Topologia de Superfícies
|
|
|
- Alfredo Martinho Nobre
- 7 Há anos
- Visualizações:
Transcrição
1 Topologia de Superfícies Eduardo Colli As superfícies Essas peças que lembram objetos artísticos ou de artesanato 1 representam uma das mais belas áreas da matemática, a Topologia Algébrica. Nessa teoria, as superfícies são vistas por suas propriedades mais intrínsecas, que não variam sob deformações. Isso segue na contramão da Geometria, que se preocupa com a forma exata da superfície no espaço. Nota-se que algumas das superfícies não têm um bordo, enquanto outras têm. O bordo constitui-se de uma ou mais curvas fechadas no espaço, entrelaçadas em si mesmas e entre si. Os bordos formados por somente uma curva são chamados de nós, enquanto aqueles que envolvem várias curvas são chamados de enlaces. As superfícies distinguem-se também por sua orientabilidade: as orientáveis têm dois lados, enquanto as não-orientáveis permitem voltar ao mesmo ponto da superfície pelo outro lado. Um exemplo clássico é a Faixa de Möbius, mas há outros (tente identificá-los!). Outra informação importante sobre uma superfície é sua carac- 1 Peças do acervo da Matemateca, vide algumas fotos ao longo do texto. 1
2 terística de Euler, que pode ser obtida a partir de uma divisão da superfície em triângulos. Contando-se faces (F ), arestas (A) e vértices (V ) da triangulação, calcula-se o número χ = F A + V. É possível mostrar que esse número não depende da triangulação escolhida. Ele também serve para distinguir superfícies essencialmente diferentes. Definição de superfície Daremos neste texto uma definição restrita de uma superfície, pensada apenas em função das peças artesanais. As peças procuram representar uma idéia abstrata de objetos matemáticos que não podem ser fabricados no nosso mundo real. Ao leitor que quiser saber um pouco mais recomenda-se visitar Aderbal, o Topólogo, no site inacabado colli/aderbal/ Uma superfície é um conjunto S no espaço tridimensional que satisfaz algumas propriedades, que discutiremos abaixo uma por uma. Vizinhanças são equivalentes a discos A primeira propriedade diz respeito à estrutura da superfície em torno de qualquer um de seus pontos. Para cada ponto p do conjunto S consideramos B r (p), a bola de centro p e raio r, que é o conjunto de pontos que não distam de p mais do que r (isso inclui os pontos da superfície da bola, pois para esses pontos a distância a p é igual a r). O conjunto S B r (p), chamado de r-vizinhança de p é o conjunto dos pontos que estão em S ao mesmo tempo que não distam mais do que r do ponto p. Então pede-se que para todos os valores (positivos) suficientemente pequenos de r a r-vizinhança de p seja equivalente 2
3 a um disco. Um disco é o conjunto de pontos do plano a uma distância não maior do que r de um ponto dado (o ponto dado pode ser a origem). É preciso explicar melhor o que queremos com essa imposição. Equivaler a um disco significa, intuitivamente, que se pode deformar o conjunto, suavemente, sem romper ou rasgar, até que ele adquira o formato de um disco. Outra definição é a seguinte: existe uma função, entre o conjunto e um disco, que é bijetora (isto é, a cada ponto do domínio corresponde um e somente um ponto do contra-domínio) e é bicontínua (isto é, é contínua e sua inversa é contínua). Veja que a primeira definição se encaixa na segunda, uma vez que poderíamos acompanhar o trajeto de cada ponto ao longo da deformação, e a função seria dada dessa maneira: a cada ponto do conjunto se relaciona o ponto de chegada no disco, que é o contradomínio. Esfera, toro e bitoro são exemplos de superfícies. Mesmo com a esfera, vê-se que as r-vizinhanças tomadas devem ter r pequeno. Senão, tomando um ponto da esfera e r grande teríamos S B r (p) = S (todos os pontos da esfera estariam a menos de r de p), e esse conjunto não é deformável num disco. Também é surpreendente porém correto que os pontos de um poliedro satisfazem a exigência, mesmo que sejam pontos de vértices ou arestas. Não faz mal que a superfície tenha vincos e dobras, desde que seus pedacinhos possam ser alisados! Aqui fica evidente porque uma superfície não pode ser produzida no mundo real: ela tem a espessura de um disco, um objeto bidimensional, que no espaço tridimensional é infinitamente fino! As peças artesanais têm espessura (e não é pouca), mas um pouco de imaginação pode nos convencer de que elas não têm, da mesma forma que podemos ver poliedros de cartolina como uma união de 3
