula 2 Graus de Liberdade em Cadeias Cinemáticas. Prof. Dr. Marcelo Becker

SEM Aula 2 Graus de Liberdade em Cadeias Cinemáticas. Prof. Dr. Marcelo Becker SEM0104 - Aula 2 Graus de Liberdade em Cadeias Cinemáticas Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Graus de Liberdade Cadeias Cinemáticas Exercícios Recomendados Bibliografia

Leia mais

SEM Aula 2 Graus de Liberdade e Cadeias Cinemáticas. Prof. Assoc. Marcelo Becker

SEM Aula 2 Graus de Liberdade e Cadeias Cinemáticas. Prof. Assoc. Marcelo Becker SEM0104 - Aula 2 Graus de Liberdade e Cadeias Cinemáticas Prof. Assoc. Marcelo Becker USP - EESC - SEM LabRoM Sumário da Aula Introdução Graus de Liberdade Cadeias Cinemáticas Exercícios Recomendados Bibliografia

Leia mais

Bibliografia Recomendada

Bibliografia Recomendada SEM0104 - Aula 10 Mecanismos de Deslizamento - Cames Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Seguidores Diagramas de Deslocamento Projeto de Perfis Exemplos de Aplicação Exercícios

Leia mais

SEM Aula 10 Mecanismos de Deslizamento - Cames Prof. Dr. Marcelo Becker

SEM Aula 10 Mecanismos de Deslizamento - Cames Prof. Dr. Marcelo Becker SEM0104 - Aula 10 Mecanismos de Deslizamento - Cames Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Seguidores Diagramas de Deslocamento Projeto de Perfis Exemplos de Aplicação Exercícios

Leia mais

SEM0 M Aul u a a 1 1 Sínt n e t se s d e d M e M can a i n sm s os s Pro r f. D r.r Ma M r a c r elo Becker SEM - EESC - USP

SEM0 M Aul u a a 1 1 Sínt n e t se s d e d M e M can a i n sm s os s Pro r f. D r.r Ma M r a c r elo Becker SEM - EESC - USP SEM0104 - Aula 11 Síntese de Mecanismos Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Tipos de Síntese Erros de Trajetória Erros Estruturais Síntese de Mecanismos Exemplos Bibliografia

Leia mais

Mecanismos de Deslizamento - Cames

Mecanismos de Deslizamento - Cames SEM0104 - Aula 11 Mecanismos de Deslizamento - Cames Prof. Assoc. Marcelo Becker USP - EESC - SEM LabRoM EESC-USP M. Becker 2016 Sumário da Aula Introdução Seguidores Diagramas de Deslocamento Projeto

Leia mais

SEM Aula 4 Análise Gráfica de Velocidade em Mecanismos Prof. Dr. Marcelo Becker

SEM Aula 4 Análise Gráfica de Velocidade em Mecanismos Prof. Dr. Marcelo Becker SEM0104 - ula 4 nálise Gráfica de Velocidade em Mecanismos Prof. Dr. Marcelo ecker SEM - EESC - USP Sumário da ula Mét. Gráfico nálise de Mecanismos Cálculo de Velocidade Centro Instantâneo de Rotação

Leia mais

Bibliografia Recomendada

Bibliografia Recomendada SEM0104 - ula 4 nálise Gráfica de Velocidade em Mecanismos Prof. Dr. Marcelo ecker SEM - EESC - USP Sumário da ula Mét. Gráfico nálise de Mecanismos Cálculo de Velocidade Centro Instantâneo de Rotação

Leia mais

SEM Aula 1 Introdução e Motivação. Prof. Dr. Marcelo Becker

SEM Aula 1 Introdução e Motivação. Prof. Dr. Marcelo Becker SEM0104 - Aula 1 Introdução e Motivação Prof. Dr. Marcelo Becker SEM - EESC - USP Prof. Dr. Marcelo Becker - SEM EESC USP Sumário da Aula Informações sobre o Curso Introdução Histórico Exemplos de Aplicação

Leia mais

SEM Aula 1 Introdução e Motivação Prof. Dr. Marcelo Becker

SEM Aula 1 Introdução e Motivação Prof. Dr. Marcelo Becker SEM0104 - Aula 1 Introdução e Motivação Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Informações sobre o Curso Introdução Histórico Exemplos de Aplicação 2/48 Informações sobre o Curso Aulas

