ABADÁ MILLENIUMCLASSE 1ª série
|
|
|
- Ivan Bento Henriques
- 7 Há anos
- Visualizações:
Transcrição
1 ABADÁ MILLENIUMCLASSE 1ª érie Matemática / Hitória / Filoofia 04. Na figura, calcular a medida : r 05. Qual a medida do ângulo, cuja metade do eu complemento é dada por o 37 38? 01. Doi do ângulo correpondente, formado por dua reta r e ditinta e interceptada pela tranveral t, ão dado pela medida 13 e , em grau. Determine o valor de, para que a reta r e ejam paralela. 06. O dobro da medida do complemento de um ângulo aumentado de 40 o é igual à medida do eu complemento. Qual a medida do ângulo? 07. Na figura abaio, tem-e e t//u: 0. Se, determine o valor do ângulo alfa. O 30 r O Na figura abaio determine o valore do ângulo, y e z a. 30 O 110 O y z t Se o ângulo ainalado têm a medida indicada em grau, então é igual a? 08. A medida em grau do ângulo A é igual ao triplo da medida de eu complemento. O ângulo A mede? 09. Conidere 5 emirreta, toda partindo do memo ponto P num certo plano, formando 5 ângulo adjacente que cobrem todo o plano, cuja medida ão proporcionai ao número, 3, 4, 5 e 6. Determine a diferença entre o maior e o menor ângulo. 10. Na figura abaio o ângulo, em grau é igual a? u v b. z 10 y O 11. Na figura abaio, a reta r e ão paralela. 40 O A medida do ângulo y, em grau é? Colégio - Rua T-53 Qd. 9 Lt. 10/11 nº Setor Bueno Goiânia-GO - Fone:
2 1. Na ilutração a eguir, ABCD é um quadrado, M e N ão o ponto médio e repectivo do lado AB e CD, e G e H pertencem à circunferência com centro em M e raio MN. 18. Da medida de um ângulo, tira-e a ua terça parte e em eguida a metade da medida do uplemento que retou, obtendo-e 60. A medida dee ângulo é igual a? 19. Na figura abaio, ABCD é um quadrado. BCE e EBF ão triângulo iócele de bae BE e BF, repectivamente. Sabendo-e que A, C e E etão alinhado e que A, B e F também etão alinhado, a medida do ângulo é? Qual a medida do ângulo GMN? 13. Na figura, BM é bietriz de Bˆ. O valor do ângulo y é? 14. Na figura abaio conidere No triângulo BDC o ângulo Dˆ é? Bˆ Ĉ Â 30º, e Na figura abaio, o comprimento do lado AB e BC do triângulo ABC ão iguai. O valor do ângulo na figura é? 1. Dado o conjunto A = {a} e B = {a, {A}}, determine B A. 15. Qual a oma,, do ângulo indicado no polígono etrelado, que etá ilutrado a eguir?. Supondo que: A B = {1,, 3, 4, 5, 6, 7, 8}. A B = {4, 5} e A B = {1,, 3}, determine o conjunto B. 3. Se A = {1}, B = {0, 1} e E = {0, 1, }, determine o valor de. 4. Sejam M, N e P conjunto. Se M N = {1,, 3, 5} e M P = {1, 3, 4}, determine M N P. 16. Na figura abaio, a reta r e ão paralela e AB = AC. O valor de é igual a? 5. Foi conultado um certo número de peoa obre a emiora de TV que habitualmente aitem. Obteve-e o reultado eguinte: 300 peoa aitem ao canal A, 70 aitem ao canal B, da quai 150 aitem ambo o canai A e B e 80 aitem outro canai ditinto de A e B. Determine o número de peoa conultada. 6. Dado o conjunto {a, b, c, d, e, f, g}, calcule o número máimo de ubconjunto ditinto dee conjunto. 17. O dobro da medida do complemento de um ângulo, aumentado de 40 é igual a medida do eu uplemento. Qual a medida dee ângulo? 7. Dado o conjunto A = {a, b, c}, B = {b, c, d} e C = {a, c, d, e}, determine o conjunto (A C) (C B) (A B C). Colégio - Rua T-53 Qd. 9 Lt. 10/11 nº Setor Bueno Goiânia-GO - Fone:
