Solid modeling em C.G. aula /2 IC / UFF
|
|
|
- Linda Ribeiro Ramalho
- 8 Há anos
- Visualizações:
Transcrição
1 Solid modeling em C.G. aula /2 IC / UFF
2 que é um sólido. é considerado um sólido se tem uma forma própria. A modelagem de líquidos, gazes, materiais flexíveis ou de coisas que não tenham forma própria (roupas, tecidos, plásticos, gel e outros) é também necessária e representável em computação gráfica. Mas não é assunto da Modelagem de Sólidos
3 sólido é algo essencialmente tridimensional (3D). Definição: Um sólido é um subconjunto fechado e limitado do espaço Euclidiano tridimensional: E 3 sólido é um elemento da geometria Euclidiana, geometria formulada pelo matemático grego Euclides, que viveu na Alexandria no século III A.C.,
4 Há outras geometrias? Sim, muitas, por exemplo A geometria não-euclidianas desenvolvidas por Lobatchevski (Nicolai Ivanovitch Lobachevski, matemático russo: ) e Riemann (Georg Friedrich Bernhard Riemann, matemático alemão: ).
5 Fechado? Limitado? um sólido é fechado => tem todos os seus pontos de contorno, tem um interior e exterior. Limitado está associado à idéia de não ser Infinito no sentido de realmente não ter fim, e não apenas de ser muito grande. SÓLIDOS
6 Modelos realizáveis e não realizáveis A garrafa de Klein é um exemplo de uma as estruturas não orientáveis como a faixa de Möbius. São exemplos de sólidos não realizável. Operadores de Euler = grupo pequeno de operações (e suas inversas) que permitam a modificação dos modelos B-Rep, seguras o bastante para não produzirem modelos não orientáveis ou não realizáveis.
7
8 Maurits Cornelis Escher ( ) artsta grc conhecido por desenhos que tendem a representar construções impossíveis queda d'água de Escher.
9 o número dos furos que trespassam o sólido é denominado de genus, G.
10 Formula ou lei de Euler: (pronuncia-se "Óiler" iler") O grande matemático Leonhard Euler foi, para todos os efeitos, quem inaugurou um ramo da matemática chamado topologia. Nasceu na suíça em abril de 1707, produziu suas maiores obras quando já estava idoso e cego. Em um objeto tridimensional vamos chamar o número de faces de F, o número de arestas de E e o número de vértices de V. Euler provou que por mais que o objeto se transforme é sempre constante o que hoje chamamos de número de Euler definido assim: 2 = F - E + V Para a maioria dos sólidos.
11 E = (edges) arestas
12 faces não planas A fórmula de Euler é aplicável mesmo a objetos que não tenham faces planas como o cilindro mostrado. Neste caso, o conceito de faces deve ser estendido para considerar toda as superfícies; as arestas devem ser entendidas como os limites entre as faces e os vértices definidos pelos limites das arestas. Assim, um cilindro pode ser considerado formado por: dois vértices, três arestas e três faces. Uma esfera pode ser entendida a partir de um caso limite do cilindro, quando as faces planas e as arestas que as limitavam desaparecem e a aresta antes reta, vai se deformando até formar uma semi circunferência limitada pelos dois vértices, de modo que a figura passa a ser formada por uma única face, só uma aresta e dois vértices.
13 Leonhard Euler Fórmula ou lei de Euler: V-E+F=2 V=E=1 F=2 V=E=4 F=2 E V=E=8 F=2 V=2 E=3 F=3 ( ) 1783) V=E=6 F=2
14 NÚMERO DE EULER N E = V E + F Imagine que o cubo é feito de massa de moldar. Com jeito, é possível transformá-lo em uma esfera, uma pirâmide ou uma batata doida sem rasgar nem cortar nada. Isso só é possível com objetos topologicamente iguais. O cubo tem 6 faces, 12 arestas e 8 vértices. Portanto, o número de Euler do cubo é: N E (cubo) = = 2.