Leia mais

SEM0 M Aul u a l a 1 Int n r t o r du d ç u ão ã e M o M ti t v i aç a ão ã Pro r f. D r. r Ma M r a c r elo l Becker SEM - EESC - USP

SEM0 M Aul u a l a 1 Int n r t o r du d ç u ão ã e M o M ti t v i aç a ão ã Pro r f. D r. r Ma M r a c r elo l Becker SEM - EESC - USP SEM0104 - Aula 1 Introdução e Motivação Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Informações sobre o Curso Introdução Histórico Exemplos de Aplicação 2/48 Informações sobre o Curso Aulas

Leia mais

MECANISMOS TM Mecanismos (Definição) Algumas definições do termo mecanismos:

MECANISMOS TM Mecanismos (Definição) Algumas definições do termo mecanismos: MECANISMOS TM. INTRODUÇÃO. Mecanismos (Definição) Algumas definições do termo mecanismos: Mabie e Reinholtz definem mecanismo como a parte do projeto de uma máquina relacionada com a cinemática e cinética

Leia mais

SEM Aula 9 Engrenagens e Trens de Engrenagens Prof. Dr. Marcelo Becker

SEM Aula 9 Engrenagens e Trens de Engrenagens Prof. Dr. Marcelo Becker SEM14 - Aula 9 Engrenagens e Trens de Engrenagens Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Representações Cinemática e Análise de Torque Montagens Transmissões Veiculares Software

Leia mais

Representação Gráfica

Representação Gráfica Vetores Vetores: uma ferramenta matemática para expressar grandezas Grandezas escalares e vetoriais; Anotação vetorial; Álgebra vetorial; Produtos escalar e vetorial. Grandezas Físicas Grandezas Escalares:

Leia mais

IFSC Paulo Boni Aula I IFSC Paulo. Boni IFSC Prof. Paulo Boni Boni IFSC. Paulo Boni IFSC Paulo Boni

IFSC Paulo Boni Aula I IFSC Paulo. Boni IFSC Prof. Paulo Boni Boni IFSC. Paulo Boni IFSC Paulo Boni Mecanismos e Dinâmica de Máquinas Prof. Aula I Aula I - Conteúdo da disciplina - Avaliações - Horário do professor - Plano de aula - Livros Conteúdo da disciplina - Análise e Síntese de mecanismos - Mecanismos

Leia mais

Número de aulas 2 2 Número de semanas Horário. Sala: PG06 PG06

Número de aulas 2 2 Número de semanas Horário. Sala: PG06 PG06 UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ENGENHARIA MECÂNICA PLANO DE AULAS Professor: Prof. Jorge Luiz Erthal ano - semestre: jorgeerthal@gmail.com Disciplina: TM348 Mecanismos 2016-2 segunda terça

Leia mais

MOVIMENTO E MECANISMOS

MOVIMENTO E MECANISMOS UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA LICENCIATURA EM ENGENHARIA BIOMÉDICA MOVIMENTO E MECANISMOS Problemas Propostos Paulo Flores - 2005 PROBLEMA 1 1/10 Classifique,

Leia mais

IFSC Paulo Bo Aul oni la I IFSC Paulo. Paulo Boni IFSC Paulo Boni. Boni IFSC Paulo Boni IFSC. Mecanismos e Dinâmica de. Máquinas

IFSC Paulo Bo Aul oni la I IFSC Paulo. Paulo Boni IFSC Paulo Boni. Boni IFSC Paulo Boni IFSC. Mecanismos e Dinâmica de. Máquinas Mecanismos e Dinâmica de Máquinas Prof. Pau ulo Paulo Bo Aul oni la I Paulo Aula I - Conteúdo da disciplina - Avaliações Paulo Paulo - Horário do professor - Plano de aula Paulo - Livros Paulo Paulo Conteúdo

Leia mais

PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP

PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP 1 Introdução Introdução ao Projeto de 211v1 são mecanismos compactos utilizados para movimentos cíclicos com deslocamentos de pequena amplitude, normalmente com intervalos de repouso. Comparado aos mecanismos

Leia mais

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

= 0,7 m/s. F = m d 2 x d t 2

= 0,7 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 16,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