3 8. Sendo A = {1,, 3, 5, 7, 8} e B = {, 3, 7}, determine a diferença entre A e B (A B). 9. Se X e Y ão doi conjunto não vazio, determine (X Y) (X Y) e repreente no diagrama. 30. Na ecola do profeor Golia, ão praticada dua modalidade de eporte: o futebol e a natação. Eatamente 80% do aluno praticam futebol e 60%, natação. Se a ecola tem 300 aluno e todo aluno pratica pelo meno um eporte, calcule o número de aluno que praticam o doi eporte. 4. Calcule o valor da epreão 1,3. 0,49 y para = 0,7 43. Repreente o conjunto da parte do conjunto A = {- 1,,3,4}. 44. Determine o número de elemento do conjunto da parte de um conjunto com 8 elemento. 45. A partir de um conjunto A, temo um conjunto da parte com 3 elemento. Determine o número de elemento no conjunto A. 31. Com um conjunto de lápi, foi poível formar 56 ubconjunto. Quanto ão o lápi dee conjunto? 3. Conidere o conjunto A = {3,5}. Sabendo que B A = {3} e B A = {1,,3,4,5}, determine o conjunto B. 33. Foi conultado um certo número de peoa obre a emiora de TV que habitualmente aitem. Obteve-e o reultado eguinte: 300 peoa aitem ao canal A, 70 aitem ao canal B, da quai 150 aitem ambo o canai A B e 80 aitem outro canai ditinto de A e B. Calcule o número de peoa conultada. 34. Numa ecola há n aluno. Sabe-e que 56 aluno leem o jornal A, 1 leem o jornai A e B, 106 leem apena um do doi jornai e 66 não leem o jornal B. Calcule o valor de n. 35. Num grupo de etudante, 80% etudam Inglê, 40% etudam Francê e 10% não etudam nenhuma dea dua língua. Nee grupo, determine a porcentagem de aluno que etudam amba a língua. 36. Determine a epreão equivalente do conjunto (n 1) (n 1) A {, n N}. 37. Se o número reai e y ão tai que implifique y. 4 y 16, Se + y = 17 e y = 16, calcule o valor de ( + y) A epreão, para 1, -, ² 3 ² 1 poui uma epreão equivalente. Determine ea epreão. 40. Se ( y) ( + y) = - 0, determine o valor de. y. 41. Determine o número real y na forma fatorada Eplique a importância do evento que marca o inicio da hitoria. 47. Evidencie a importância da capacidade do hominídeo em produzir material etracorpóreo. 48. De que forma a cultura pode influenciar na contrução da vião hitórica? 49. Diferencie o conceito de mitologia e hitória. 50. Que fatore foram preponderante para que a periodização da hitória dentro da vião Ocidental, tivee influência também no mundo oriental? 51. com argumento ólido, eplique a afirmação: "A Idade Moderna conolidou a hegemonia do itema capitalita!" 5. Eplique o ignificado da epreão " Antigo Regime". 53. Eplique o ignificado de Mai-valia". 54. Eplique o ignificado de Etrutura e Conjuntura. 55. Que elemento preciam etar preente para que uma revolta eja coniderada "revolução"? 56. Caracterize o hominídeo no período paleolítico no que tange a ua organização ociocultural. 57. Eplique a importância da decoberta do fogo para noo ancetrai hominídeo. Colégio - Rua T-53 Qd. 9 Lt. 10/11 nº Setor Bueno Goiânia-GO - Fone:
