Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de Sólido. Poliedros, Volume e Principio de Cavallieri

Tamanho: px
Começar a partir da página:

Download "Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de Sólido. Poliedros, Volume e Principio de Cavallieri"

Transcrição

1 Poliedros, Volume e Principio de Cavallieri

2 O resultado central deste capítulo é o Teorema de Euler. Seu enunciado, por sua beleza e simplicidade, costuma fascinar os alunos quando tomam contato com ele pela primeira vez: V A + F = 2. A observação do resultado em desenhos de poliedros ou em objetos do cotidiano é estimulante e, sobretudo, intrigante. Porque sempre ocorre isso? Na verdade, a relação de Euler não é verdadeira para todos os poliedros de acordo com nossa definição. Mas, para os poliedros convexos ela é verdadeira. Em contextos mais gerais, onde inclusive se adota uma definição de poliedro menos restritiva que a nossa, o valor de V A + F é chamado de característica do poliedro.

3 O Teorema de Euler foi descoberto em Desde então, diversas demonstrações apareceram na literatura e algumas continham falhas (como a de Cauchy), que foram descobertas muitos anos mais tarde. Essas falhas eram devidas à falta de precisão na definição de poliedro. Mesmo Euler nunca se preocupou em definir precisamente essa palavra. A demonstração que mostraremos aqui para poliedros convexos segue quase integralmente a que foi publicada na RPM no. 3 (1983) pelo professor Zoroastro Azambuja Filho. Teorema (Teorema de Euler) Em todo poliedro convexo com A arestas, V vértices e F faces, vale a relação V A + F = 2.

4 Comentários É fácil encontrar exemplos de poliedros não convexos que satisfazem a relação de Euler. Por exemplo, se um poliedro P não convexo puder ser colocado em uma posição de modo que sua sombra seja um polígono onde cada um de seus pontos seja sombra de no máximo dois pontos de P. Todas as relações que encontramos são apenas condições necessárias. Isto quer dizer que não basta que três números A, V e F satisfaçam a elas para que se tenha certeza da existência de um poliedro com essas características.

5 Consideremos então uma região R do plano dividida em outras regiões justapostas como mostra a figura a seguir. O conjunto de arestas desta figura divide o plano em 5 regiões, uma delas ilimitada. Se chamamos de F o número de regiões que o conjunto de arestas divide o plano, A o número de arestas e V o número de vértices, temos que: F A + V = = 2

6 Cada região (seja R ou uma da decomposição) é limitada por pelo menos duas arestas e um vértice é um ponto comum a pelo menos duas arestas. Devemos enfatizar que aqui, o termo aresta não significa um segmento de reta mas sim qualquer curva contínua, sem auto-interseções, que liga um vértice a outro vértice. Devemos ainda exigir (e isso é muito importante) que nenhuma região fique completamente dentro de outra. Assim, decomposições como as que mostramos abaixo estão proibidas.

7 Teorema Consideremos plano dividido em F regiões (sendo uma ilimitada), através de A arestas que concorrem em V vértices, nas condições descritas acima. Temos então que: V A + F = 2. Prova. Vamos fazer a prova por indução no número F de regiões. Observe que a fórmula V A + F = 2 vale no caso simples em que apenas um polígono de n lados. Neste caso, A = V = n; F = 2. Vamos agora mostrar que se a relação de Euler vale para uma decomposição do plano em F regiões, então ela ainda vale para uma decomposição em F + 1 regiões.

8 Uma determinada decomposição pode ser construída por etapas onde, em cada uma delas, uma nova região é acrescentada na região ilimitada das anteriores. Consideremos então uma decomposição do plano em F regiões através de A arestas que concorrem em V vértices, satisfazendo a relação de Euler. Acrescentamos agora uma nova região contida na região ilimitada das regiões anteriores, desenhando uma sequência de arestas ligando dois vértices do contorno da divisão anterior. Se acrescentamos r arestas, então acrescentamos r 1 vértices e uma nova região. Temos que a relação de Euler permanece válida porque 2 = V A + F = (V + r 1) (A + r) + (F + 1). o que conclui a demonstração.

