MA13 Geometria I Avaliação
|
|
|
- Martim Luiz Soares Azeredo
- 9 Há anos
- Visualizações:
Transcrição
1 13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada. X Y O Seja O, o centro do triângulo equilátero e seja o ponto médio do lado como na figura acima. Pela propriedade do baricentro do triângulo, O O e como O 1 temos O. região cuja área se pede é formada por duas partes justapostas X e Y como mostra a figura. Observando que 3 X 3Y é a área da coroa circular formada pelas duas circunferências temos 3( X Y ) 1 3. Logo, X Y.
2 Questão O poliedro P que inspirou a bola da opa de 70 é formado por faces pentagonais e hexagonais, e é construído da seguinte forma: onsidere um icosaedro regular de aresta a (Fig. 1 abaixo). partir de um vértice e sobre cada uma das 5 arestas que concorrem nesse vértice, assinale os pontos que estão a uma distância de 3 a desse vértice. sses 5 pontos formam um pentágono regular (Fig. ). Retirando a pirâmide de base pentagonal que ficou formada obtemos a Fig. 3. Repetindo a mesma operação para todos os vértices do icosaedro obtém-se o poliedro P. Fig. 1 Fig. Fig. 3 (0,5) (a) Determine quantas são as faces pentagonais e quantas são as faces hexagonais de P. (0,7) (b) Determine os números de arestas, faces e vértices de P. (0,8) (c) Sabendo que uma diagonal de um poliedro é todo segmento que une dois vértices que não estão na mesma face, determine o número de diagonais de P. (a) ada face pentagonal de P apareceu onde havia um vértice do icosaedro. omo o icosaedro tem 1 vértices então P tem 1 faces pentagonais. ada face (triangular) do icosaedro deu origem a uma face hexagonal de P. omo o icosaedro tem 0 faces triangulares então P tem 0 faces hexagonais. (b) Do item anterior temos F 5 1 e F 0 O número total de faces de P é F F 5 F ontando as arestas temos: 5F 5 F , ou seja, 90. omo P é convexo então vale a relação de uler V F. Portanto, V 0. (c) Seja d n o número de diagonais de um polígono de n lados. O número de diagonais de um pentágono é d 5 5 e o de um hexágono é d 9.
3 soma dos números de diagonais de todas as faces é S F d F d Vamos agora construir todos os segmentos cujas extremidades são os V vértices do poliedro P. quantidade de diagonais de P é D V S ssim, D
4 Questão 3 Definição: Dado um segmento, o plano mediador desse segmento é o plano perpendicular a que contém o seu ponto médio. 1ª Parte (,0) Prove que um ponto P equidista de dois pontos e se, e somente se, pertence ao plano mediador de. Seja o ponto médio de e seja Π o plano mediador de. P Π (a) Suponha que P pertença a Π. Se P coincide com então equidista de e. Se não, como é perpendicular a Π então é perpendicular a P. omo é médio de então os triângulos retângulos P e P são congruentes. Logo, P P, ou seja, P equidista de e. P Q Π (b) Suponha que P não pertença a Π. Imaginemos, por exemplo e sem perda de generalidade, os pontos P e no mesmo semiespaço determinado por Π. omo está no semiespaço oposto a reta PQ corta Π em um ponto Q. omo Q então, pela parte a), Q Q. No triângulo PQ tem-se: ssim, P não equidista de e. P PQ Q PQ Q P.
5 ª Parte figura abaixo mostra o cubo D-F de aresta a. Sejam, N, P, Q, R e S os pontos médios das arestas, F, F,, D e D. (0,5) (a) ostre que esses seis pontos são coplanares. Sugestão: ostre que qualquer um deles pertence ao plano mediador da diagonal do cubo (a propriedade enunciada na primeira parte da questão pode ser utilizada mesmo que você não a tenha demonstrado). D F (0,5) (b) ostre que o hexágono NPQRS é regular. (1,0) (c) alcule o volume da pirâmide de vértice e base NPQRS. S R O Q F N (a) Tomemos o ponto, médio da aresta. Os triângulos e são congruentes, pois, 0 e 90 Logo, e, portanto, pertence ao plano mediador da diagonal. nalogamente, cada um dos outros pontos: N, P, Q, R e S também estão nesse mesmo plano. (b) ada lado do hexágono é a metade da diagonal de a uma face. Por exemplo, NP. Seja O, o centro do cubo. Todos os vértices do hexágono possuem mesma distância ao ponto O. distância do centro do cubo a qualquer aresta é a a metade da diagonal de uma face, ou seja,. Portanto, cada um dos triângulos ON, NOP,..., SO é equilátero e o hexágono é regular. (c) área do hexágono é omo a altura da pirâmide é a metade da diagonal do cubo temos a a 3 3a O volume da pirâmide é: V. 3 8 P a 3 4 a 3 O. 3 3a.