4 58. Eplique o ignificado de "neolítico". 59. O que podemo elencar como mudança importante no período neolítico? 60. Etabeleça a relação entre a Revolução neolítica e a Revolução urbana. 61. Eplique a origem do governo teocrático. Como urgiu o primeiro aparato repreor ob o controle da elite acerdotal? 6. Quai foram o primeiro metai manueado pelo homem? 63. Podemo afirmar que o homem veio do macaco? Jutifique! 64. como eplicar o primeiro traço de religioidade em noo ancetrai, a partir da analie do fenômeno fíico da natureza? 65. Como urgem a primeira forma de etratificação ocial entre o ere humano? 74. Apreente a concepção de arkhé do filóofo Pitágora. 75. Eplique o que fez de Tale de Mileto o primeiro reconhecido filóofo. 76. Eplique o ignificado de ápeiron, princípio e origem de tudo. 77. Apreente a concepção de átomo de Demócrito de Abdera. 78. Segundo Empédocle, como a coia fíica urgiam? 79. Apreente a concepção de arkhé, egundo a filoofia de Anaímene. 80. Eplique o entido da eguinte afirmação de Heráclito de Éfeo: o er é e não é. 81. Aponte a frae de Parmênide que contraria a frae de Heráclito egundo a qual o er é e não é. 8. Ecolha uma múica braileira que epree bem o mobilimo de Heráclito. 83. Apreente a concepção de er de Parmênide. 84. Segundo ua opinião qual filoofia é mai adequada para eplicar a realidade humana, a de Heráclito ou a de Parmênide? Jutifique ua repota. 66. Eplique o que é mito. 85. Apreente o ignificado de poli, ágora e de phyi. 67. Apreente a condiçõe e fatore que favoreceram o nacimento da filoofia. 68. Eplique o entido da palavra filoofia, utilizada pela primeira vez por Pitágora. 69. Defina comogonia. 70. Defina comologia. 71. A filoofia urgiu, na Grécia, rompendo completamente com o mito ou foi uma tranição de penamento que aproveitou alguma coia da etrutura do próprio mito para afirmar-e como filoofia? Jutifique. 7. Aponte qual era o objeto de invetigação do primeiro filóofo, o pré-ocrático. 73. Eplique o entido de arkhé. Colégio - Rua T-53 Qd. 9 Lt. 10/11 nº Setor Bueno Goiânia-GO - Fone:
5 RASCUNHO Colégio - Rua T-53 Qd. 9 Lt. 10/11 nº Setor Bueno Goiânia-GO - Fone:
6 Colégio - Rua T-53 Qd. 9 Lt. 10/11 nº Setor Bueno Goiânia-GO - Fone:
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Rose Mary, Weslei e Wuledson
Caro(a) aluno(a), O momento de revião deve er vito como oportunidade de recontruir conhecimento neceário à continuação do proceo de aprendizagem. Naturalmente a realização dea atividade eigirá de você
Miloje / Shutterstock. Matemática B. CP_18_GAIA_MB1.indd 1 12/01/ :44
Miloje / Shuttertock Matemática _18_GI_M1.indd 1 1/01/018 14:44 Matemática aula 1 é ietriz de Ô Ô Ô Soma de ângulo adjacente Quanto ao valor, a oma de doi ângulo adjacente pode er claificada em trê categoria:
Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados durante o bimestre:
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Profeore: Diego, Deny e Yuri Nota: (Valor 1,0) 2º Bimetre Apreentação: Prezado aluno, A etrutura da recuperação bimetral paralela do Colégio
Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares.
Reolução da atividade complementare Matemática M9 Geometria nalítica: Ponto e Reta p. 08 (MK-SP) Identifique a entença fala: a) O ponto (0, ) pertence ao eio. b) O ponto (4, 0) pertence ao eio. c) O ponto
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido.
FÍSICA º ANO I- ETOES - GANDEZA ESCALA E ETOIAL a) G Ecalar: é aquela que fica perfeitamente definida quando conhecemo o eu valor numérico e a ua unidade de medida Ex: maa, tempo, comprimento, energia,
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Profeore: Diego, Rafael, Marcello, Yuri, Cauê Nota: (Valor 1,0) 1º Bimetre 1. Apreentação: Prezado aluno, A etrutura da recuperação bimetral
1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.