9 Tomemos um poliedro convexo P e uma esfera S que o contenha. A partir de um ponto interior ao poliedro, projetamos P sobre S como mostra a figura a seguir. A função f : P S é definida da seguinte forma. Sendo O um ponto interior a P, para cada ponto X P, definimos f (X) como o ponto de interseção da semirreta OX com S. A função f é contínua (o que significa que pontos próximos de P são levados em pontos próximos de S) e sua inversa f 1 : S P é também contínua.

10 Vemos agora a esfera dividida em regiões limitadas por arcos de circunferência (ou simplesmente linhas). Chamando de nó a projeção de cada vértice temos cada região limitada por pelo menos 3 linhas e também cada nó como extremidade de pelo menos 3 linhas. É claro que para as linhas, regiões e nós da esfera S vale a relação de Euler, porque ela já era válida em P.

11 Tomemos agora um ponto N interior a uma região de S, um plano P perpendicular ao diâmetro de S que contém N e uma função F : S {N} π, tal que para cada ponto Y S {N}, F(Y ) é a interseção da semirreta NY com P. A aplicação F é chamada projeção estereográfica.

12 Se o poliedro original P tinha F faces, V vértices e A arestas vemos agora o plano π dividido em F regiões por meio de A linhas que se encontram em V nós. Por comodidade, as linhas podem ser chamadas de arestas os nós de vértices e as regiões de faces. E claro que das F regiões, uma é ilimitada porque é projeção da região de S que contém o ponto N, mas relação de Euler continua válida. A figura obtida em π pode ser agora continuamente deformada mas a relação de Euler se mantém inalterável

13 As transformações que fizemos são equivalentes a imaginar um poliedro de borracha e inflá-lo injetando ar até que se transforme em uma esfera. Em seguida, a partir de um furo feito em uma das regiões, esticá-lo até que se transforme em um plano. Isto significa que o Teorema de Euler não é um teorema de Geometria, mas sim de Topologia. Não importa se as faces são planas ou não, ou se as arestas são retas ou não. Tudo pode ser deformado à vontade desde que essas transformações sejam funções contínuas cujas inversas sejam também contínuas (chamadas homeomorfismos), ou seja, para cada transformação que fizermos por uma função contínua, deveremos poder voltar à situação original por meio de uma outra função também contínua.

14 É considerado que a primeira menção formal aos grafos foi feita por Leonhard Euler em 1736 e tratava sobre o problema das Sete Pontes de Konigsberg: O problema é baseado na cidade de Konigsberg (território da Prússia até 1945, atual Kaliningrado, na Rússia), que é cortada pelo Rio Pregolia, onde há duas grandes ilhas que, juntas, formam um complexo que na época continha sete pontes. Discutia-se nas ruas da cidade a possibilidade de atravessar todas as pontes sem repetir nenhuma. Havia-se tornado uma lenda popular a possibilidade da façanha quando Euler, em 1736, provou que não existia caminho que possibilitasse tais restrições.

15

16 Euler usou um raciocínio muito simples. Transformou os caminhos em retas e suas intersecções em pontos, criando possivelmente o primeiro grafo da história. Então percebeu que só seria possível atravessar o caminho inteiro passando uma única vez em cada ponte se houvesse exatamente zero ou dois pontos de onde saísse um número ímpar de caminhos. A razão de tal coisa é que de cada ponto deve haver um número par de caminhos, pois será preciso um caminho para entrar e outro para sair. Os dois pontos com caminhos ímpares referem-se ao início e ao final do percurso, pois estes não precisam de um para entrar e um para sair, respectivamente. Se não houverem pontos com número ímpar de caminhos, pode-se (e deve-se) iniciar e terminar o trajeto no mesmo ponto, podendo esse ser qualquer ponto do grafo. Isso não é possível quando temos dois pontos com números ímpares de caminhos, sendo obrigatoriamente um o início e outro o fim.