MODELAGEM E SIMULAÇÃO COMPUTACIONAL DE MECANISMOS

MODELAGEM E SIMULAÇÃO COMPUTACIONAL DE MECANISMOS ILHA SOLTEIRA XII Congresso Nacional de Estudantes de Engenharia Mecânica - 22 a 26 de agosto de 2005 - Ilha Solteira - SP Paper CRE05-EE08 MODELAGEM E SIMULAÇÃO COMPUTACIONAL DE MECANISMOS Paulo César

Leia mais

Introdução ao Projeto de Cames

Introdução ao Projeto de Cames Sumário Introdução ao Projeto de Cames 1 Introdução 1 2 Metodologia de Projeto 2 2.1 Divisão do Movimento em Etapas...................................... 3 2.2 Diagrama SVAJ................................................

Leia mais

CADERNO 1. Nas condições pretendidas, o número de possibilidades é dado por 2 4! 4!, ou seja, ( ) ( ) ( )

CADERNO 1. Nas condições pretendidas, o número de possibilidades é dado por 2 4! 4!, ou seja, ( ) ( ) ( ) . Podemos ter sequências do tipo CADERNO Maq. I P I P I P I P!! ou Maq. P I P I P I P I!! Nas condições pretendidas, o número de possibilidades é dado por!!, ou seja, 5. Resposta: Opção (B) 5. Na figura

Leia mais

Aula sobre Spin: Programa Spins e Tabela de Clebsch-Gordon

Aula sobre Spin: Programa Spins e Tabela de Clebsch-Gordon Aula sobre Spin: e Tabela de Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal 2014 O Uso da Tabela de Coeficientes de Jorge C. Romão

Leia mais

MEC2-98/99 ANÁLISE CINEMÁTICA DE MECANISMOS 2.1. Fig 1 - Mecanismo com 2 graus de liberdade

MEC2-98/99 ANÁLISE CINEMÁTICA DE MECANISMOS 2.1. Fig 1 - Mecanismo com 2 graus de liberdade MEC - 98/99 ANÁLISE CINEMÁTICA DE MECANISMOS.1 Problema nº Fig 1 - Mecanismo com graus de liberdade No mecanismo representado na figura, a barra ABE está ligada por uma articulação plana à barra OA e através

Leia mais

Mecanismos e Dinâmicas de Máquinas MDM62

Mecanismos e Dinâmicas de Máquinas MDM62 Mecanismos e Dinâmicas de Máquinas MDM62 Curso Superior em Tecnologia Mecatrônica Industrial 6ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Professor Gleison Renan

Leia mais

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC

Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC I. Notação e revisão da matéria e x = x x (erro de x em relação a x) e x : erro absoluto de x δ x : erro relativo de x em

Leia mais

Álgebra Linear I - Aula 3. Roteiro

Álgebra Linear I - Aula 3. Roteiro Álgebra Linear I - Aula 3 1. Produto escalar. Ângulos. 2. Desigualdade triangular. Roteiro 1 Produto escalar Considere dois vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3. O produto escalar

Leia mais

Áreas de atuação da Biomecânica. Métodos de análise : quantitativo e qualitativo

Áreas de atuação da Biomecânica. Métodos de análise : quantitativo e qualitativo Aula 3: cinemática Relembrando... Áreas de atuação da Biomecânica Métodos de análise : quantitativo e qualitativo Modelos Biomecânicos Aula 3: cinemática Cinemática Análise 2D/ 3D Vetor Operações vetoriais

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

Aula 3 Introdução à Robótica Móvel Cinemática. Laboratório de Robótica Móvel LabRoM. Prof. Dr. Marcelo Becker - SEM EESC USP

Aula 3 Introdução à Robótica Móvel Cinemática. Laboratório de Robótica Móvel LabRoM. Prof. Dr. Marcelo Becker - SEM EESC USP Aula 3 Introdução à Robótica Móvel Cinemática Prof. Assoc. Marcelo Becker SEM - EESC - USP Laboratório de Robótica Móvel LabRoM Sumário da Aula Introdução Cinemática Manobrabilidade e Workspace Controle

Leia mais

3. Movimento curvilíneo

3. Movimento curvilíneo 3. Movimento curvilíneo As fortes acelerações sentidas numa montanha russa não são devidas apenas aos aumentos e diminuições de velocidade, mas são causadas também pelo movimento curvilíneo. A taxa de