15 O teorema de Euler diz que: o número n de Euler é constante para uma superfície qualquer. Isso quer dizer o seguinte: suponha que você divide cada face do cubo em 4 partes, traçando 2 segmentos de reta perpendiculares entre si Agora, pontos como (A) ou (B) serão considerados novos vértices, linhas como (AB) serão novas arestas e áreas como (ABCD), novas faces. Pois conte os novos números de faces, arestas e vértice. Você obterá: F = 24, E = 48 e V = 26. E, terá: N E = F - E + V = = 2!!! Inalterado
16 O resultado é o mesmo de antes. Pois acredite: mesmo se você desenhar linhas malucas sobre o cubo, criando uma porção de novas arestas, vértices e faces, obterá sempre o mesmo número de Euler: 2. Você pode constatar que o número de Euler continuará o mesmo até quando o cubo for deformado como mostra a figura. E a deformação pode ser tal que o cubo acabe virando uma esfera ou mesmo uma batata toda cheia de calombos, ou até um pão árabe. Tecnicamente, diz-se que o cubo, a esfera e a batata são todas superfícies topologicamente idênticas. Todas têm o mesmo número de Euler: 2.
17 Imagine que o cubo é feito de massa de moldar, que as crianças as brincam. A coisa muda se o objeto tiver um furo. Com jeito, é possível transformá-lo em uma esfera, uma pirâmide ou uma batata sem rasgar nem cortar nada. Isso sós é possível com objetos topologicamente iguais. O objeto furado mais amado pelos matemáticos é o toro, uma coisa com forma de rosquinha ou de biscoito globo. Se a gente fizer sobre a superfície do toro o mesmo que fizemos sobre a superfície do cubo (traçando linhas que formam faces, arestas e vértices) e depois fizermos as contas, acharemos um número de Euler nulo! N E (toro) =0
18 O toro, e qualquer superfície com um furo, é topologicamente diferente do cubo e da esfera. Isto é: Não dá para transformar uma esfera de massa em um toro sem cortar ou rasgar alguma coisa.
19 Topologicamente equivalentes: Rubber sheet deformation Massinha de modelar
20 Topologicamente equivalentes: Rubber sheet deformation Massinha de modelar Genus 0 Genus 1 Op. Topológicas Locais Genus 2 Genus 3 Op. Topologicas Globais = mudam o genus. Como a soma de dois torus
21 Se o objeto tem componentes múltiplos m S ou C 1, G (genus( genus) é a soma dos Gs de cada objeto Jules Henri Poincaré ( ). considered to be one of the founders of the field of Topologia
22 Quando a superfície tem buracos a expressão para o número de Euler fica sendo: N E = F - E + V H = 2 ( C G ),) sendo H - o número n de buracos superfície ou faces C- o número n de partes separadas G - o número n de furos trespassantes. E é chamado de Euler/Poincaré Para esfera ou um cubo, G = 0, logo, N E = 2. Para o toro, G = 1, logo, N E = 0. Com mais de um buraco, o número de Euler fica negativo.
23
24 Definição: Um manifold é um espaço topológico que é localmente Euclidiano ( R 2, d E ) (i.e., em torno de todo ponto tem uma vizinhança que é topologicamente equivalente a uma bola aberta).
25 2-manifold = Sólidos S cujos limites seja topologicamanete equivalentes a um disco Limitações da maioria dos modeladores baseado em Limites (que é o que ocorrem em modelos físicos reais e não abstrações matemáticas) = variedades de dimensão 2" Sólido com superfícies non manifold
26 Superfícies non manifold x 2 manifold Ou seja se você for modelar uma folha, ela tem 2 faces, 4 vértices e 4 arestas.
27
28 Exemplo de Operações Topologicas Locais As propriedades topológicas de um modelo não são alteradas por dividir uma face em duas adicionando um lado, ou por colar duas faces em um lado comum. Se vértices ou lados forem subdivididos ou unidos. V=E=4 F=2 V=5 E=7 F=4 V=4 E=6 F=4
29 FORMAS DE REPRESENTAÇÃO Representação Aramada (Wire Frame) representação ambígua com margem para várias interpretações; dificuldade de realizar certas operações como a determinação de massa ou volume. e não tem como garantir que o objeto desenhado seja um sólido válido,
30 Representação por Faces (ou Superfícies Limitantes) Essas superfícies são supostas fechadas e orientáveis. Orientáveis = significa que é possível distinguir entre dois lados da superfície, de modo que um esteja no interior e o outro no exterior do sólido.