17 Este resultado também é considerado um dos primeiros resultados topológicos na geometria, o que demonstra que, desde o principio, a utilização de grafos está estreitamente relacionada à abstração para resolução de outros problemas.

18 Poliedros Regulares Desde a antiguidade são conhecidos os poliedros regulares, ou seja, poliedros convexos cujas faces são polígonos regulares iguais e que em todos os vértices concorrem o mesmo número de arestas. O livro XIII dos Elementos de Euclides (cerca de 300 a.c.) é dedicado inteiramente aos sólidos regulares e contém extensos cálculos que determinam, para cada um, a razão entre o comprimento da aresta e o raio da esfera circunscrita. Na última proposição daquele livro, prova-se que os poliedros regulares são apenas 5: o tetraedro, o cubo, octaedro, o dodecaedro e o icosaedro. A história é farta em exemplos de matemáticos, filósofos e astrônomos que tentaram elaborar teorias de explicação do universo com base na existência desses 5 sólidos regulares. Um exemplo é Kepler, 19 séculos depois dos Elementos de Euclides, tentou elaborar uma cosmologia com base nos 5 poliedros regulares.

19

20 Definição Um poliedro convexo é regular quando todas as faces são polígonos regulares iguais e em todos os vértices concorrem o mesmo número de arestas. Teorema Existem apenas cinco poliedros regulares convexos. Prova. Para demonstrar, seja n o número de lados de cada face e seja p o número de arestas que concorrem em cada vértice. Temos então 2A = nf = pv, ou A = nf 2 e V = nf p.

21 Substituindo na relação de Euler, obtemos Donde, V A + F = 2, nf p nf 2 + F = 2 F = 4p 2p + 2n pn. Observe que a relação acima se verifica apenas se o denominador é positivo, isto é, 2p + 2n pn > 0, ou seja 2n n 2 > p.

22 Como p 3, chegamos a n < 6. As possibilidades são então as seguintes: n = 3 e portanto F = p 6 p. Temos então que p < 6 e p = 3 e F = 4 (tetraedro) p = 4 e F = 8 (octaedro) p = 5 e F = 20 (icosaedro) n = 4 e F = 2p 4 p p = 3 e F = 6 (cubo) n = 5 e F = 4p 10 3p p = 3 e F = 12 (dodecaedro)

23 Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro ou qualquer superfície fechada, simples (isto é, sem auto-interseção), mais a região delimitada por ela. Vale salientarmos que a idéia de sólido que acabamos de dar é um conceito primitivo, ou seja, sem definição, uma vez que não demos a definição de superfície fechada simples e nem tão pouco a definição da região delimitada por ela. Enfim, temos somente uma idéia.

24 Um outro conceito que será importante para o entendimento dos axiomas da função volume é o de sólidos congruentes. Definição (Congruencia de solidos) Diremos que um solido S e congruente a um solido S 0 e escrevemos S S 0 se existe uma funcao bijetiva f : S S 0 tal que d(a, B) = d(f (A), f (B)), para quaisquer que sejam os pontos distintos A, B S.

25 Axiomas da função volume 1 Para todo sólido S está associado um numero real positivo V (S). 2 Se S e P são sólidos congruentes, então V (S) = V (P). 3 Se S e P são sólidos que se cortam apenas em pontos da superfície de cada um, então: V (S P) = V (S) + V (P). 4 O volume de um cubo P de aresta 1 é V (P) = 1

26 Seja f : IR IR uma função crescente tal que n N, f (nx) = nf (x), x IR. Então r IR, tem-se que f (rx) = rf (x), x IR. Decorre do axioma 4 e do resultado acima que O volume de um paralepípedo P de dimensões a, b e c é V (P) = abc.

27

28 Principio de Cavalieri Sejam S e S 0 sólidos. Se todo plano horizontal intercepta S e S 0 segundo figuras com mesma área, então S e S 0 têm o mesmo volume.

