Construções de Dandelin

Tamanho: px
Começar a partir da página:

Download "Construções de Dandelin"

Transcrição

1 Capítulo 7 Construções de Dandelin Na introdução às cônicas como secções planas do cone, referimo-nos às construções de Dandelin. Vamos apresentar estas construções para demonstrar as propriedades da elipse, hipérbole e parábola nas secções, e mostrar a equivalência das duas interpretações geométricas da excentricidade nestes casos. Seja então um cone circular. Seja o ângulo do eixo de simetria do cone com as retas geratrizes. Seja α o plano que secciona o cone, e que não passa pela origem. Seja β o ângulo entre o plano α e o eixo do cone. Temos então os seguintes casos: 1. β =, onde teremos a parábola, 2. β >, onde teremos elipses e, 3. β <, onde teremos hipérboles. Imaginando o cone como um sólido, vamos designar a região que contém o eixo do cone de interior do cone. Mas o cone continua sendo a superfície do sólido. No primeiro caso, mostremos que existe uma esfera no interior do cone, que tangencia o cone e o plano. O ponto de tangência com o plano é o foco F da parábola. A tangência 339

2 da esfera com o cone define uma circunferência C contida num plano γ perpendicular ao eixo do cone, que intercepta o plano α da parábola segundo a reta r, diretriz da parábola. 340 No segundo caso, teremos duas esferas S 1 e S 2 no interior do cone, uma de cada lado do plano α, cada uma tangenciando o plano e o cone. Cada esfera tangencia o plano num foco da elipse. Sejam S 1 α = F 1 e S 2 α = F 2 estes focos. Cada esfera S i tangencia o cone segundo uma circunferência c i, contida num plano γ i perpendicular ao eixo do cone, que intercepta o plano da elipse segundo uma reta r i, que será diretriz da elipse, i {1, 2}. No terceiro caso, também teremos duas esferas S 1 e S 2 no interior do cone, mas um de cada lado em relação ao vértice do cone, tangenciando o plano se secção pelo mesmo lado e tangenciando também o cone segundo circunferências. Também neste caso, teremos os focos F 1 e F 2 da hipérbole onde as esferas tangenciam o plano, e as diretrizes r 1 e r 2, na intersecção de α com os planos γ 1 e γ 2 contendo as tangências das esferas com o cone.

3 341 Vamos ao caso da elipse (β > ). No detalhe, o corte lateral do cone, por um plano que passa pelo eixo do cone e é perpendicular ao plano α. e C 2 Neste corte podemos obter os centros C 1 e C 2 das esferas i j α D 2 G A 2 F 2 K C β C 1 F 1 c 1 O N c 2 A 1 I γ 2 γ 1 D 1 e os raios C 1 N e C 2 I, assim como as posições dos planos γ 1 e γ 2 que passam pelas circunferências c 1 e c 2, de tangência das esferas com o cone. Temos também os focos F 1 e F 2, o centro C, e os vértices A 1 e A 2 da elipse. Podemos observar que dist(a 1, F 1 ) = dist(a 1, N) e dist(a 1, F 2 ) = dist(a 1, I), donde dist(a 1, F 1 ) + dist(a 1, F 2 ) = dist(n, I) = dist(c 1, c 2 ). Vemos também que

4 dist(a 2, F 1 ) + dist(a 2, F 2 ) = dist(k, G) = dist(c 1, c 2 ). E para um ponto P qualquer da secção? Vamos apresentar outra posição, em que enxergamos os círculos c i = S i γ i como segmentos como no corte acima, mas que seja possível visualizar razoavelmente a secção do cone com o plano α. Considere um ponto qualquer P da secção, que queremos mostrar que é uma elipse. Sejam P 1 = c 1 s(o, P) e P 2 = c 2 s(o, P), onde s(o, P) é a semirreta com origem no vértice O do cone e passa por P. P 2 P A 2 F 2 P 1 F 1 A 1 c 1 N O c 2 I 342 Temos que os segmentos PF 1 e PP 1 são congruentes, já que ambos são tangentes à esfera S 1. Analogamente, PF 2 e PP 2 são congruentes, por serem tangentes à esfera S 2. Logo dist(p, F 1 ) + dist(p, F 2 ) = dist(p 1, P 2 ) = dist(c 1, c 2 ), para todo P na secção. Assim, a secção é uma elipse, e 2a = dist(c 1, c 2 ) = dist(n, I ). Vamos mostrar agora que dist(p, F i) dist(p, d i ) = cos(β) cos() para todo P na elipse, onde d i = γ i α é uma das retas diretrizes (i {1, 2}). E depois, que c a = cos(β) cos(). Para a primeira parte, consideremos o ponto P sobre a secção do cone. Sejam Z 1 e Z 2 as projeções ortogonais de P sobre os planos γ 1 e γ 2, respectivamente. Vamos mostrar para i = 1. Temos que PF 1 = PP1 pois são tangentes à mesma esfera S 1.

5 343 Como PZ 1 tem a direção do eixo do cone, o ângulo com PP 1 é pois α Z 1 P β F 1 d 1 P 1 D O D 1 γ 1 PP 1 está na geratriz do cone. E como o plano do triângulo PZ 1 D 1 (onde D 1 é o ponto de d 1 tal que PD 1 mede a distância de P à reta diretriz d 1 ) é perpendicular ao plano α, temos que o ângulo entre PZ 1 e PD 1 é β. Então, dist(p, P 1 ) cos() = dist(p, Z 1 ) e dist(p, D 1 ) cos(β) = dist(p, Z 1 ), donde dist(p, F 1 ) dist(p, d 1 ) = dist(p, P 1) dist(p, D 1 ) = cos(β). Análogo para i = 2. cos() Voltemos agora à vista do corte do cone, perpendicular a α. Considere os centros C 1 e C 2 das esferas. Por um lado, 2a = dist(c 1, c 2 ) = dist(k, G) = dist(c 1, C 2 ) cos(β). Por outro lado, temos que dist(c 1, C 2 ) = dist(c 1, L) + dist(l, C 2 ), onde L é a intersecção do eixo do cone com o plano α, 2c = dist(c 1, L) cos(β) + dist(c 2, L) cos(β) = dist(c 1, C 2 ) cos(β). e G A 2 F 2 β C 1 C 2 L F 1 K c 1 N Logo, c a = 2c 2a = dist(c 1, C 2 ) cos(β) dist(c 1, C 2 ) cos(β) = cos(β) cos(). Acabamos de mostrar a equivalência entre as três versões da excentricidade e da elipse. O c 2 A 1 I

6 344 c c Parábola, de perfil No caso da parábola (β = ), temos a seguinte vista de perfil do plano α seccionando o cone. γ A C 1 c 1 F B V d Exatamente como no caso da elipse, para cada ponto P da parábola, obtemos dist(p, P 1 ) dist(p, D 1 ) = cos(β) D 1 d. Mas como = β, temos que realmente uma parábola. O α dist(p, F) dist(p, d) = cos(), onde P 1 = c 1 OP e PD 1 é o segmento perpendicular a d = γ α, dist(p, F) = 1, comprovando que a secção é dist(p, d) Agora vamos à hipérbole ( > β). Iniciamos com uma visualização do corte pelo plano que passa pelo eixo do cone e é perpendicular ao plano α. C 2 O C 1 F 1 F 2 A 2 γ 2 G D 2 γ 1 N c 2 c 1 I K β D 1 A 1 Neste corte podemos ver claramente os ângulos e β, os centros C 1 e C 2 e os raios r 1 e r 2 das esferas tangentes, assim como os focos F 1 e F 2 e os vértices A 1 e A 2 da possível hipérbole. D 1 e D 2 indicam as posições das diretrizes d 1 e d 2. Observe também que A 1 G = A 1 F 2 por serem tangentes à esfera S 2. E como A 1 F 1 = A1 K, temos que deveremos ter 2a = dist(a 1, F 2 ) dist(a 1, F 1 ) = dist(k, G). Mostremos que para um ponto qualquer P da secção do cone pelo plano α, obtemos que dist(p, F 2 ) dist(p, F 1 ) = 2a, comprovando que a secção é uma hipérbole com os