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

FUNDAMENTOS DE ENERGIA ELÉCTRICA MÁQUINA SÍNCRONA

FUNDAMENTOS DE ENERGIA ELÉCTRICA MÁQUINA SÍNCRONA FUNDAMNTOS D NRGA LÉCTRCA Prof. José Sucena Paiva 1 GRUPO GRADOR D CCLO COMBNADO 330 MW Prof. José Sucena Paiva 2 GRADOR ÓLCO 2 MW Prof. José Sucena Paiva 3 GRADOR ÓLCO 2 MW (Detalhe) Prof. José Sucena

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 2.2 Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Matemática Computacional Ficha 1: Capítulo /19

Matemática Computacional Ficha 1: Capítulo /19 Matemática Computacional Ficha 1: Capítulo 1 2018/19 I. Notação e revisão da matéria e x = x x (erro de x em relação a x) e x : erro absoluto de x δ x : erro relativo de x em relação a x, onde, para x

Leia mais

Circuitos trifásicos

Circuitos trifásicos Circuitos trifásicos Conceitos gerais Giovanni Manassero Junior Depto. de Engenharia de Energia e Automação Elétricas Escola Politécnica da USP 22 de abril de 2014 EPUSP Giovanni Manassero Junior 1 Sistemas

Leia mais

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia)

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia) 8. Derivada da Função Composta (Regra da Cadeia) Regra da Cadeia (primeira notação): Se e são funções diferenciáveis e = é a função composta definida por )=), então é diferenciável e é dada por )=) = ).

Leia mais

Primeira avaliação - MAT MATEMÁTICA APLICADA II - Turma A

Primeira avaliação - MAT MATEMÁTICA APLICADA II - Turma A Primeira avaliação - MAT1168 - MATEMÁTICA APLICADA II - Turma A Nome: Cartao: Regras a observar: eja sucinto porém completo. Justifique todo procedimento usado. Use notação matemática consistente. Ao usar

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal.

Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Introdução ao Controle Automático de Aeronaves Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade

Leia mais

raio do hemisfério: a; intensidade do campo elétrico: E. (II) (III)

raio do hemisfério: a; intensidade do campo elétrico: E. (II) (III) Calcule o fluxo elétrico através de um hemisfério de raio a imerso num campo elétrico de intensidade E. Dados do problema raio do hemisfério: a; intensidade do campo elétrico: E. Solução O fluxo elétrico

Leia mais

Este referencial, apesar se complicado, tem a vantagem de estar ligado a um elemento físico com helicóptero. Helicópteros /

Este referencial, apesar se complicado, tem a vantagem de estar ligado a um elemento físico com helicóptero. Helicópteros / Eixos de referência do rotor Até agora utilizamos sempre os mesmos eixos: Z alinhado com o veio do rotor Y perpendicular com Z e ao longo da pá (no plano do rotor). X no plano do rotor e perpendicular

Leia mais

FIS-14 Lista-04 Setembro/2012

FIS-14 Lista-04 Setembro/2012 FIS-14 Lista-04 Setembro/2012 1. A posição de uma partícula é descrita por r = 300e 0,500t mm e θ = 0,300t 2 rad, onde t é dado em segundos. Determine as intensidades da velocidade e da aceleração da partícula

Leia mais

Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS

Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS isciplina de Mecânica Geral II CINEMÁTIC e INÂMIC de CORPOS RÍGIOS CINEMÁTIC é o estudo da geometria em movimento, utilizada para relacionar as grandezas de deslocamento, velocidade, aceleração e tempo.

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

Análise de circuitos em regime permanente sinusoidal

Análise de circuitos em regime permanente sinusoidal Análise de circuitos em regime permanente sinusoidal 3º ANO 2º SEM. 2005/ Prof. Dr. Ricardo Mendes Corrente Alternada Monofásica - noções fundamentais, amplitude e valor icaz, representação em notação

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II O Grupo I inclui quatro questões de escolha múltipla O Grupo

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Estabilidade de Voo, Eng. Aeroespacial 1 Ângulos de Euler 1.1 Referenciais Referenciais: fixo na Terra e do avião (Ox E y E z E ) : referencial «inercial», fixo na Terra;