29 O Princípio de Cavalieri é de fato um teorema da teoria de Integração, que diz que: Teorema Seja P um sólido de Cavalieri, com as seções planas no plano π t tendo área igual a A(t), t [a, b]. Então o volume de P, V (P) é dado por: V (P) = b a A(t)dt. Na prova deste teorema, usamos a aproximação do sólido P por uniões de paralelepípedos.

30 O Principio de Cavalieri também tem uma versão bidimensional, que diz que Principio de Cavalieri no Plano Sejam P e P 0 duas figuras planares. Se toda reta horizontal intercepta P e P 0 segundo segmentos com mesmo comprimento, então P e P 0 têm mesma área.

31 No caso de triângulos, a recíproca deste fato é verdadeira: Teorema Sejam T 1 e T 2 dois triângulos com a mesma área. Então eles são equivalentes no sentido de Cavalieri, isto é, é possível encontrar uma direção r, que após um movimento rígido aplicado em um dos triângulos, as retas perpendiculares a r cortam T 1 e T 2 em segmentos de mesmo comprimento.

32 Proposição O volume de um cilindro é igual ao produto da area da base pela altura. Prova. Seja C um cilindro entre os planos α e β, de base B e altura h. Suponha que B α. Considere um paralelepipedo P, ratangular, cuja base R está contida em α e tem a mesma area de B, cuja altura seja h e esteja no mesmo semi espaço (determinado por α) em que se encontra C.

33 Considere um plano π paralelo a α, entre α e β. Pelo que provamos, π C BF e π P R. Como B e R tem mesma area, segue-se as seções π C e π P tem mesma area. Pelo principio de Cavalieri, o cilindro e o paralelepipedo tem mesmo volume. Como o volume de P e o produto da area de R por h, decorre que o volume de C e o produto da area de R por h e, como R e B tem mesma area, segue-se que o volume de C e o produto da area de B por h.

34 Volume de cones Proposição Dois cones têm mesmo volume se têm mesma altura e suas bases têm mesma área.

35 Temos que F π C com razão de semelhança igual a h h e F π C com razão de semelhança também igual a h h Como a razão entre as áreas de duas figuras semelhantes é igual ao quadrado da razão de semelhança segue-se que ( ) A(F) h 2 A(π C) = h = A(F ) A(π C ). Já que A(F) = A(F ) decorre que A(π C) = A(π C ).

36 Proposição O volume de um cone é igual a um terço da área da base pela altura. Prova: Inicialmente, demonstraremos o resultado para o caso do cone ser um tetraedro. Se em um tetraedro de vértices A, B, C e D, imaginamos a face ABC como base e o ponto D como vértice dessa pirâmide, vamos representá-lo por D ABC. Ainda, o volume desse tetraedro será representado por V (D ABC) = V (B ACD) =, etc, dependendo de qual face estamos considerando como base. Consideremos então um prisma triangular cujas bases são os triângulos ABC e DEF, como mostra a figura:

37

38 Seja A a área de ABC e seja h a altura do prisma. Como sabemos, seu volume é Ah. Vamos agora, dividir esse prisma em três tetraedros: C DEF, E ADC e E ABC,

39

40 Sejam V 1, V 2 e V 3 os volumes respectivos dos três tetraedros citados e seja V o volume do prisma. Pelo teorema anterior, sabemos que o volume de uma pirâmide não se modifica quando, mantendo a base fixa, movemos o vértice em um plano paralelo a essa base. Tendo isto em mente podemos concluir: V 1 = V (C DEF ) = V (A DBF) = V (A DBC) = V (D ABC) V 2 = V (E ADC) = V (B ACF ) = V (F ABC) V 3 = V (E ABC) Logo V 1 = V 2 = V 3 e como V = V 1 + V 2 + V 3, concluimos que V (D ABC) = V 3 = Ah 3, onde A é a área da base do tetraedro.

