Volume de Sólidos. Principio de Cavalieri
|
|
|
- Maria das Neves Caiado Rosa
- 9 Há anos
- Visualizações:
Transcrição
1 Volume de Sólidos Principio de Cavalieri
2 Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer superfície fechada, simples (isto é, sem auto-interseção), mais a região delimitada por ela. Vale salientarmos que a idéia de sólido que acabamos de dar é um conceito primitivo, ou seja, sem definição, uma vez que não demos a definição de superfície fechada simples e nem tampouco a definição da região delimitada por ela. Enfim, temos somente uma idéia
3 (Congruência de sólidos) Diremos que um sólido S é congruente a um sólido S 0 e escrevemos S S 0 se existe uma função bijetiva f : S S 0 tal que d(a,b) d(f(a),f(b)), para quaiquer que sejam os pontos distintos A,B S.
4 Axiomas da função volume Para todo sólido S está associado um numero real positivo V(S). Se S e P são sólidos congruentes, então V(S)= V(P). Se S e P são sólidos que se cortam apenas em pontos da superfície de cada um, então: V(SUP)=V(S)+ V(P).
5 O volume de um paralepípedo P de dimensões a, b e c é V(P)=abc
6 PRINCÍPIO DE CAVALIERI Sejam S e S 0 sólidos. Se todo plano horizontal intercepta S e S 0 segundo figuras com mesma área, então S e S 0 têm mesmo volume.
7 Volume de um Cilindro Proposição: O volume de um cilindro é igual ao produto da área da base pela altura. Prova. Seja C um cilindro entre os planos α e β de base F e altura h, suponha que F α. Considere um paralelepípedo P, retangular, cuja base R está contida em α e tem a mesma área de F, cuja altura seja h e esteja no mesmo semi-espaço (determinado por α) em que se encontra C.
8
9 Considere um plano π paralelo a α e β, entre α e β. Pelo que provamos, π C F e π P R. Como F e R têm mesma área, segue-se as seções π C e π P têm mesma área. Pelo princípio de Cavalieri, o cilindro e o paralelepípedo têm mesmo volume. Como o volume de P é o produto da área de R por h, decorre que o volume de C é o produto da área de R por h e, como R e F têm mesma área, segue-se que o volume de C é o produto da área de F por h.
10 Volume de cones Proposiçao: Dois cones têm mesmo volume se têm mesma altura e suas bases têm mesma área.
11
12 Prova. Coloquemos as bases dos dois cones num mesmo plano, digamos, α, e seus vértices num mesmo semi-espaço determinado por α. Sejam: C e C os cones, F e F as respectivas bases, V e V os respectivos vértices e h a altura comum. Para demonstrar que C e C têm o mesmo volume utilizaremos o princípio de Cavalieri. Seja π um plano paralelo a α, entre V (ou V ) e α e h = d(v, π). Basta mostrarmos que π C e π C têm mesma área.
13 Temos que F ~ π C com razão de semelhança igual a h/h e F ~ π C com razão de semelhança também igual a h/h. Como a razão entre as áreas de duas figuras semelhantes é igual ao quadrado da razão de semelhança, segue-se que A (F)/A (π C)=(h/h ) 2 =A (F ) /A (π C ) Já que A(F) = A(F ), decorre que A(π C ) = A(π C ).
14 Proposição: O volume de um cone é igual a um terço da área da base pela altura.
15 Inicialmente, demonstraremos o resultado para o caso do cone ser um tetraedro. Consideremos então um tetraedro T de base um triângulo ABC, de vértice D e altura h.
16 Sejam α o plano que contém ABC, β o plano paralelo a α passando por D e B e C os respectivos pontos de interseção das retas paralelas a l(a,d) passando por B e C com α. Considere o prisma P entre α e β cuja reta de inclinação é l(a,d) e cuja base em α é ABC. A base de P em β é DB C.
17
18 Observe que P pode ser decomposto como união dos seguintes três tetraedros: T, o tetraedro T de vértices em B, C, D e B e o tetraedro T de vértices em B, C, D e C. Vamos mostrar que esses três tetraedros têm mesmo volume. Com efeito, tomando ABD como base de T, B DB como base de T e C como vértice comum a T e T, então T e T têm bases congruentes e mesma altura, logo, têm mesmo volume.
19 Pela mesma razão, T e T têm mesmo volume se considerarmos BB C como base de T, C CB como base de T e D como vértice comum a T e T. Já que T, T e T têm mesmo volume e P é decomposto como união destes tetraedros,segue-se que V(T) = (1/3)V(P) = (1/3 )A( ABC) h. Por conseguinte, o teorema vale para tetraedros.