6 3ª Parte figura abaixo mostra o cubo D-F de aresta a. (1,0) (a) ostre que as retas D e são ortogonais. F (1,0) (b) alcule o comprimento da perpendicular comum entre D e. D Π Y D X (a) Seja Π o plano diagonal. omo é perpendicular ao plano D então é ortogonal a D. as é perpendicular a D (pois as diagonais de um quadrado são perpendiculares. omo D é ortogonal a e então D é perpendicular a Π. omo está contida em Π então D é ortogonal a. (b) Seja X o ponto onde D fura o plano Π. O ponto X é o centro da face D. Sobre o plano Π tracemos XY perpendicular a. Lembrando que D é perpendicular a Π então D é perpendicular a XY. ssim, XY é a perpendicular comum entre D e. Os triângulos retângulos YX e são semelhantes. Logo, XY X XY a a a 3 XY a
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
EXERCÍCOS DE REVISÃO - 1º ANO ENSINO MÉDIO
EXERÍOS DE REVISÃO - 1º NO ENSINO MÉDIO 1.- Para a função definida por f(x) = - 2x 2 + x + 1, determine as coordenadas do vértice e decida se ele representa um ponto de máximo ou de mínimo, explicando
PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.
PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).
GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma
III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso
Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.
Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações
Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)
VESTIBULAR UFPE UFRPE / ª ETAPA
VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.
Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA
Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies
Matemática Cada quadrado pequeno ilustrado na figura tem lado 2. Qual é a área do polígono ABCDE?
Matemática 01. ada quadrado pequeno ilustrado na figura tem lado. Qual é a área do polígono E? E Resposta: 64 O polígono pode ser decomposto no triângulo E e no quadrado E que tem lado 4 + 6. Logo, a área
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE
GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
Aula 29 Volume de pirâmides, cones e esferas
MÓULO 2 - UL 29 ula 29 Volume de pirâmides, cones e esferas Objetivos alcular o volume de uma pirâmide. alcular o volume de um cone. alcular o volume de uma esfera. Introdução Sabemos que se cortarmos
Geometria Espacial: Sólidos Geométricos
Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
OS PRISMAS. 1) Conceito :
1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar
Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
POLIEDROS AULA I. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
POLIEDROS AULA I Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos POLIEDROS Vértice Face Aresta 1) Definição de POLIEDRO: É uma região do espaço delimitada por um conjunto finito de polígonos,
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA
MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Rita de Cássia Pavani Lamas, Departamento de Matemática, IBILCE-UNESP [email protected] Uma aplicação da congruência de triângulos e polígonos
Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão1 rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF
Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1
1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem
Resoluções das atividades
Resoluções das atividades ódulo Geometria spacial I 01 tividades para sala Um plano divide o espaço em dois semiespaços opostos, dos quais ele é origem. Observe os casos: I. α 17 d 17 itágoras ( 17) =
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
REGULARES POLIEDROS IRREGULARES
GEOMETRIA ESPACIAL ESFERA OBLÍQUO RETO CILINDRO OBLÍQUO RETO CONE SÓLIDOS DE REVOLUÇÃO REGULAR OBLÍQUA RETA PIRÂMIDE REGULAR OBLÍQUO RETO PRISMA IRREGULARES ICOSAEDRO DODECAEDRO OCTAEDRO HEXAEDRO TETRAEDRO
Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.
Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,
Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)
Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente
Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades:
Poliedros Teoria Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: P1. Todo polígono da Superfície Poliédrica possui algum lado
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS
Expressão Gráfica II Geometria Descritiva Engenharia Civil - 2014 13 MÉTD DAS DUPLAS PRJEÇÕES RTGNAIS PARTE I REPRESENTAÇÃ D PNT 1. Planos fundamentais de referência (PFR) Consideremos π e π dois planos
SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012
SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO
MA13 Geometria I Avaliação
13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)
SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine
Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.
Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 2 Quadriláteros Inscritíveis II Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
Resolução da 8ª lista de exercícios
Resolução da 8ª lista de exercícios O raio da circunferência é dado pela distância do seu centro a qualquer ponto da circunferência ssim: r d( P, ) (0) + (+ ) 49+ 57) 5 5 Um ponto sobre o eixo das abscissas
a) 64. b) 32. c) 16. d) 8. e) 4.
GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)
Questões da 1ª avaliação de MA 13 Geometria, 2016
uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é
1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).
Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na
Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado.
1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. a) ( 3 4 )25 : ( 3 4 )15 5 10 b) 15 35 : 5 35 3 45 2. Calcule o valor das seguintes
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
CAPÍTULO I - INTRODUÇÃO - GEOMETRIA DESCRITIVA
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: Geometria Descritiva I CURSO: Engenharia Química AUTORES: Luzia Vidal de Souza Deise Maria Bertholdi Costa Paulo Henrique Siqueira
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso
Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006
Segunda Etapa ª ETP º DI 11/1/006 CDERNO DE PROVS FÍSIC MTEMÁTIC GEOMETRI GRÁFIC IOLOGI GEOGRFI PORTUGUÊS LITERTUR INGLÊS ESPNHOL FRNCÊS TEORI MUSICL COMISSÃO DE PROCESSOS SELETIVOS E TREINMENTOS Geometria
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução
MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. Temos que: a reflexão do ponto relativamente ao eixo r é o ponto a translação do ponto
PARTE I - INTRODUÇÃO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Luzia Vidal de Souza e Paulo Henrique Siqueira Disciplina: Geometria Descritiva
Aula 9 Triângulos Semelhantes
MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos
EXERCÍCIOS COMPLEMENTARES
Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas.
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas. Bruno Cervelin DME IFM Universidade Federal de Pelotas 27 de Junho de 2019 B Cervelin (UFPel) Polígonos 27 de Junho de 2019 1 / 17 Polígonos
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos
Definição; Número de diagonais de um polígono convexo; Soma das medidas dos ângulos internos e externos; Polígonos Regulares; Relações Métricas em um polígono regular; Professores: Elson Rodrigues Marcelo
Aula 12 Introdução ao conceito de área
MÓULO 1 - UL 1 ula 1 Introdução ao conceito de área Objetivos Introduzir o conceito de área de uma figura plana presentar as fórmulas para o cálculo da área de algumas figuras planas Introdução entre as
INTRODUÇÃO - GEOMETRIA DESCRITIVA
GEOMETRIA DESCRITIVA - DUPLA PROJEÇÃO ORTOGONAL 1 UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: Geometria Descritiva I CURSO: Engenharia Química AUTORES: Luzia Vidal de Souza
MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução
MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao
3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V
Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da
O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS
MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora: Bárbara de Cássia Xavier Cassins Aguiar MÉTD DAS DUPLAS PRJEÇÕES RTGNAIS PARTE I REPRESENTAÇÃ
INTRODUÇÃO. 1. Desenho e Geometria. Desenho Artístico Desenho de Resolução Desenho Técnico. 2. Geometria Descritiva
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso de Engenharia
Sólidos Inscritos e Circunscritos 3.º Ano
Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3
CAPÍTULO 5 POLÍGONOS. é denominada linha poligonal. A 3 D B A 2 A 4 A 5 A 1. A n-1. A n
PÍTULO 5 POLÍGONOS efinição 5.1: Sejam 1, 2,..., n n pontos coplanares dos quais três quaisquer deles não são colineares. união dos segmentos, 1 2 2 3, 3 4,..., n 1 n é denominada linha poligonal. 3 2
1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro
Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte
Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra är de Figueiredo Lista 1: Vetores - Engenharia Mecânica 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 Estes trabalhos de casa, até ao fim do período, vão ser constituídos por exercícios propostos
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um
UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um
2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.
1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o
REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos
Ortocentro, Reta de Euler e a Circunferência dos 9 pontos
Prof. ícero Thiago - [email protected] rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de
3º trimestre SALA DE ESTUDOS Data: 25/09/18 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
3º trimestre SALA DE ESTUDOS Data: 5/09/18 Ensino Médio º ano classe: Prof. Maurício Nome: nº.. 1. (Uem 018) Sobre geometria espacial, assinale o que for correto. 01) Dois planos sempre se interceptam.
MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução
MTMÁT - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. nalisando as quatro retas indicadas podemos ver que a reta é paralela
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