41 Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de So lido Para demonstrarmos que o resultado e va lido para um cone C qualquer e so considerarmos um tetraedro com mesma altura de C e cuja base tenha a mesma a rea da base de C. O resultado decorre do que provamos.

42 Corolário O volume de um cone circular é igual a 1 3 πr 2 h, em que r é o raio da base e h é a altura do cone. Corolário O volume de uma pirâmide, cuja base é um polígono regular, é igual a 1 pah, em que p e a são, respectivamente, o 3 semi-perímetro e a medida do apótema da base e h é a altura da pirâmide Prova. O resultado segue-se pelo fato da área de um polígono regular ser igual ao produto de seu semi-perímetro pelo seu apótema.

43 Definição Apótema (ou o apotegma) de um polígono regular é a designação dada ao segmento de reta que partindo do centro geométrico da figura é perpendicular a um dos seus lados. Dado que a distância mínima do centro a um dos lados é medida ao longo da apótema, esta designação é por vezes usada, embora incorretamente, para designar essa distância.

44 Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de So lido Proposic a o O volume de uma esfera de raio R e igual a 34 πr 3.

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

Volume e Área de Superfície, Parte I

Volume e Área de Superfície, Parte I AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos

Leia mais

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c. Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no

Leia mais

MATEMÁTICA. Geometria Espacial

MATEMÁTICA. Geometria Espacial MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera

Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera Projeto Teia do Saber: Fundamentando uma Prática de Ensino de Matemática Utilização do Computador no Desenvolvimento do Conteúdo Matemática do Ensino Médio Geometria 16 de outubro de 2004 Um entendimento

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008 DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto

Leia mais

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases. PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Geometria Métrica Espacial

Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

Aula 26 Poliedros. Objetivos. Identificar poliedros. Aplicar o Teorema de Euler

Aula 26 Poliedros. Objetivos. Identificar poliedros. Aplicar o Teorema de Euler MÓDULO 2 - AULA 26 Aula 26 Poliedros Objetivos Identificar poliedros Aplicar o Teorema de Euler Introdução Nesta aula estudaremos outros exemplos de figuras no espaço: os poliedros Começaremos com a definição

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Volumes de Sólidos Semelhantes. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Volumes de Sólidos Semelhantes. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial - Volumes e Áreas de Prismas e Pirâmides Volumes de Sólidos Semelhantes Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha

Leia mais

POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.

POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

Poliedros AULA Introdução Denições

Poliedros AULA Introdução Denições AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso

Leia mais

Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

Posições relativas entre elementos geométricos no espaço

Posições relativas entre elementos geométricos no espaço Geometria no espaço Posições relativas entre elementos geométricos no espaço Plano: constituído por três pontos distintos e não colineares; o plano é bidimensional (tem duas dimensões: altura e largura);

Leia mais

Soluções dos Problemas do Capítulo 5

Soluções dos Problemas do Capítulo 5 oluções do Capítulo 5 165 oluções dos Problemas do Capítulo 5 1. Divida o cubo unitário em d cubinhos de aresta 1 d O volume de cada um é 1 d Dividindo as arestas de comprimentos a d, b d e c d respectivamente

Leia mais

Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri

Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri Unidade 9 Geometria Espacial Poliedros Volume de sólidos geométricos Princípio de Cavalieri Poliedros palavra poliedro tem sua origem no idioma grego (poly significa, muitos, e hedra, faces). Poliedro

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

Plano de Trabalho 2. Introdução à Geometria Espacial

Plano de Trabalho 2. Introdução à Geometria Espacial FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................

Leia mais

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES

Leia mais

Usando estas propriedades, provamos que:

Usando estas propriedades, provamos que: Áreas de Polígonos Função área Uma função área é uma função que a cada região delimitada por um polígono, associa um número real com as seguintes propriedades: Regiões delimitada por polígonos congruentes

Leia mais

Distância Ângulos Esfera Poliedros

Distância Ângulos Esfera Poliedros Distância e Ângulos Vamos supor, como na geometria plana, que nossa geometria possui uma função distância, isto é, uma função que a cada par de pontos A e B associa um número real d(a, B) que satisfaz:

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Cones, cilindros, esferas e festividades, qual a ligação?