20 Para demonstrarmos que o resultado é válido para um cone C qualquer é só considerarmos um tetraedro com mesma altura de C e cuja base tenha a mesma área da base de C. O resultado decorre do resultado anterior.
21 COROLÁRIO 1: O volume de um cone circular é igual a 1 /3 πr 2 h, em que r é o raio da base e h é a altura do cone. COROLÁRIO 2: O volume de uma pirâmide, cuja base é um polígono regular, é igual a 1 /3pah, em que p e a são, respectivamente, o semi-perímetro e a medida do apótema da base e h é a altura da pirâmide. Prova. O resultado segue-se pelo fato da área de um polígono regular ser igual ao produto de seu semi-perímetro pelo seu apótema.
22 Apótema (ou o apotegma) de um polígono regular é a designação dada ao segmento de reta que partindo do centro geométrico da figura é perpendicular a um dos seus lados. Dado que a distância mínima do centro a um dos lados é medida ao longo da apótema, esta designação é por vezes usada, embora incorretamente, para designar essa distância.
23
24 Proposição: O volume de uma esfera de raio r é igual a 4/3 πr 3.
25
26 Prova. Sejam O o centro da esfera, t uma reta passando em O, e, P e Q pontos distintos em t tais que O é ponto médio de PQ e OP = r = OQ. Sejam α e β os planos perpendiculares a t passando, respectivamente, por P e Q. Assim, α e β são paralelos e são tangentes à esfera, respectivamente, em P e Q. Seja C um cilindro circular entre α e β tendo como reta de inclinação t (portanto, reto) cujos raios das bases são iguais a r. Seja V o ponto médio do segmento de reta que une os centros das bases de C. Considere os cones com o vértice comum V e cujas respectivas bases são as bases de C.
27
28 Utilizaremos o princípio de Cavalieri para mostrar que o volume da esfera é igual ao volume do sólido S formado pelos pontos de C não interiores à reunião dos dois cones. Seja γ um plano qualquer paralelo a α e β, entre α e β. Mostraremos que o disco de interseção de γ com a esfera tem a mesma área de γ S (que é uma coroa circular). Seja h a distância entre α e γ.
29 Faremos a demonstração supondo h < r. O raciocínio que iremos empregar também se aplica ao caso de r h, o qual omitiremos. Seja y o raio do disco de interseção de γ com a esfera. Usando o Teorema de Pitágoras, podemos concluir que y 2 = 2rh h 2, por conseguinte, a área do disco é igual a π (2rh h 2 ).
30
31 Vamos agora calcular a área de γ S. Seja x o raio do círculo menor da coroa. Usando semelhança, chegaremos à relação x /r = r h/r, donde, x = r h. Sendo r o raio do círculo maior da coroa, então sua área é igual a πr 2 π (r h) 2 = π (2rh h 2 ).
32
33 Logo, o disco de interseção de γ com a esfera tem a mesma área de γ S. Assim, o volume da esfera é igual ao volume de S que, por sua vez, é igual a V(C) menos o volume dos dois cones, ou seja, (πr 2 ) ( 2r) 2 1 /3 πr 2 r = 4/ 3 πr 3.
Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de Sólido. Poliedros, Volume e Principio de Cavallieri
Poliedros, Volume e Principio de Cavallieri O resultado central deste capítulo é o Teorema de Euler. Seu enunciado, por sua beleza e simplicidade, costuma fascinar os alunos quando tomam contato com ele
Volume e Área de Superfície, Parte I
AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.
Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera
Projeto Teia do Saber: Fundamentando uma Prática de Ensino de Matemática Utilização do Computador no Desenvolvimento do Conteúdo Matemática do Ensino Médio Geometria 16 de outubro de 2004 Um entendimento
Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto
Avaliação 2 - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)
Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Unidade 10 Geometria Espacial. Esfera
Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência
Geometria Euclidiana Espacial e Introdução à Geometria Descritiva
UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
Volume e Área de Superfície, Parte II
AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Geometria Espacial - Volumes e Áreas de Cilindros, Cones e Esferas Esfera - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...
Aula 29 Volume de pirâmides, cones e esferas
MÓULO 2 - UL 29 ula 29 Volume de pirâmides, cones e esferas Objetivos alcular o volume de uma pirâmide. alcular o volume de um cone. alcular o volume de uma esfera. Introdução Sabemos que se cortarmos
Construções de Dandelin
Capítulo 7 Construções de Dandelin Na introdução às cônicas como secções planas do cone, referimo-nos às construções de Dandelin. Vamos apresentar estas construções para demonstrar as propriedades da elipse,
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a
CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.
PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)
Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto
Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos
AULA Paralelismo e perpendicu- 11 larismo
AULA Paralelismo e perpendicu- 11 larismo 11.1 Introdução Nesta aula estudaremos as noções de paralelismo e perpendicularismo. Vamos assumir que o aluno tenha o conhecimento de todos os resultados concernentes
Matéria: Matemática Assunto: Volume Prof. Dudan
Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
Teorema do ângulo externo e sua consequencias
Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado
Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA
Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies
Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora
Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.
GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida
DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS
DISCIPLINA: Matemática ANO DE ESCOLARIDADE: 6º Ano 2016/2017 METAS CURRICULARES PROGRAMA DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS 1ºPeríodo Números e Operações (NO6) Números
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS
Usando estas propriedades, provamos que:
Áreas de Polígonos Função área Uma função área é uma função que a cada região delimitada por um polígono, associa um número real com as seguintes propriedades: Regiões delimitada por polígonos congruentes
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS
Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano.
Unidade 9 - Pirâmide Introdução Definição de pirâmide Denominação de Pirâmides Pirâmide regular Medida da superfície (área) de uma pirâmide regular Volume da pirâmide Introdução A palavra pirâmide, normalmente,
OS PRISMAS. 1) Conceito :
1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :
1.2. Utilizar o crivo de Eratóstenes para determinar os números primos inferiores a um dado número natural
MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA e CIENCIAS NATURAIS Matemática Números e operações (NO6) Unidade 1 Números naturais 1. Números primos e números compostos Números primos. Crivo de Eratóstenes.
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante
Soluções do Capítulo 8 (Volume 2)
Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.
Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a
CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.
Domínio: Números e operações
AGRUPAMENTO DE ESCOLAS DE MARTIM DE FREITAS Ano letivo 2018/2019 Domínio: Números e operações PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA 6ºANO Números naturais - Números primos; - Crivo de Eratóstenes; Subdomínio/Conteúdos
PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais
MATEMÁTICA 6º ANO Página 1 de 17 PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais Números e Operações
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul
Planificação Global. 1º Período. Tóp Tópico/Subtópicos Nº descri. Descritor Nº aulas Avaliação diagnóstica inicial 4
Planificação Global MATEMÁTICA 6.º ANO Ano letivo 017/018 1º Período Domínio1: Potências de expoente natural (ALG 6-1) Decomposição número em fatores primos (NO 6-1) Total Aulas:0 Avaliação diagnóstica
Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)
1 Vetores no Plano e no Espaço
1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no
ENQ Gabarito e Pauta de Correção
ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes
Onde usar os conhecimentos
VIII GEOMETRIA PLANA Por que aprender Geometria Plana?... O estudo da Geometria nasceu da necessidade que o homem tinha em medir as suas terras. É de grande importância conhecermos as formas e suas características,
Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli
Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI Professora: ANA PAULA LIMA Matrículas: 09463027/09720475 Série: 2º ANO ENSINO MÉDIO Tutora: KARINA
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I
Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
Geometria Espacial: Sólidos Geométricos
Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.
Números naturais (NO6)
Planificação anual - Matemática 6º Ano Ano letivo:2014/2015 Domínios e Subdomínios Conteúdos Objetivo Geral Metas Tempo s Letivo s (45 ) Modalidades / Instrumentos de Avaliação CAPÍTULO 1 DOMÍNIO Números
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Prova Modelo Teste 4 1 Nuno Miguel Guerreiro I Chave da Escolha Múltipla CCDBA 1. Tem-se quanto à proposição p: F A + AO + }{{ OB } 1 DC A + AB 1 AB 5 }{{}}{{ 5 } AB
Prof. Milton Procópio de Borba
Prof. Milton Procópio de Borba Original do Prof. Luiz Algemiro Cubas Guimarães (MIRO) MATEMÁTICA APLICADA (CE 319) 1 Introdução Antes foi estudado a geometria, e com o enfoque no plano, por isso Geometria
x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.
CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329).
MA13 Exercícios das Unidades 17 e 18 2014 Lista 11 Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329). 1) Sejam dados um ponto A e um plano α com A α. Prove
Elementos de Lógica Matemática. Uma Breve Iniciação
Elementos de Lógica Matemática Uma Breve Iniciação Proposições Uma proposição é uma afirmação passível de assumir valor lógico verdadeiro ou falso. Exemplos de Proposições 2 > 1 (V); 5 = 1 (F). Termos
MATEMÁTICA A - 10o Ano Geometria Propostas de resolução
MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
Geometria Espacial no Cabri 3D
Geometria Espacial no Cabri 3D Na Geometria Plana temos algumas facilidades na abordagem do estudo, pois existem modelos concretos onde os alunos podem se basear, como por exemplo, as superfícies pelas
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.
Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.
Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas