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Departamento de Engenharia Mecânica Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira

Leia mais

DESENVOLVIMENTO E CONSTRUÇÃO DE UMA BANCADA DIDÁTICA PARA A SIMULAÇÃO DE MECANISMOS

DESENVOLVIMENTO E CONSTRUÇÃO DE UMA BANCADA DIDÁTICA PARA A SIMULAÇÃO DE MECANISMOS DESENVOLVIMENTO E CONSTRUÇÃO DE UMA BANCADA DIDÁTICA PARA A SIMULAÇÃO DE MECANISMOS Marcos Antônio da Silva Irmão Universidade Federa da Paraíba Av. Aprígio Veloso, 882, Bodocongó C.P. 58.109 970, Campina

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

Espectro da radiação electromagnética

Espectro da radiação electromagnética Espectro da radiação electromagnética Espectro da radiação electromagnética A Natureza da Luz Carácter corpuscular Isaac Newton (643-77) Carácter ondulatório Christiaan Huygens(69-695) Carácter corpuscular

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 9 Revisão - Incidência normal à superfície da interface (meio geral) Γ é o coeficiente

Leia mais

SEM 500 Estática Aplicada às Máquinas

SEM 500 Estática Aplicada às Máquinas Desligue o computador! Silencie o celular! The dark side is calling you! 1 Sumário sobre o curso: Datas das provas: P1 02/10/2018 (Terça-feira) P2 27/11/2018 (Terça-feira) P3 (extra) 04/12/2018 (Terça-feira)

Leia mais

Determine o módulo do campo elétrico de uma esfera condutora maciça carregada com uma carga Q em todo o espaço. carga da esfera: Q.

Determine o módulo do campo elétrico de uma esfera condutora maciça carregada com uma carga Q em todo o espaço. carga da esfera: Q. Determine o módulo do campo elétrico de uma esfera condutora maciça carregada com uma carga Q em todo o espaço. Dados do problema carga da esfera: Q. Esquema do problema Vamos assumir que a esfera está

Leia mais

Robótica Competitiva Controle de Movimento Cinemático

Robótica Competitiva Controle de Movimento Cinemático Robótica Competitiva Controle de Movimento Cinemático 2017 Introdução Modelo Controlador Lei de Controle Resultados Estabilidade Sumário Introdução Modelo Controlador Lei de Controle Resultados Estabilidade

Leia mais

CINEMÁTICA DE SISTEMAS MECÂNICOS COM ACELERAÇÃO DE CORIOLIS

CINEMÁTICA DE SISTEMAS MECÂNICOS COM ACELERAÇÃO DE CORIOLIS CINEMÁTICA DE SISTEMAS MECÂNICOS COM ACELERAÇÃO DE CORIOLIS Carlos Sergio Pivetta 1 carlos.pivetta@etep.edu.br Osvaldo Prado de Rezende 1 osvaldo.rezende@etep.edu.br Roberto Grechi 1 roberto.grechi@csa.edu.br

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-453 Cálculo Diferencial e Integral I (Escola Politécnica) Primeira Lista de Eercícios - Professor: Equipe de Professores.. Calcule, quando

Leia mais

MÁQUINAS DE ELEVAÇÃO E TRANSPORTE

MÁQUINAS DE ELEVAÇÃO E TRANSPORTE MÁQUINAS DE ELEVAÇÃO E TRANSPORTE AULA 9 MECANISMOS DE TRANSLAÇÃO PROF.: KAIO DUTRA Mecanismos de Translação Estes mecanismos são responsáveis pela locomoção do equipamento em trabalho, e podem ser classificados

Leia mais

PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP

PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP PMR-EPUSP 2D de Mecanismos 1 Problema de Determinação da Posição 2017v1 Um problema típico encontrado na análise de mecanismos é o seguinte. onsidere um mecanismo plano de 4 elos (barras) articulado por 4 juntas

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

ω r MECÂNICA II CINEMÁTICA DO CORPO RÍGIDO Licenciatura em Engenharia Civil Folha /2003 MOVIMENTO GERAL 2º Ano / 1º Semestre

ω r MECÂNICA II CINEMÁTICA DO CORPO RÍGIDO Licenciatura em Engenharia Civil Folha /2003 MOVIMENTO GERAL 2º Ano / 1º Semestre icenciatura em Engenharia ivil MEÂNI II 2º no / 1º Semestre Folha 2 2002/2003 INEMÁTI O ORPO RÍGIO MOVIMENTO GER 1. O sistema ilustrado é composto por uma placa de dimensões 0,20 x 0,40 m 2 soldada ao

Leia mais

Transformação da deformação

Transformação da deformação - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação da deformação

Leia mais

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada).