Cones, cilindros, esferas e festividades, qual a ligação? Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo hmelo@uac.pt Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

Prof. Márcio Nascimento. 1 de abril de 2015

Prof. Márcio Nascimento. 1 de abril de 2015 Geometria dos Sólidos Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Domínio: Números e operações

Domínio: Números e operações AGRUPAMENTO DE ESCOLAS DE MARTIM DE FREITAS Ano letivo 2018/2019 Domínio: Números e operações PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA 6ºANO Números naturais - Números primos; - Crivo de Eratóstenes; Subdomínio/Conteúdos

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número

Leia mais

Noções de Geometria. Professora: Gianni Leal 6º B.

Noções de Geometria. Professora: Gianni Leal 6º B. Noções de Geometria Professora: Gianni Leal 6º B. Figuras geométricas no espaço: mundo concreto e mundo abstrato Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades. Mundo abstrato:

Leia mais

Volume e Área de Superfície, Parte II

Volume e Área de Superfície, Parte II AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

1.2. Utilizar o crivo de Eratóstenes para determinar os números primos inferiores a um dado número natural

1.2. Utilizar o crivo de Eratóstenes para determinar os números primos inferiores a um dado número natural MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA e CIENCIAS NATURAIS Matemática Números e operações (NO6) Unidade 1 Números naturais 1. Números primos e números compostos Números primos. Crivo de Eratóstenes.

Leia mais

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição

Leia mais

DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS

DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS DISCIPLINA: Matemática ANO DE ESCOLARIDADE: 6º Ano 2016/2017 METAS CURRICULARES PROGRAMA DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS 1ºPeríodo Números e Operações (NO6) Números

Leia mais

PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas

PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas 1 Escalas escala medida _ no _ desenho medida _ real _ ou _ verdadeira _ grandeza D VG Escala de ampliação Objeto real

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais

Leia mais

REGULARES POLIEDROS IRREGULARES

REGULARES POLIEDROS IRREGULARES GEOMETRIA ESPACIAL ESFERA OBLÍQUO RETO CILINDRO OBLÍQUO RETO CONE SÓLIDOS DE REVOLUÇÃO REGULAR OBLÍQUA RETA PIRÂMIDE REGULAR OBLÍQUO RETO PRISMA IRREGULARES ICOSAEDRO DODECAEDRO OCTAEDRO HEXAEDRO TETRAEDRO

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS

Leia mais

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante

Leia mais

CO 77: Abordagem do Teorema de Euler no Ensino Básico

CO 77: Abordagem do Teorema de Euler no Ensino Básico CO 77: Abordagem do Teorema de Euler no Ensino Básico José Querginaldo Bezerra Universidade Federal do Rio Grande do Norte quergi@ccet.ufrn.br Gabriela Lucheze de Oliveira Lopes Universidade Federal do

Leia mais

Matemática GEOMETRIA ESPACIAL. Professor Dudan

Matemática GEOMETRIA ESPACIAL. Professor Dudan Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica

Leia mais

Helena Alves Rafael Sousa Rui Pedro Soares

Helena Alves Rafael Sousa Rui Pedro Soares Helena Alves Rafael Sousa Rui Pedro Soares Poliedro: É um sólido geométrico no qual A superfície é composta por um número finito de faces; Os vértices são formados por três ou mais arestas, cada uma das

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: Torre de Hanói e Triângulo de Sierpinski AUTOR: André Brito (estagiário da BOM) ORIENTADOR: Dr. Professor

Leia mais

Ainda Sobre o Teorema de Euler para Poliedro Convexos

Ainda Sobre o Teorema de Euler para Poliedro Convexos 1 Introdução Ainda Sobre o Teorema de Euler para Poliedro Convexos Elon Lages Lima Instituto de M atemática Pura e Aplicada Estr. D. Castorina, 110 22460 Rio de Janeiro RJ O número 3 da RPM traz um artigo

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada.