31 Formula ou lei de Euler-Poincar Poincaré: V-A+F-H=2(C-G) H= loops de faces fechadas; C= numero de partes separadas do objeto G= numero de buracos (genus( genus)
32 Descrição da: topologia e a geometria das faces. relações entre os elementos posições dos elementos no espaço, e sua forma geométrica (semi-reta, arco de círculoetc )
33 Geometria x topologia
34 Representação dos limites do sólidos Boundary Representation Brep É a forma mais usada Muito vezes confundida com a modelagem de superfícies, mas agora toda a topologia é considerada para garantir que o objeto seja realizável e continue realizável após as operações que serão realizadas nele. Agora a topologia deve ser validada não só a geometria gerada (Equação de Euler)
35 estrutura de dados do objeto.
36 Estrutura de dados baseada em VérticeV os vértices limites das faces devem ser descritos sempre no mesmo sentido horário (ou anti-horário) do exterior do objeto, para todas as faces.
37 Estrutura de Dados Baseada em Arestas ou lados Na estrutura de dados baseada em arestas além das listas de coordenadas de vértices e definição das faces, tem-se uma lista que identifica cada aresta e seus vértices limitantes.
38
39 Baseada em lados (edges( edges) Lados são considerados orientados. Cada lado pertence a duas faces. Faces são consideradas orientadas, positivas se sua lista de lados apontar para fora se for no sentido horário
40 use essas estruturas de dados para desenhar a superfície do seu trabalho 2 Só as coordenadas dos vértices são transformadas e projetadas para transformar os objetos. Esses são redesenhados a partir do desenho das diversas arestas das diversas faces
41 Sweep representation
42 Bibliografia: M.A. Mortenson. Geometric modeling, Wiley, 1985 E. Azevedo, A. Conci, Computação Gráfica: teoria e prática, Campus ; - Rio de Janeiro, 2003 J.D.Foley,A.van Dam,S.K.Feiner,J.F.Hughes. Computer Graphics- Principles and Practice, Addison-Wesley, Reading, M. Mäntylä, An introduction to solid modeling,cs Press, 1988.
REPRESENTAÇÃO DE DADOS EM CG
http://computacaografica.ic.uff.br/conteudocap4.html REPRESENTAÇÃO DE DADOS EM CG Cap 4 MODELAGEM E ESTRUTURA DE DADOS Aula 3 UFF - 2017 REPRESENTAÇÃO DE DADOS Um objeto pode ser representado de forma
Computação Gráfica II
Computação Gráfica II Representação de Objetos Prof. Rodrigo Rocha [email protected] http://www.bolinhabolinha.com Pipeline de visualização 3D 1 Representação dos objetos Aramada (Wire frame)
Projeções. Cap 2 (do livro texto) Aula 6 UFF
Projeções Cap 2 (do livro texto) Aula 6 UFF - 2014 Projeções PLANAS: Classificação BÁSICA: B Características: Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente
Aula9 e 10. Projeções Planas. Como representar objetos 3D em dispositivos 2D? 2019/1 IC / UFF. Paginas 91 a 101 livro texto de computacao grafica
Aula9 e 10 Como representar objetos 3D em dispositivos 2D? Projeções Planas 2019/1 IC / UFF P p O Paginas 91 a 101 livro texto de computacao grafica Como desenhar o mundo 3D no planos? Fazendo as projeções
Realismo Visual. Aula 11 UFF
Realismo Visual Aula 11 UFF - 2018 Objetivos Melhorar o entendimento das cenas e objetos criados Possibilidade de representação de dados, objetos e cenas complexas Realismo até o nível desejado da forma
Aula 8 Reconhecimento de Padroes : parte 2.