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada). APOIO À FICHA 7 MAGAIDA BAÍA, DM, IST (Alguns) Exemplos das aulas teóricas de 5-4-219 (revistos e com solução detalhada). 1. Calcule o volume de = {(x, y, z) 3 : x 2 + y 2 + z 2 16, z } esolução: Queremos

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-0 Cálculo Diferencial e Integral I (Instituto de Física Primeira Lista de Eercícios - Professor: Aleandre Lymberopoulos. Calcule, quando

Leia mais

Geometria Diferencial

Geometria Diferencial Geometria Diferencial Exercícios sobre curvas planas e espaciais - 2007 Versão compilada no dia 20 de Setembro de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br Matemática

Leia mais

Trigonometria esférica Adaptado de Prof. Boczko

Trigonometria esférica Adaptado de Prof. Boczko Trigonometria esférica 03 06 2013 daptado de Prof. oczko IG-USP írculo máximo írculo máximo Pequeno círculo Grandes e pequenos centro da seção circular não coincide com o centro da esfera círculos Pequeno

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/17 2/17 Momento de uma Força Quando uma força é aplicada a um corpo ela vai produzir uma tendência do corpo de girar em relação a um ponto que não está na linha de ação da força. Esta tendência de girar

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 (Método das imagens, escoamento em torno de um cilindro com circulação, transformação conforme) EXERCÍCIO 1 [Problema 6 das folhas do

Leia mais

FIS 26. Mecânica II. Aula 2: Corpo rígido - cinemática. Exercícios.

FIS 26. Mecânica II. Aula 2: Corpo rígido - cinemática. Exercícios. FIS 26 Mecânica II Aula 2: - cinemática. Exercícios. Movimentos do corpo rígido Translação: Rotação: trajetória de translação retilínea¹ rotação em torno de um eixo¹ trajetória de translação curvilínea¹.

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Exercícios de Trigonometria - atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses@matematica.uel.br

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4 O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é. Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

v C = 2.4 ft/s = 20 rad/s v A = 2.4 ft/s = 4 rad/s v C = 4 ft/s

v C = 2.4 ft/s = 20 rad/s v A = 2.4 ft/s = 4 rad/s v C = 4 ft/s 1. O rolete A move-se com velocidade contante v A = 3 m/s; determine a velocidade angular da barra AB e a velocidade do rolete B, v B. R.: = 4 rad/s v B = 5.2 m/s posição horizontal e esta gira no sentido

Leia mais

Exercícios desafiadores de Cinemática

Exercícios desafiadores de Cinemática Exercícios desaiadores de Cinemática Stevinus agosto 2009 1 Cinemâtica 1.1 Moysés, cap.2-10 Um trem com aceleração máxima a, e deceleração máxima (magnitude da aceleração de reiamento) tem de percorrer

Leia mais

Sistemas de Coordenadas e Equações de Movimento

Sistemas de Coordenadas e Equações de Movimento Introdução ao Controle Automático de Aeronaves Sistemas de Coordenadas e Equações de Movimento Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep.

Leia mais

FIS-14 Lista-01 Novembro/2017

FIS-14 Lista-01 Novembro/2017 FIS-14 Lista-01 Novembro/2017 1. A rotação do braço robótico ocorre em virtude do movimento linear dos cilindros hidráulicos A e B. Se esse movimento faz com que a engrenagem em D gire no sentido horário

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Potência em Sistemas Trifásicos 1 Potência em Carga Monofásica v t = V max cos (ωt)

Leia mais

POLARIZAÇÃO DE ONDAS ELETROMAGNÉTICAS

POLARIZAÇÃO DE ONDAS ELETROMAGNÉTICAS TE053-Ondas Eletromagnéticas POLARIZAÇÃO DE ONDAS ELETROMAGNÉTICAS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Representação Geral da Polarização

Leia mais