1 A AVALIAÇÃO UNIDADE I -015 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 1. (UNIT-014) No triângulo ABC, Â = 80, Ĉ 40 e BP é a bissetriz
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729
08. Determine o valor de 8 + 14 + 6 + 4. (R. ) 01. O valor da expressão LISTA 1 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio - 017 1 + 1 + 1 1 a) b) c) 0 d) 4 e) 4 (Alternativa E) 0. A expressão com
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF
p q ~p ~q p q p ~ q p q ~ p q ~ p ~q F F V V F V V V F
PROVA DE MATEMÁTICA ª ÉRIE E.M. _COLÉGIO ANCHIETA BA Elaboração: PROF. OCTAMAR MARQQUE. Resolução e comentários: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. 01. upondo a, b, c, d R, qual das proposições a
Colégio Santa Dorotéia Área de Ciências da Natureza Disciplina: Física Ano: 1º - Ensino Médio Professor: Newton Barroso
Área de Ciência da Natureza Diciplina: Ano: º - Enino Médio Profeor: Newton Barroo Atividade para Etudo Autônomo Data: 5 / 6 / 09 ASSUNTO: MCU (CAP. 9) Aluno(a): N o : Turma: ) (UFU 08) Auma que a dimenõe
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
INSTRUÇÕES AOS CANDIDATOS
MINITÉRIO DA DEFEA EXÉRCITO BRAILEIRO DEP - DEPA (Casa de Thomaz Coelho / 1889) CONCURO DE ADMIÃO AO 1 o ANO DO ENINO MÉDIO 008/009 18 DE OUTUBRO DE 008 APROVO DIRETOR DE ENINO COMIÃO DE ORGANIZAÇÃO PREIDENTE
Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR
Geometia plana PRFOR Faze: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. 1. Calcule o valo de e obevando a figua abaio: a) b) 3 15º 60º 5 15º 4 + 5º 2. Calcule a medida de na eguinte figua: a) b) 3 5º 3 + 20º +
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete
Lista Recuperação Paralela II Unidade Parte I - Trigonometria
Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Medidas de Dispersão
Univeridade Cruzeiro do Sul Campu Virtual Unidade I: Unidade: Medida de Diperão 010 0 A medida de variação ou diperão avaliam a diperão ou a variabilidade da equência numérica em análie. São medida que
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO
Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,
Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria
Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número
LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL
LISTA DE REVISÃO DE GEOMETRIA ºANO PROF. JADIEL 1. (Eear) Sejam A(, ), B(, 1), C(5, ) e D( 1, ) vértices de um quadrilátero conveo. A medida de uma de suas diagonais é a) 15 b) 1 c) 1 d) 10. (Upe-ssa )
LISTA DE EXERCÍCIOS 01
MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo
Professoras: Lisiane e Suziene. Lista de Conteúdos e Exercícios Preparatórios para Exame Final 2018
Componente Cuicula: Matemática Ano: 8º Tuma: 18 A, 18B, 18C e 18D Pofeoa: Liiane e Suziene Lita de Conteúdo e Eecício Pepaatóio paa Eame Final 018 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica
O que é triângulo (*)
Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) Considere três pontos A, B e C não colineares. Chama-se triângulo à figura geométrica
Conteúdos Exame Final e Avaliação Especial 2016
Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe
Revisão de Alguns Conceitos Básicos da Física Experimental
Revião de Algun Conceito Báico da Fíica Experimental Marcelo Gameiro Munhoz [email protected] Lab. Pelletron, ala 245, r. 6940 O que é uma medida? Medir ignifica quantificar uma grandeza com relação a algum
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169
MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ
Probabilidade e Estatística
Probabilidade e Etatítica Material teórico Medida de Diperão ou Variação Reponável pelo Conteúdo: Profª M. Roangela Maura C. Bonici MEDIDAS DE DISPERSÃO OU VARIAÇÃO Introdução ao Conteúdo Cálculo da
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos
02 O resto da divisão por 11 do resultado da expressão
0 Num colégio verificou-se que 0não alunos têm pai e mãe professores. Qual o número de alunos do colégio, sabendo-se que 55 alunos possuem pelo menos um dos pais professor e que não eistem alunos irmão?
Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas.
Ecola Báic a 2º º e 3º º Ciclo Tema 1 Viver com o outro Tema Conteúdo Competência Actividade Tema 1 Viver com o outro Valore Direito e Devere Noção de valor O valore como referenciai para a acção: - o
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta
Módulo III Movimento Uniforme (MU)
Módulo III Moimento Uniforme (MU) Em moimento retilíneo ou curilíneo em que a elocidade ecalar é mantida contante, diz-e que o móel etá em moimento uniforme. Nete cao, a elocidade ecalar intantânea erá
Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS
1 SOLO CONCEITOS BÁSICOS O olo, ob o ponto de vita da Engenharia, é um conjunto de partícula ólida com vazio ou poro entre ela. Ete vazio podem etar preenchido com água, ar ou ambo. Aim o olo é : - eco
2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços
2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento
05. Um retângulo ABCD está dividido em quatro retângulos menores. As áreas de três deles estão na figura abaixo. Qual é a área do retângulo ABCD?
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 1 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras
Considere as seguintes expressões que foram mostradas anteriormente:
Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe
Matemática Professor Diego. Tarefas 09 e 10
Matemática Professor Diego Tarefas 09 e 10 01. (UFMA/2003) Na figura abaixo, A, B, C e D são quadrados. O perímetro do quadrado A vale 16 m e o perímetro o quadrado B vale 24 m. Calcule o perímetro do
Aula 20. Efeito Doppler
Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento
Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (3Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)
Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (3Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(PUC_MG) Fatorar: (x + y) 2 - (x - y) 2 2-)De acordo com as identidades
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
Computação Gráfica. Ponto, Linha, Vetor e Matriz
Computação Gráfica Ponto, Linha, Vetor e Matriz Prof. Rodrigo Rocha [email protected] Onde Etamo... Introdução a Computação Gráfica; Repreentação de Imagen: vetorial e matricial; Dipoitivo de entrada
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: [email protected]
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): N
esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.
ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de
ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS
1 MATEMÁTICA III º ANO ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS 1. Após assistir ao programa Ecoprático, da TV Cultura, em que foi abordado o tema do aproveitamento da iluminação e da ventilação
CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média
CAPÍTULO 4 Movimento Variado Introdução O movimento do corpo no dia-a-dia ão muito mai variado do que propriamente uniforme, até porque, para entrar em movimento uniforme, um corpo que etava em repouo,
A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1
MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z
Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:
TC E MTEMÁTIC 7 a SÉRIE OLÍMPIC ENSINO FUNMENTL CLICK PROFESSOR Professor: Júnior LUNO(): Nº TURM: TURNO: T: / / COLÉGIO: 1. Faça o que se pede: I. Uma tira de papel retangular é dobrada ao longo da linha
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
ELABORAÇÃO: PROF. OCTAMAR MARQUES. RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÕES DE 01 A 08.
RESOLUÇÃO DA 1 a AVALIAÇÃO DE MATEMÁTICA _ U I _ANO 007 a SÉRIE DO EM _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF OCTAMAR MARQUES RESOLUÇÃO: PROFA MARIA ANTÔNIA GOUVEIA QUESTÕES DE 01 A 08 Nas questões de 01
METODOLOGIA & Hábito de estudos AULA DADA AULA ESTUDADA
Enino Fundamental METODOLOGIA & Hábito de etudo AULA DADA AULA ESTUDADA Preciao e organizacao no conceito A agitação é a mema. Com alguma adaptaçõe ao epaço e ao tempo, a rotina e a hitória quae que e
Colégio Santa Dorotéia
Área de Disciplina: Ano: º Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 019 Valor: xx,x pontos Aluno(a): Nº: Turma: QUEST 1 (UFG) Observe a figura: Nessa figura, o segmento
Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase
Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a
Redação para a UFRGS: Tipo de Texto, Abordagem da Proposta e do Tema, Desenvolvimento e Domínio da Escrita
Redação para a UFRGS: Tipo de Texto, Abordagem da Propota e do Tema, Deenvolvimento e Domínio da Ecrita A redação para a UFRGS: Tipo de Texto, Abordagem da Propota e do Tema, Deenvolvimento e Domínio da
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa.