7 focos F 1 e F 2. Seja P o ponto. Na geratriz do cone passando por P, considere P 1 c 1 e P 2 c 2, onde c 1 e c 2 são as circunferências de tangência das esferas com o cone. Temos que PF 1 = PP1 por serem tangentes a S 1 e PF 2 = PP2 por serem tangentes a S 2. Logo, dist(p, F 2 ) dist(p, F 1 ) = dist(p, P 2 ) dist(p, P 1 ). Como P, P 1 e P 2 estão alinhados, com P num dos extremos, temos que dist(p, P 2 ) dist(p, P 1 ) = dist(p 1, P 2 ). Como P 1 P 2 é um segmento da geratriz do cone, de c 1 a c 2, podemos dizer que dist(p 1, P 2 ) = 2a para todo P na secção, que portanto, é uma hipérbole. A mesma demonstração utilizada para a elipse mostra que dist(p, F 1) dist(p, d 1 ) = dist(p, F 2) dist(p, d 2 ) = cos(β) cos() para todo P da hipérbole de focos F 1 e F 2 e diretrizes d 1 e d 2. Mostremos que e = c a = cos(β) cos(). Primeiro, considere o segmento C 1 C 2 = C 1 O C 2 O, onde O é o vértice do cone, e C 1 e C 2 são os centros das esferas. Temos que C 1 O cos+ C 2 O cos = KO + OG = 2a (veja K e G na figura). Logo, dist(c 1, C 2 ) cos = 2a. Agora, como C 1 F 1 e C 2 F 2 são ortogonais a α, e o ângulo entre C 1 C 2 e F 1 F 2 é β, temos que F 1 F 2 = C 1 C 2 cosβ. Logo, 2c = dist(f 1, F 2 ) = dist(c 1, C 2 ) cosβ. Assim, e = c a = 2c 2a = dist(c 1, C 2 ) cosβ dist(c 1, C 2 ) cos = cosβ cos. 345 Problema 1 Dados os ângulos do cone e β do plano de secção, e um ponto L por onde passa o plano, obtenha com o GeoGebra as figuras planas deste capítulo, referentes ao plano que passa pelo eixo do cone e perpendicular ao plano de secção. Utilize seletores para os ângulos, para que de uma única construção possa obter os três casos, isto é, da elipse, da parábola e da hipérbole. Para resolver o problema, estude a obtenção dos centros e raios das esferas. A construção é a mesma, para os três casos. E comece a construção com β.

8 346 Problema 2 Construa modelos das construções de Dandelin, utilizando esferas disponíveis em alguns tamanhos fixos, e folhas transparentes e suficientemente rígidas para modelar o cone e os planos, também disponíveis somente em determinados tamanhos. Para resolver este problema, utilize o GeoGebra para simular a planificação do cone e as secções cônicas em verdadeira grandeza (como se estivesse observando de frente ao plano de secção), em função dos raios das esferas, dados inicialmente. Problema 3 Obtenha também imagens 3D do cone e da secção cônica do problema anterior, utilizando um programa de visualização 3D como k3dsurf. Para isso, deve obter as equações do cone e do plano de secção que fornece a secção cônica calculada. Se for incluir as esferas, deve determinar suas equações.

Profª.. Deli Garcia Ollé Barreto

Profª.. Deli Garcia Ollé Barreto CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

3 ano E.M. Professores Cleber Assis e Tiago Miranda

3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 5 - Complementos De onde veio o nome seção cônica? Seções cônicas são as seções formadas pela interseção

Leia mais

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais MATRIZES VETORES E GEOMETRIA ANALÍTICA Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi Março 2002 Matrizes Vetores e Geometria Anaĺıtica Copyright c 2002

Leia mais

Universidade Federal de Minas Gerais. Interseções de uma Superfície Cônica Circular Reta com um Plano. Ananias Moreira

Universidade Federal de Minas Gerais. Interseções de uma Superfície Cônica Circular Reta com um Plano. Ananias Moreira Universidade Federal de Minas Gerais Interseções de uma Superfície Cônica Circular Reta com um Plano Ananias Moreira Belo Horizonte, 2010 Ananias Moreira Interseções de uma Superfície Cônica Circular

Leia mais

Geometria Analítica: Cônicas

Geometria Analítica: Cônicas Geometria Analítica: Cônicas 1 Geometria Analítica: Cônicas 1. Parábola Definição: Considere em um plano uma reta d e um ponto F não pertencente à d. Parábola é o lugar geométrico formado pelo conjunto

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva

SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva SECÇÕES CÔNICAS Usando o programa winplot visualize as cônicas disponíveis em nosso AVA Moodle. 1. Elementos da Elipse: F1, F2:

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos

Leia mais

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1).

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1). 3.1 Obtenha a equação e esboce o gráfico da circunferência caracterizada por: (a) Centro C (, 1) eraior =5; (b) Passa pelos pontos A (1, ),B(1, 1) e C (, 3) ; (c) Inscrita no triângulo determinado pelas

Leia mais

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza Hipérbole É o conjunto de todos os pontos de um plano cuja diferença das distâncias, em valor absoluto, a dois pontos fixos desse plano é constante.

Leia mais

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1 14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos

Leia mais

Curvas em geral e as cônicas

Curvas em geral e as cônicas Capítulo 5 Curvas em geral e as cônicas Curvas podem ser apresentadas de diversas maneiras, dependendo do contexto. E bons exemplos de curvas são as cônicas, além das retas e circunferências. A seguir

Leia mais

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita). QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Curso de Geometria Analítica. Hipérbole

Curso de Geometria Analítica. Hipérbole Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 03 - Cônicas- Circunferência, Elipse, Hipérbole e Parábola

Leia mais

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS

MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina gravina@mat.ufrgs.br Instituto de Matemática da UFRGS Neste minicurso vamos trabalhar com os recursos do GeoGebra 3D e discutir possibilidades

Leia mais

4.4 Secções planas de superfícies e sólidos

4.4 Secções planas de superfícies e sólidos 4.4 Secções planas de superfícies e sólidos Geometria Descritiva 2006/2007 e sólidos Quando um plano intersecta uma superfície geométrica determina sobre ela uma linha plana que pertence à superfície A

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

Curiosidades relacionadas com o Cartaz da OBMEP 2017

Curiosidades relacionadas com o Cartaz da OBMEP 2017 Curiosidades relacionadas com o Cartaz da OBMEP 2017 As esferas de Dandelin A integração das duas maiores competições matemáticas do país, a OBMEP e a OBM, inspirou-nos a anunciar nos quatro cantos do

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais

FACULDADE DE ARQUITECTURA DA UNIVERSIDADE TÉCNICA DE LISBOA ÁREA CIENTÍFICA DE DESENHO E COMUNICAÇÃO GRUPO DE DISCIPLINAS DE GEOMETRIA

FACULDADE DE ARQUITECTURA DA UNIVERSIDADE TÉCNICA DE LISBOA ÁREA CIENTÍFICA DE DESENHO E COMUNICAÇÃO GRUPO DE DISCIPLINAS DE GEOMETRIA FACULDADE DE ARQUITECTURA DA UNIVERSIDADE TÉCNICA DE LISBOA ÁREA CIENTÍFICA DE DESENHO E COMUNICAÇÃO GRUPO DE DISCIPLINAS DE GEOMETRIA PROJECÇÕES COTADAS (exercícios resolvidos) 2006 EXERCÍCIOS C_er_01

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar º. BIMESTRE I PORCENTAGEM 1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre ( juros compostos), sabendo que o capital

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas - Engenharia Mecânica Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 = QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)

Leia mais

Geometria Analítica II - Aula 5 108

Geometria Analítica II - Aula 5 108 Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Respostas dos Exercícios de Fixação

Respostas dos Exercícios de Fixação Respostas dos Eercícios de Fiação Capítulo 1 1.1) ac + ab + bc = 1.) p = 14 64 9 87 1.7) P =,,Q =, 49 49 49 49 1.8) u+ v = 6 ma 1.10) ( 4b, b ) 1.17) Área =.( AB + BC ).( BC + CD) 1 Última Atualização:

Leia mais

2 As Cônicas. estudos da Geometria, tornou-se um dos mais originais matemáticos gregos.

2 As Cônicas. estudos da Geometria, tornou-se um dos mais originais matemáticos gregos. 2 As Cônicas Segundo Delgado, Frensel e Crissaff (2013), historiadores creditam ao matemático grego Menaecmus (380 a. C 320 a.c.) a descoberta do estudo das Curvas Cônicas. Acredita-se que o referido geômetra

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

Exercícios de Geometria Analítica - Prof. Ademir

Exercícios de Geometria Analítica - Prof. Ademir Exercícios de Geometria nalítica - Prof. demir Vetores 1. onsidere o triângulo, onde = (1, 1, 1), = (2, 1, 0) e = (3, 2, 3). Verifique que este triângulo é retângulo, diga qual vértice contém o ângulo

Leia mais

Explorando construções de cônicas *

Explorando construções de cônicas * Explorando construções de cônicas * João Calixto Garcia e Vanderlei Marcos do Nascimento 03 de março de 2014 Resumo O assunto Construções Geométricas mostra-se um belo instrumento para o ensino da Matemática.

Leia mais

Estudo das cônicas no ensino superior com a utilização do GeoGebra

Estudo das cônicas no ensino superior com a utilização do GeoGebra Estudo das cônicas no ensino superior com a utilização do GeoGebra Autores: Juracélio Ferreira Lopes - IFMG Wladimir Seixas - UFSCAR 20 de novembro de 2011 Motivação e Objetivos Motivação: A motivação

Leia mais

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Geometria Analítica. Cônicas. Prof. Vilma Karsburg

Geometria Analítica. Cônicas. Prof. Vilma Karsburg Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

Propriedades da Inversão

Propriedades da Inversão Inversão e os Problemas de Apolônio - Nível 2 Prof. Oertes Uma inversão em relação a uma circunferência Γ de centro O e raio r é uma função que associa a cada ponto A (distinto de O), do plano denido por

Leia mais

APLICAÇÕES DE CÔNICAS NA ENGENHARIA

APLICAÇÕES DE CÔNICAS NA ENGENHARIA O que você deve saber sobre APLICAÇÕES DE CÔNICAS NA ENGENHARIA As equações das curvas chamadas cônicas recebem esse nome devido à sua origem (a intersecção de um cone por um plano) e podem ser determinadas

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Lista 4 com respostas

Lista 4 com respostas Lista 4 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Estude a posição relativa das retas r e s. (a) r : X = (1, 1, 1) + λ( 2, 1, 1), s : (b) r : { { x y z = 2

Leia mais

Cálculo II - Superfícies no Espaço

Cálculo II - Superfícies no Espaço UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE CÔNICAS - MAT 2127 - CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos. ELIPSE (1) Se

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3. AS CÔNICAS CÁLCULO VETORIAL - 2017.2 3.1 A circunferência 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa pelos pontos A (5; 1) ;

Leia mais

CÔNICAS - MAT CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira ELIPSE

CÔNICAS - MAT CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira ELIPSE CÔNICAS - MAT 144 - CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos.

Leia mais

Geometria Analítica II - Aula 7 178

Geometria Analítica II - Aula 7 178 Geometria Analítica II - Aula 7 178 Aula 8 Superfícies Regradas Dizemos que uma superfície S é regrada quando por todo ponto P pertencente a S passa pelo menos uma reta r P inteiramente contida em S. Fig.

Leia mais

GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0

GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza 1. GEOMETRIA ANALÍTICA Respostas da 10 a

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4. SUPERFÍCIES QUÁDRICAS CÁLCULO VETORIAL - 2017.2 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana,

Leia mais

Obter as equações paramétricas das cônicas.

Obter as equações paramétricas das cônicas. MÓDULO 1 - AULA 1 Aula 1 Equações paramétricas das cônicas Objetivo Obter as equações paramétricas das cônicas. Estudando as retas no plano, você viu que a reta s, determinada pelos pontos P = (x 1, y

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

Quantos cones cabem em um cilindro?

Quantos cones cabem em um cilindro? Reforço escolar M ate mática Quantos cones cabem em um cilindro? Dinâmica 4 2º Série 3º Bimestre Aluno Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Prismas e Cilindros. PRIMEIRA ETAPA

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

Notas sobre Geometria Espacial e Descritiva

Notas sobre Geometria Espacial e Descritiva 1 Notas sobre Geometria Espacial e Descritiva 0.1 Preliminares sobre Geometria Espacial e Descritiva Considerando a geometria do plano e o desenho geométrico plano totalmente conhecidos e explorados, passaremos

Leia mais

Aula Exemplos diversos. Exemplo 1

Aula Exemplos diversos. Exemplo 1 Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

REGRAS GERAIS DE GEOMETRIA DESCRITIVAII 2010

REGRAS GERAIS DE GEOMETRIA DESCRITIVAII 2010 1 Isabel coelho 20. SECÇÕES PLANAS 20.1 Secções planas em poliedros 20.1.2 Secções planas produzidas por planos paralelos aos planos das bases A figura da secção será paralela à figura da base. Identificar

Leia mais

Soluções dos Problemas do Capítulo 4

Soluções dos Problemas do Capítulo 4 Soluções do apítulo 4 155 Soluções dos Problemas do apítulo 4 Problema 1 h 10 14 Figura 57 x Seja h a altura do Pão de çúcar em relação ao plano horizontal de medição e seja x a distância de ao pé da altura

Leia mais

Aula 15 Superfícies quádricas - cones quádricos

Aula 15 Superfícies quádricas - cones quádricos Aula 15 Superfícies quádricas - cones quádricos MÓDULO - AULA 15 Objetivos Definir e estudar os cones quádricos identificando suas seções planas. Analisar os cones quádricos regrados e de revolução. Cones

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Aula 17 Superfícies quádricas - parabolóides

Aula 17 Superfícies quádricas - parabolóides Objetivos Aula 17 Superfícies quádricas - parabolóides Apresentar os parabolóides elípticos e hiperbólicos identificando suas seções planas. Estudar os parabolóides regrados e de revolução. Nas superfícies

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva. 1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos

Leia mais