Aula 8 Reconhecimento de Padroes : parte 2. Análise de Imagens - 2015 Aura Conci Etapas de um sistema de reconhecimento de padrões. Padrão como generalização de um Pixel, Voxel ou Região Vizinhança do
2 Conceitos básicos de topologia
2 Conceitos básicos de topologia Neste Capítulo são introduzidos alguns conceitos básicos de topologia combinatória e da Teoria das Alças que formam a base teórica do presente trabalho. 2.1 Topologia combinatória
Modelação de Sólidos. Sistemas Gráficos/ Computação Gráfica e Interfaces FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Modelação de Sólidos Sistemas Gráficos/ Computação Gráfica e Interfaces 1 Modelação de Sólidos Em 2D um conjunto de segmentos de recta ou curvas não formam necessariamente uma área fechada. Em 3D uma colecção
Introdução à Computação Gráfica Modelagem. Claudio Esperança Paulo Roma Cavalcanti
Introdução à Computação Gráfica Modelagem Claudio Esperança Paulo Roma Cavalcanti Histórico Modelagem por arames (wireframes). Representa os objetos por arestas e pontos sobre a sua superfície. Gera modelos
Modelagem Geométrica: Boundary Representation
Modelagem Geométrica: Boundary Representation Prof. Dr. André Tavares da Silva Gabriel Caixeta Silva [email protected] Prof. Dr. Marcelo da Silva Hounsell PPGCA UDESC 2017/01 Introdução Modelagem
Modelação de Sólidos. Sistemas Gráficos/ Computação Gráfica e Interfaces FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Modelação de Sólidos Sistemas Gráficos/ Computação Gráfica e Interfaces 1 Modelação de Sólidos Em 2D um conjunto de segmentos de recta ou curvas não formam necessariamente uma área fechada. Em 3D uma colecção
Transformações Geométricas em C.G.
Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana
Geometria Computacional
GeoComp 2014 p. 1/29 Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2014 GeoComp 2014 p. 2/29 Poliedros
Histórico. Estado da Arte. Histórico. Modelagem de Objetos. Modelagem por arames (wireframes). Modelagem por superfícies (década de 60).
Histórico Modelagem de Objetos Renato Ferreira Modelagem por arames (wireframes). Representa os objetos por arestas e pontos sobre a sua superfície. Gera modelos ambíguos. Modelagem por superfícies (década
Processamento de Malhas Poligonais
Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Definições preliminares 06/09/2015
GEOMETRIA. Tales, Pitágoras, Euclides, Euler e Carl Fiedrich Gauss são alguns dos gênios que desenvolveram o estudo do espaço e das formas geométricas
GEOMETRIA Conheça a história da evolução da geometria e de seus estudiosos Tales, Pitágoras, Euclides, Euler e Carl Fiedrich Gauss são alguns dos gênios que desenvolveram o estudo do espaço e das formas
Plano de Trabalho 2. Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
Topologia de Superfícies
Topologia de Superfícies Eduardo Colli As superfícies Essas peças que lembram objetos artísticos ou de artesanato 1 representam uma das mais belas áreas da matemática, a Topologia Algébrica. Nessa teoria,
Representação de Objectos. & Estruturas de Dados. ! Os modelos são cada vez mais complexos
Representação de Objectos & Estruturas de Dados Computação Gráfica Representação de Objectos! Os modelos são cada vez mais complexos! Aumento do número de ferramentas de modelação (ex: CAD, Maya, Blender,
aula9 Coordenadas homogêneas e projeções 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula9 P p O Coordenadas homogêneas e projeções 2016/2 IC / UFF 2D TODAS AS Transformações Lineares Bidimensionais São representadas por matrizes 2 x
Modelagem Geométrica. André Tavares da Silva. Mortenson 2006: Cap11.2 e 11.6 Foley
Modelagem Geométrica André Tavares da Silva [email protected] Mortenson 2006: Cap11.2 e 11.6 Foley 1996 12.5 Boundary Representation (B-rep) Representação por Superfícies Limítrofes Representação por
UTILIZANDO O GEOGEBRA PARA CONSTRUÇÃO DE MODELOS PLANOS PARA A GEOMETRIA HIPERBÓLICA
UTILIZANDO O GEOGEBRA PARA CONSTRUÇÃO DE MODELOS PLANOS PARA A GEOMETRIA HIPERBÓLICA Karla Aparecida Lovis Valdeni Soliani Franco [email protected] [email protected] Universidade Estadual de Maringá -
10 11 Escola Municipal Francis Hime SÓLIDOS GEOMÉTRICOS 6º ANO Nome: 1601 Geometria: Uma ciência de muitos povos A geometria, assim como as ciências, nasceu das necessidades e das observações do homem.
Prof. Márcio Nascimento. 1 de abril de 2015
Geometria dos Sólidos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria
O TEOREMA DE GAUSS-BONNET
O TEOREMA DE GAUSS-BONNET JOSÉ NATÁRIO 1. Introdução Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição do espaço é identificada com outra
Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto
Prof. MSc. André Yoshimi Kusumoto [email protected] Prof. MSc. André Yoshimi Kusumoto Email: [email protected] Site: http://www.kusumoto.com.br CARGA HORÁRIA SEMANAL: 02 horas-aula
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas
DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008
DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4
ESPAÇO, MATÉRIA E TEMPO
ESPAÇO, MATÉRIA E TEMPO O Livro dos Espíritos 82. Será certo dizer-se que os Espíritos são imateriais? Como se pode definir uma coisa, quando faltam termos de comparação e com uma linguagem deficiente?
Computação Gráfica - 09
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos
Desenho Técnico e CAD Geometria Plana Desenho Geométrico. Geometria Plana Desenho Geométrico. Geometria Plana Desenho Geométrico
Desenho Técnico e CAD Prof. Luiz Antonio do Nascimento Engenharia Ambiental 3º Semestre Geometria: é a parte da Matemática que estuda o espaço e as figuras que o ocupam. Pode ser dividida em: : as figuras
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Computação Gráfica - 09
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos
1 Complexo Simplicial, Homologia Simplicial, Etc.
Topologia Algébrica I Lista de Exercícios 1 1 Complexo Simplicial, Homologia Simplicial, Etc. 1. Exiba uma triangulação, calcule a homologia e o número de Euler em cada um dos seguintes espaços: (a) Cilindro
Acadêmico: Denilson Domingos Professor Orientador: Paulo César Rodacki Gomes FURB - Universidade Regional de Blumenau
PROTÓTIPO TIPO DE UM SISTEMA DE MODELAGEM PARAMÉTRICA DE SÓLIDOSS Acadêmico: Denilson Domingos Professor Orientador: Paulo César Rodacki Gomes FURB - Universidade Regional de Blumenau - INTRODUÇÃO - OBJETIVOS
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
Computação Gráfica - 11
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 11 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Teoria dos Grafos AULA 1
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 1 Introdução, Conceitos Iniciais, Isomorfismo Preparado
Objetos Gráficos Espaciais
Universidade Federal de Alagoas Instituto de Matemática Objetos Gráficos Espaciais Prof. Thales Vieira 2014 Objetos Gráficos Espaciais f : U R m 7! R 3 Universo físico Objetos gráficos Representação de
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Coordenadas Homogêneas no Plano e no Espaço
http://computacaografica.ic.uff.br/conteudocap2.html Curso de CG 2019/1 IC / UFF Coordenadas Homogêneas no Plano e no Espaço (AB) T = B T A T Esse material estáno Livro do curso no cap 2. Resumindo transformações
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato
Desenho Técnico Desenho Mecânico Eng. Agr. Prof. Dr. Cristiano Zerbato Introdução O desenho, para transmitir o comprimento, largura e altura, precisa recorrer a um modo especial de representação gráfica:
Devlin e os problemas do milênio
Seminários de Ensino de Matemática (SEMA FEUSP) Coordenação: Nílson José Machado - 2012/1 Marisa Ortegoza da Cunha [email protected] Devlin e os problemas do milênio 8 de agosto de 1900 Congresso
Computação Gráfica. Representação e Modelagem
Computação Gráfica Representação e Modelagem Professora: Sheila Cáceres Baseado nos slides da Prof. Soraia Musse Modelagem Área da Computação Gráfica que estuda a criação de modelos dos objetos reais.
Geometria Euclidiana II
Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros
CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 2
Prof. Élio Mega ONSTRUÇÕES GEOMÉTRIS E DEMONSTRÇÕES nível 2 partir do século V a, os matemáticos gregos desenvolveram uma parte da Matemática, intimamente ligada à Geometria, conhecida como onstruções
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
TESTE DE MATEMÁTICA 9.º ano
Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Do plantel de uma determinada equipa de futebol fazem parte quatro defesas centrais: o André, o Bernardo, o Custódio e o Daniel. Num treino, é necessário
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de Sólido. Poliedros, Volume e Principio de Cavallieri
Poliedros, Volume e Principio de Cavallieri O resultado central deste capítulo é o Teorema de Euler. Seu enunciado, por sua beleza e simplicidade, costuma fascinar os alunos quando tomam contato com ele
Professor: Computação Gráfica I. Anselmo Montenegro Conteúdo: - Objetos gráficos planares. Instituto de Computação - UFF
Computação Gráfica I Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Objetos gráficos planares 1 Objetos gráficos: conceitos O conceito de objeto gráfico é fundamental para a Computação
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
O Teorema de Gauss-Bonnet
O Teorema de GaussBonnet Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição mo raio noutra posição qualquer do espaço, mas não com a superfície
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.
FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:
Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular
VARIEDADES COMPACTAS COM CURVATURA POSITIVA
VARIEDADES COMPACTAS COM CURVATURA POSITIVA Janaína da Silva Arruda 1, Rafael Jorge Pontes Diógenes 2 Resumo: O presente trabalho descreve o estudo das superfícies compactas com curvatura positiva. Um
Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.
Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota [email protected] Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos
Teoria dos Grafos AULA 1
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] AULA 1 Introdução,
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
Código da Disciplina CCE0985. Aula 3.
Código da Disciplina CCE0985 Aula 3 e-mail:[email protected] http://cleliamonasterio.blogspot.com/ O que é geometria? Palavra de origem grega: GEO (terra) METRIA (medida). Há 5.000 anos, era
CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 1
Prof. Élio Mega ONSTRUÇÕES GEOMÉTRIS E DEMONSTRÇÕES nível 1 partir do século V a, os matemáticos gregos desenvolveram uma parte da Matemática, intimamente ligada à Geometria, conhecida como onstruções
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe
MATEMÁTICA. A é a matriz inversa de A.
MATEMÁTICA 41 - O estado do Paraná tem uma área de aproximadamente 200.000 km 2. Atualmente, em quatro milhões de hectares do estado se planta soja, sendo que um grão de soja ocupa um volume de 1 cm 3.
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona
Avaliação 2 - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados
Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras
Introdução 20. Figura 1.1 Interseção entre malhas de superfícies [8]. Figura 1.2 Caso patológico de interseção de superfícies [6].
1 Introdução No contexto da modelagem geométrica para elementos finitos, a malha de elementos finitos é definida a partir da descrição geométrica do domínio do problema que está sendo estudado. Sendo assim,
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
Volume e Área de Superfície, Parte II
AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações π 1 : x 2y + 3z = 1 e π 2 : x + z = 2 no sistema de coordenadas
Projeções ortográficas. Desenho Técnico 2017/1 Prof. Rafael Berti Schmitz
Projeções ortográficas Desenho Técnico 2017/1 Prof. Rafael Berti Schmitz Conceitos fundamentais Face Superfícies que delimitam um sólido Aresta Linhas formadas pelo encontro de duas faces Vértices Pontos