4 verdadeiros poĺıgonos planos. Nessa discussão, é importante destacar que há dois tipos de pontos numa superfície, os pontos interiores e os pontos de bordo. Para os pontos interiores, uma deformação bem feita pode transformar sua vizinhança num disco de forma que o próprio ponto p, se acompanhado em sua trajetória, vá parar no centro do disco. Já para os pontos de bordo isso não é possível: eles deverão ficar, após a deformação, na circunferência do disco. Por exemplo, imagine um cilindro, visto aqui como um rolo vazio de papel higiênico com um papelão infinitamente fino. Os dois círculos limítrofes do cilindro constituem-se de pontos de bordo, pois para eles a r-vizinhança tem o formato de uma letra D cheia, que pode ser deformada para um disco, mas sempre com o ponto base na fronteira. Os demais pontos desse cilindro são todos pontos interiores. A superfície é limitada A primeira propriedade acima descrita é crucial e elimina vários conjuntos. Mas para excluir ainda outros, pediremos que o conjunto seja limitado. Ser limitado é não se estender ao infinito, porém é mais preciso dizer que existe uma caixa (abstrata, é claro) que pode conter o conjunto inteiro. Por exemplo, o plano xy no espaço tridimensional satisfaz a primeira propriedade (as vizinhanças são discos), mas não é limitado. Esta propriedade é bem-vinda, pois senão ficaria um bocado difícil construir as peças... A superfície é conexa Outra propriedade é a conexidade. Pediremos que a superfície seja conexa, isto é, que se possa ir de um ponto a outro da superfície por um caminho inteiramente contido nela. Isto exclui chamar o conjunto formado por duas esferas de uma superfície. 4
5 A superfície é fechada Finalmente, pediremos que a superfície seja fechada. Podemos dar duas definições equivalentes para esse conceito. Essas definições só fazem sentido, no entanto, nesse mundo abstrato. A primeira definição fala do que está de fora: se q é um ponto que não está na superfície então para r maior do que zero e suficientemente pequeno a bola B r (q) não intersecta S. A outra definição fala de aproximação. Suponha que uma seqüência de pontos da superfície se aproxime assintoticamente de um ponto no espaço. Então o ponto do qual ela se aproxima não pode estar fora da superfície. Por exemplo, tome um quadrado (cheio), no espaço, sem um vértice. Chamemos de q esse ponto de vértice, que é um ponto do espaço, porém fora do conjunto. Qualquer bola em torno de q intersecta o conjunto, condição que deveria ser evitada na definição de superfície. Ou ainda: uma seqüência de pontos do quadrado que se aproxime de q é assintótica a um ponto de fora da superfície (o ponto q). Em outras palavras, um quadrado sem um ponto de vértice não é uma superfície! Mesmo assim, todas as outras exigências são satisfeitas (verifique!). Sobre as peças As definições acima acabam por impor que o conjunto de pontos de bordo, se não for vazio, forma uma coleção de curvas fechadas no espaço, sem auto-interseções e interseções mútuas. Uma coleção de curvas assim é chamada de enlace (mesmo que elas estejam, digamos, separadas ) e de nó se for uma coleção de apenas uma curva (vide os textos do site sobre Teoria dos Nós). Abaixo mostramos as peças, agrupadas por semelhança, e descrevemos suas principais propriedades. Entre as superfícies sem bordo, o toro é a primeira que vem à 5
6 mente depois da esfera. Embora as peças sejam figuras sólidas, aqui estamos nos referindo a sua casca. Depois do toro temos o exemplo do bitoro e, evidentemente, o tritoro, o quadritoro, etc, todos superfícies sem bordo. Algumas vezes eles aparecem em formas inusitadas, como o bitoro da foto abaixo. Esse bitoro, por incrível que possa parecer, pode ser deformado em um bitoro clássico. A seguinte seqüência mostra algumas etapas da deformação. 6
7 Entre as superfícies com bordo temos a seguinte, cujo bordo constitui-se de dois anéis enlaçados no espaço. Esse enlace recebe o nome de enlace de Hopf. Perceba que se os anéis não estiverem enlaçados a superfície é apenas um cilindro deformado. Essas superfícies são ditas orientáveis, pois têm dois lados : uma formiguinha andando sobre ela não pode passar para o outro lado a não ser que passe pelo bordo, se houver bordo. Assim, a esfera, o toro e o bitoro são orientáveis (superfícies não-orientáveis e sem bordo não existem segundo a definição acima de superfície; é preciso abstrair o conceito um pouco mais, ver o site do Aderbal). A Faixa de Möbius é o exemplo mais conhecido de superfície não orientável. Ela tem uma única componente de bordo, que pode ser deformada num círculo. 7
8 Já outras superfícies têm como bordo o nó trifólio, que não pode ser deformado num círculo, isto é, não pode ser desmanchado. As superfícies abaixo têm como bordo o nó trifólio, e são orientáveis. Na verdade, um Teorema (Seifert) garante que todo nó é bordo de uma superfície orientável. O nó trifólio também é bordo de uma superfície não orientável. Essa superfície pode ser comparada com a Faixa de Möbius da seguinte maneira. Um cilindro é uma tira de papel colada corretamente na outra ponta, sem torção. A Faixa de Möbius é resultado de uma meia-torção na tira. A superfície cujo bordo é o enlace de Hopf, mostrada acima, é o resultado de duas meias-torções. E esta superfície não orientável, cujo bordo é o nó trifólio, emerge de uma colagem após três meias-torções. Um número par de meias-torções produz uma superfície orientável, enquanto que um número ímpar produz uma superfície não orientável. Abaixo vemos outra forma dessa superfície de três meias-torções. 8
9 Outro exemplo de nó que aparece como bordo é o nó figura-oito. As seguintes superfícies têm bordo com três componentes, cada uma um círculo. Bom, e o que podemos dizer dessas duas? 9
10 Característica de Euler Uma triangulação é uma divisão da superfície em domínios, cada um deles deformável em um disco, delimitados por três arestas (não necessariamente retas) e três vértices entre as arestas. Esses domínios, também chamados de faces, podem ser entendidos como deformações de triângulos. A triangulação deve respeitar o bordo da superfície. Isto quer dizer que se uma aresta intersecta o bordo então a interseção é apenas um vértice ou é a aresta inteira. Assim como se faz com poliedros, podemos contar o número de faces (F ), arestas (A) e vértices (V ) da triangulação. Essa contagem não depende tanto do formato exato da superfície, pois as deformações não estragam, qualitativamente, a triangulação. O mais surpreendente, porém, é que o número F A + V é independente da triangulação escolhida para a superfície. Isso mostra que F A+V é um número intrínseco à superfície e portanto merece um nome: é a característica de Euler da superfície (vide Poliedros ). Esfera, toro e bitoro têm característica de Euler igual a 2, 0 e -2, respectivamente. Qual é a característica de Euler das demais superfícies? Superfícies de Seifert O matemático alemão H. Seifert mostrou, em 1934, que todo nó é o bordo de uma superfície orientável, e sugeriu um algoritmo para construí-la. Ver The Knot Book, de Colin Adams, para uma descrição do algoritmo. As superfícies de Seifert nem sempre são as mais óbvias para um determinado nó. Por exemplo, no nó trifólio é mais evidente a superfície não-orientável equivalente a tomar uma tira de papel 10
11 colada nas pontas após três meias-torções. Exercícios e experimentos 1. Obter a característica de Euler de todos os modelos artesanais. 2. Suponha que se arranque um disco de uma superfície (deixando-se o bordo do disco), formando-se em conseqüência uma superfície diferente. Descubra como muda a característica de Euler nesse processo. 3. Suponha que se arranquem dois discos de uma superfície e colem-se os bordos de um cilindro nos contornos que ficaram. Como muda a característica de Euler da superfície? Relacione com o que acontece à esfera, ao toro e ao bitoro. 4. Modelos de superfícies podem ser construídos sem muita dificuldade com arame e fita crepe (evidentemente requer-se habilidade com o acabamento, mas isso fica a cargo de cada um). Faça um nó ou enlace usando arame e depois defina a superfície usando fita crepe. As peças artesanais foram feitas assim, e depois recobertas com massa plástica. Busque os nós e enlaces em tabelas. Perceba que o mesmo nó ou enlace pode ser bordo de superfícies diferentes, orientáveis ou não. 11
Geometria de Superfícies Planas
Geometria de Superfícies Planas Marcelo iana IMPA - Rio de Janeiro Geometria de Superfícies Planas p. 1/4 Algumas superfícies (não planas) Esfera (g = 0) Toro (g = 1) Bitoro (g = 2) Geometria de Superfícies
Professor: Computação Gráfica I. Anselmo Montenegro Conteúdo: - Objetos gráficos planares. Instituto de Computação - UFF
Computação Gráfica I Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Objetos gráficos planares 1 Objetos gráficos: conceitos O conceito de objeto gráfico é fundamental para a Computação
Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π
Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π Ryuichi Fukuoka Universidade Estadual de Maringá Departamento de Matemática São José do Rio Preto 26 de fevereiro de 2007 Ryuichi
Prof. Márcio Nascimento. 1 de abril de 2015
Geometria dos Sólidos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria
Noções de Geometria. Professora: Gianni Leal 6º B.
Noções de Geometria Professora: Gianni Leal 6º B. Figuras geométricas no espaço: mundo concreto e mundo abstrato Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades. Mundo abstrato:
Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental
Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de de 4ª Série Fundamental TEMA I ESPAÇO E FORMA A compreensão do espaço com suas dimensões e formas de constituição são elementos necessários
Geometria Computacional
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Polígonos 1 Roteiro Introdução Polígonos Teorema da Curva de Jordan Decomposição de polígonos Triangulações Estrutura
Poliedros. INF2604 Geometria Computacional. Waldemar Celes. Departamento de Informática, PUC-Rio. W.
Poliedros INF2604 Geometria Computacional Waldemar Celes [email protected] Departamento de Informática, PUC-Rio W. Celes Poliedros 1 Poliedros Poliedros Região 3D delimitada por uma fronteira composta
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais
Pirâmide, cone e esfera
A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A
Classificação das superfícies Compactas sem bordo
Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Classificação das superfícies Compactas sem bordo Autor: Regina Lourenço de Barros Orientador: Márcio
Volume e Área de Superfície, Parte II
AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo
1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino
1ª Parte SÓLIDOS GEOMÉTRICOS Prof. Danillo Alves 6º ano Matutino "Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços." Prof. Jerriomar Ferreira As Formas existentes
O TEOREMA DE GAUSS-BONNET
O TEOREMA DE GAUSS-BONNET JOSÉ NATÁRIO 1. Introdução Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição do espaço é identificada com outra
Processamento de Malhas Poligonais
Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
A Matemática das montanhas de areia
A Matemática das montanhas de areia Eduardo Colli Élvia M. Sallum IME-USP Introdução O objetivo deste texto é a descrição, para cada uma das três regiões desenhadas abaixo (um quadrado, um retângulo e
Geometria Computacional
GeoComp 2014 p. 1/29 Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2014 GeoComp 2014 p. 2/29 Poliedros
Modelagem Geométrica: Boundary Representation
Modelagem Geométrica: Boundary Representation Prof. Dr. André Tavares da Silva Gabriel Caixeta Silva [email protected] Prof. Dr. Marcelo da Silva Hounsell PPGCA UDESC 2017/01 Introdução Modelagem
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA
CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar
Fabio Augusto Camargo
Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares
Aula 26 Poliedros. Objetivos. Identificar poliedros. Aplicar o Teorema de Euler
MÓDULO 2 - AULA 26 Aula 26 Poliedros Objetivos Identificar poliedros Aplicar o Teorema de Euler Introdução Nesta aula estudaremos outros exemplos de figuras no espaço: os poliedros Começaremos com a definição
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números
32 Matemática. Programação anual de conteúdos
Programação anual de conteúdos 2 ọ ano 1 ọ volume 1. A localização espacial e os números Construção do significado dos números e identificação da sua utilização no contexto diário Representação das quantidades
Teorema de Green Curvas Simples Fechadas e Integral de
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Rita de Cássia Pavani Lamas, Departamento de Matemática, IBILCE-UNESP [email protected] Uma aplicação da congruência de triângulos e polígonos
REPRESENTAÇÃO DE DADOS EM CG
http://computacaografica.ic.uff.br/conteudocap4.html REPRESENTAÇÃO DE DADOS EM CG Cap 4 MODELAGEM E ESTRUTURA DE DADOS Aula 3 UFF - 2017 REPRESENTAÇÃO DE DADOS Um objeto pode ser representado de forma
DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares
Exercícios Polígonos Regulares 1 - Calcular a área de um triângulo. Para construção da figura você irá clicar no ícone que tem um triângulo, para fazer um polígono clique no ícone indicado por polígono,
Volume de Sólidos. Principio de Cavalieri
Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer
Introdução à Computação Gráfica Modelagem. Claudio Esperança Paulo Roma Cavalcanti
Introdução à Computação Gráfica Modelagem Claudio Esperança Paulo Roma Cavalcanti Histórico Modelagem por arames (wireframes). Representa os objetos por arestas e pontos sobre a sua superfície. Gera modelos
MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
O Teorema de Gauss-Bonnet
O Teorema de GaussBonnet Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição mo raio noutra posição qualquer do espaço, mas não com a superfície
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância
A escala de Língua Portuguesa para o 3º ano do Ensino Médio
A escala de Língua Portuguesa para o 3º ano do Ensino Médio LÍNGUA PORTUGUESA 3º ANO DO ENSINO MÉDIO (continua) 1 225-250 2 250-275 3 275-300 4 300-325 Nesse nível, o estudante pode ser capaz de identificar
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.
Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x
Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos
MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios
Plano Curricular de Matemática 6ºAno - 2º Ciclo
Plano Curricular de Matemática 6ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Geometria Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental
MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:
MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno
QUESTÕES PARA O 5º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTRE SUGESTÕES DE RESOLUÇÕES
QUESTÕES PARA O 5º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTRE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 27 Ler informações e dados apresentados em tabelas. COMENTÁRIOS Avalia-se, por meio de itens
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
Capitulo 4 Figuras Geométricas Planas
Página16 Capitulo 4 Figuras Geométricas Planas Ponto O ponto é a figura geométrica mais simples, não tem dimensão (comprimento, largura e altura) e é determinado pelo cruzamento de duas linhas. Identificação
Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.
Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos
Ainda Sobre o Teorema de Euler para Poliedro Convexos
1 Introdução Ainda Sobre o Teorema de Euler para Poliedro Convexos Elon Lages Lima Instituto de M atemática Pura e Aplicada Estr. D. Castorina, 110 22460 Rio de Janeiro RJ O número 3 da RPM traz um artigo
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
Poliedros AULA Introdução Denições
AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para
Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora
Objetos Gráficos Espaciais
Universidade Federal de Alagoas Instituto de Matemática Objetos Gráficos Espaciais Prof. Thales Vieira 2014 Objetos Gráficos Espaciais f : U R m 7! R 3 Universo físico Objetos gráficos Representação de
APOSTILA GEOMETRIA DESCRITIVA
APOSTILA GEOMETRIA DESCRITIVA 1 GEOMETRIA MÉTRICA E ESPACIAL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SISTEMAS DE PROJEÇÃO Conforme o que foi exposto anteriormente, o estudo da Geometria Descritiva está
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.
Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de
PLANO DE ESTUDOS DE MATEMÁTICA - 6.º ANO PERFIL DO ALUNO 1.º PERÍODO. DOMÍNIOS SUBDOMÍNIOS/CONTEÚDOS OBJETIVOS n.º de aulas
DE MATEMÁTICA - 6.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos números primos; representar e comparar números
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Determine o número de vértices de um poliedro convexo que tem 3 faces triangulares, 1 face quadrangular, 1 pentagonal e 2 hexagonais. 07) Um poliedro de sete vértices tem cinco ângulos tetraédricos
MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º
6.1 equações canônicas de círculos e esferas
6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que
Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro
Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
Descrição da Escala Matemática - 9 o ano EF
Os alunos do 9º Ano do Ensino Fundamental 200 Associam a fração 1/12 com a imagem de um retângulo dividido em 12 partes iguais, das quais 1 está destacada. Identificam pontos no sistema cartesiano associados
CLASSIFICAÇÃO DOS POLIEDROS
COLÉGIO SHALOM 65 Ensino Fundamental II 6º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO 1) Complete os quadros com as respectivas características: TRABALHO DE
Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I
6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas
Matriz de referência de MATEMÁTICA - SAERJINHO 5 ANO ENSINO FUNDAMENTAL
17 5 ANO ENSINO FUNDAMENTAL Tópico Habilidade B1 B2 B3 ESPAÇO E FORMA GRANDEZAS E MEDIDAS TRATAMENTO DA INFORMAÇÃO H01 H03 H04 H06 Identificar a localização/movimentação de objeto em mapas, croquis e outras
Eletrostática. (Ufmg 2005) Em uma aula, o Prof. Antônio apresenta uma montagem com dois anéis dependurados, como representado na figura.
Eletrostática Prof: Diler Lanza TEXTO PARA A PRÓXIMA QUESTÃO (Ufmg 2005) Em uma aula, o Prof. Antônio apresenta uma montagem com dois anéis dependurados, como representado na figura. Um dos anéis é de
O TEOREMA DE PICK: APLICAÇÕES E IMPLICAÇÕES
TEMAS E CONEXÕES Ano I Número º semestre / ARTIGO O TEOREMA DE PICK APLICAÇÕES E IMPLICAÇÕES Carlos Alberto Paixão (*) Nas séries iniciais do segmento do Ensino undamental são introduzidas as figuras planas
Distância entre duas retas. Regiões no plano
Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,
TEMA I: Interagindo com os números e funções
31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução
Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma
Metas Curriculares Conteúdos Aulas Previstas. - Números primos; - Crivo de Eratóstenes;
ANO LETIVO 2017/2018... 1º PERÍODO - (13 de setembro a 15 de dezembro) DEPARTAMENTO DE MATEMÁTICA /INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina
QUESTÕES. 03- Observe a figura a seguir.
QUESTÕES 01- A fim de construir um jardim na frente de sua escola, o diretor contratou um Arquiteto Paisagista. Após combinarem como seria o referido jardim, concluíram que todas as plantas deveriam ficar
Volumes e Princípio de Cavalieri
Volumes e Princípio de Cavalieri MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Volumes Noção intuitiva O volume de um sólido é a
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina [email protected] Instituto de Matemática da UFRGS Neste minicurso vamos trabalhar com os recursos do GeoGebra 3D e discutir possibilidades
GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.
GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou
Cones, cilindros, esferas e festividades, qual a ligação?
Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo [email protected] Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Invadindo o espaço Dinâmica 5 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 2ª Campo Algébrico Simbólico Introdução à geometria espacial Aluno
Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.
FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana
O plano e a esfera têm em comum infinitos pontos que formam um círculo chamado de secção plana da esfera.
COLÉGIO MILITA DO IO E JANEIO LISTA DE EXECÍCIOS COMPLEMENTAES GEOMETIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 4º BIMESTE DE 015 ESFEA 1- Conceito
O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA
Nível Intermediário O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA Muitos problemas atraentes de matemática elementar exploram relações entre conjuntos finitos, expressas em linguagem coloquial.
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
PROPOSTA DIDÁTICA. 2. Objetivo(s) da proposta didática - Reconhecer o que é um sólido geométrico e suas características.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Jéssica Marilda Gomes Mendes 1.2 Público alvo: Alunos de 6º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo
Física. Campo elétrico. Parte II. Lei de Gauss
Física Campo elétrico Parte II Lei de Gauss Lei de Gauss analogia água Lei de Gauss A magnitude do campo, como já visto, estará contida na densidade de linhas de campo: será maior próxima à carga e menor
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Desenho Computacional. Parte I
FACULDADE FUCAPI Desenho Computacional Parte I, M.Sc. Doutorando em Informática (UFAM) Mestre em Engenharia Elétrica (UFAM) Engenheiro de Telecomunicações (FUCAPI) Referências SILVA, Arlindo; RIBEIRO,
ESPAÇO E FORMA. CURSO: Pró-Letramento. TURMA: Revezamento. ÁREA: Matemática. CONTEÚDO: Espaço e Forma. TEMA: Dobradura, Tangram e Mosaicos
ESPAÇO E FORMA CURSO: Pró-Letramento TURMA: Revezamento ÁREA: Matemática CONTEÚDO: Espaço e Forma TEMA: Dobradura, Tangram e Mosaicos DATA DO ENCONTRO: 22/08/2012 a 24/08/2012 PROFESSOR RESPONSÁVEL: Profª
Fluxo de Campos Vetoriais: Teorema da
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Fluxo de Campos Vetoriais: Teorema da Divergência Na aula anterior introduzimos o conceito de superfície paramétrica e chegamos
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