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 005 / 06) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa.) QUESTÃO 01. Os números a, b, c são inteiros positivos tais que a
SINTAXE E SEMÂNTICA NA REFORMULAÇÃO DE ALGUMAS PRESCRIÇÕES GRAMATICAIS
565 SINTAXE E SEMÂNTICA NA REFORMULAÇÃO DE ALGUMAS PRESCRIÇÕES GRAMATICAIS THE SYNTAX AND THE SEMANTICS IN THE REFORMULATION OF SOME GRAMMATICAL PRESCRIPTION 1 RESUMO: A preente reflexão tem por objetivo
LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre
LINHAS PROPORCIONAIS Geometria Plana PROF. HERCULES SARTI Mestre Exemplo 4: apostila Determine o perímetro do quadrilátero ABCD, circunscritível, da figura. Resolução: Exemplo 4: apostila Determine o perímetro
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXI Olimpíada Braileira de Matemática GBRITO Segunda Fae Soluçõe Nível Segunda Fae Parte PRTE Na parte erão atribuído ponto para cada repota correta e a pontuação máxima para ea parte erá 0 NENHUM PONTO
Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.
Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei
Áea de Diciplina: Ano: 8º - Enino Fundamental Pofeoe: Macu e Welei Atividade paa Etudo Autônomo Data: 0 / 5 / 09 Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento
MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15
Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos
MOVIMENTOS VERTICAIS NO VÁCUO
Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando
METODOLOGIA & Hábito de estudos AULA DADA AULA ESTUDADA
Educação Infantil METODOLOGIA & Hábito de etudo AULA DADA AULA ESTUDADA Preciao e organizacao no conceito A agitação é a mema. Com alguma adaptaçõe ao epaço e ao tempo, a rotina e a hitória quae que e
MATEMÁTICA E 1. no qual (A B C ) está sombreado. cobra R$ 3,00 por quilômetro rodado e não cobra bandeirada. O gráfico que representa as duas A)
MATEMÁTICA 16) As figuras abaixo representam diagramas de 17) Em uma determinada localidade, a empresa Venn de dois conjuntos arbitrários A e B. Assinale de táxi cobra,00 a bandeirada e mais a alternativa
& ( $ + & ( U V $ QUESTÃO 01.
Resolução da prova de Matemática do º Vestibular Simulado de 004 _ Colégio Anchieta-BA Elaboração; prof. Octamar Marques. Resolução e comentário: profa. Maria Antônia Gouveia. QUESTÃO 0. & ( 0 4 U V $
MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à201
MATEMÁTICA LIVRO 1 Capítulo 5 Teorema de Pitágoras Relações Métricas nos Triângulos Páginas: 190 à201 Teorema de Pitágoras: II b² b III IV a c c² II a² I I IV III "A área do quadrado formado com o lado
2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDES DELGADAS.
2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO BERT E PREDES DELGDS. Nete capítulo ão apreentado, de forma concia, com bae no trabalho de Mori e Munaiar Neto (2009), algun conceito báico neceário ao entendimento do
1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2
UFF - Universidade Federal Fluminense Instituto de Matemática GGM - Departamento de Geometria Professora: Andréa 2 o semestre de 2018 Atividades IV de Geometria I 1. Com base nos dados da Figua 1, qual
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA
11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
Encontro 6: Áreas e perímetros - resolução de exercícios
Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas