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS

Leia mais

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira) 8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I. Grupo I Escola Secundária com º ciclo. inis 10º no de Matemática eometria no Plano e no Espaço I 1º Teste de avaliação rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

ENQ Gabarito e Pauta de Correção

ENQ Gabarito e Pauta de Correção ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2. Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...

Leia mais

PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais

PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais MATEMÁTICA 6º ANO Página 1 de 17 PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais Números e Operações

Leia mais

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano.

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano. Unidade 9 - Pirâmide Introdução Definição de pirâmide Denominação de Pirâmides Pirâmide regular Medida da superfície (área) de uma pirâmide regular Volume da pirâmide Introdução A palavra pirâmide, normalmente,

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo

Leia mais

Onde usar os conhecimentos

Onde usar os conhecimentos VIII GEOMETRIA PLANA Por que aprender Geometria Plana?... O estudo da Geometria nasceu da necessidade que o homem tinha em medir as suas terras. É de grande importância conhecermos as formas e suas características,

Leia mais

Volumes e Princípio de Cavalieri

Volumes e Princípio de Cavalieri Volumes e Princípio de Cavalieri MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Volumes Noção intuitiva O volume de um sólido é a

Leia mais

MANUAL: Espaço 6, Porto Editora. Metodologia(s)/Estratégias (metas curriculares)

MANUAL: Espaço 6, Porto Editora. Metodologia(s)/Estratégias (metas curriculares) PLANIFICAÇÃO ANUAL DEPARTAMENTO: MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS ÁREA DISCIPLINAR: MATEMÁTICA DISCIPLINA: Matemática NÍVEL DE ENSINO: 2.º Ciclo CURSO: ENSINO BÁSICO ANO: 6.º ANO LETIVO: 2018/2019 MANUAL:

Leia mais

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

Planificação Global. 1º Período. Tóp Tópico/Subtópicos Nº descri. Descritor Nº aulas Avaliação diagnóstica inicial 4

Planificação Global. 1º Período. Tóp Tópico/Subtópicos Nº descri. Descritor Nº aulas Avaliação diagnóstica inicial 4 Planificação Global MATEMÁTICA 6.º ANO Ano letivo 017/018 1º Período Domínio1: Potências de expoente natural (ALG 6-1) Decomposição número em fatores primos (NO 6-1) Total Aulas:0 Avaliação diagnóstica

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

PARTE I - INTRODUÇÃO

PARTE I - INTRODUÇÃO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Luzia Vidal de Souza e Paulo Henrique Siqueira Disciplina: Geometria Descritiva

Leia mais

O TEOREMA DE GAUSS-BONNET

O TEOREMA DE GAUSS-BONNET O TEOREMA DE GAUSS-BONNET JOSÉ NATÁRIO 1. Introdução Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição do espaço é identificada com outra

Leia mais

1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino

1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino 1ª Parte SÓLIDOS GEOMÉTRICOS Prof. Danillo Alves 6º ano Matutino "Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços." Prof. Jerriomar Ferreira As Formas existentes

Leia mais

Capitulo 4 Figuras Geométricas Planas

Capitulo 4 Figuras Geométricas Planas Página16 Capitulo 4 Figuras Geométricas Planas Ponto O ponto é a figura geométrica mais simples, não tem dimensão (comprimento, largura e altura) e é determinado pelo cruzamento de duas linhas. Identificação

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso

Leia mais

Número total de aulas (mínimo): 192 Número total de aulas (máximo): 206

Número total de aulas (mínimo): 192 Número total de aulas (máximo): 206 Grupo Disciplinar 230 Matemática/Ciências Naturais Ano Letivo 2017/2018 Matemática 6º Ano Aulas previstas 1º Período 2º Período 3º Período Máximo 78 70 58 Mínimo 76 62 54 Número total de aulas (mínimo):

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais