O Teorema de Gauss-Bonnet
|
|
|
- Maria Luiza Bento de Sequeira
- 9 Há anos
- Visualizações:
Transcrição
1 O Teorema de GaussBonnet
2 Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição mo raio noutra posição qualquer do espaço, mas não com a superfície de um elipsóide. Para estudar a geometria de uma superfície usamse conceitos como comprimentos, ângulos, geodésicas (curvas de comprimento mínimo) e polígonos ge Como passo inicial para descrever as superfícies classiem que certos aspetos da sua geometria, como comprimentos e ângulos, são ignorados. Mais precisamente, dizemos que duas superfícies têm a mesma topologia se é possível deformar uma na outra continuamente (isto é, sem rasgar nem colar). Por exemplo, a superfície de uma esfera tem a mesma topologia que a superfície de um elipsóide. No estudo da topologia de uma superfície usamse certas quantidades, como, por exemplo, a característica de Euler, que são invariantes por Neste artigo descrevemos de forma elementar o teorema de GaussBonnet, que relaciona a geometria de uma superfície fechada com a sua topologia. Na secção 2 recordamos o defeito angular de um vértice, e provamos um teorema de Descartes que relaciona a soma dos defeitos angulares com a característica de Euler. Este teorema é usado na secção 4 para intuir o teorema de GaussBonnet: a soma dos excessos angulares de qualquer decomposição de uma superfície fechada em polígonos geodésicos depende apenas da sua característica de Euler. A fórmula de Euler para poliedros convexos [1] é bem conhecida: onde V é o número de vértices, A é o número de arestas e F é o número de faces. Exercício ) 2) característica de Euler de uma superfície fechada qualquer. Qual a relação entre a geometria de uma superfície fechada e a sua topologia? Neste artigo descreveremos o Teorema de Gauss Bonnet, que pode ser visto como o precursor dos grandes teoremas da geometria do século XX. Um primeiro passo é reduzir o problema ao caso em que todas as faces são triângulos. De facto, se uma dada face é um polígono com n lados podemos sempre decompôla em n triângulos acrescentando um vértice no seu interior. Desta forma aumentámos V em uma unidade (porque acrescentámos um vértice), aumentámos A em n unidades (porque acrescentámos uma aresta por cada um dos n vértices do polígono) e aumentámos F em n n faces). A variação de foi então de e, portanto, tem o mesmo valor para o novo poliedro. Assumindo então que todas as faces são triângulos, imaginemos que vamos retirando as faces uma a uma. Quando retiramos a primeira face reduzimos F em uma unidade mantendo V e A inalterados. Portanto, reduzse em uma unidade. A partir deste momento existem faces com
3 , que é possível ir retirando faces com arestas livres de forma a que em cada passo as arestas livres formem uma linha fechada uma aresta livre, diminuímos F em uma unidade e A em uma unidade, mantendo V constante. Logo, mantém se constante. Se retirarmos uma face com duas arestas livres diminuímos F em uma unidade, A em duas unidades e V em uma unidade. Portanto, também neste caso mantém constante. Quando retiramos todas as faces até só restar um triângulo, temos para o poliedro inicial. se Logo, A superfície de qualquer poliedro convexo tem a mesma topologia que a superfície da esfera. Um poliedro com faces triangulares induz então uma triangulação da superfície da com a topologia de triângulos, que se intersetam ao longo de arestas comuns. A demonstração acima pode ser facilmente adaptada para mostrar que qualquer triangulação da superfície da esfera com F triângulos, A arestas e V vértices sa tisfaz. Notese que isto não tem de ser (e não Na geometria habitual do plano, temos o conceito fundamental de segmento de reta. Um segmento de reta tem a propriedade de ser a linha de comprimento mínimo que une os seus dois extremos. Para a superfície de um poliedro um conceito análogo, a que chamaremos arco minimizante. O arco minimizante entre dois pontos é a linha desenhada sobre a superfície do poliedro que une os dois pontos e tem comprimento mínimo (pode existir mais do que um arco minimizante unindo dois pontos, mas ele é único se os pontos maremos arco de geodésica a qualquer linha que coincida com o arco minimizante entre quaisquer dois dos seus pon tersecção de um arco de geodésica com cada face do poliedro é um segmento de reta (porque senão seria possível diminuir o seu comprimento), e que se o arco de geodésica cruza uma aresta então os ângulos opostos entre o arco e a aresta devem gura 1). Consideraremos apenas arcos de geodésica que não contêm vértices do poliedro. exemplo, a superfície de um donut (toro). Continua no entanto a ser verdade que para qualquer superfície fechada S o número inteiro não depende da triangulação usada para o calcular, e é o mesmo para todas as superfícies com essa topologia. Este número chamase a característica de Euler da superfície. Exercício 2.2. Exercício 2.3. Para a fórmula de Euler, a geometria exata da superfície do poliedro é irrelevante. Por exemplo, qualquer pirâmide triangular corresponde essencialmente à mesma triangulação da superfície da esfera, independentemente de as suas faces serem triângulos equiláteros, retângulos ou de outro tipo qualquer. No que se segue, iremos olhar cuidadosamente para a
4 O facto de as arestas poderem desdobrarse mostra que estas, por si só, não introduzem qualquer diferença em relação à geometria do plano. Por exemplo, os ângulos internos de um triângulo geodésico (isto é, uma região do poliedro geodésica) que não contenha nenhum vértice do poliedro no seu interior somam sempre, mesmo que o triângulo intersete arestas. As diferenças entre a geometria da superfície de um poliedro e a geometria do plano estão concentradas nos vértices: em geral, os ângulos internos de um triângulo geo. Chamaremos excesso angular de um triângulo geodésico coincidência: o excesso angular de qualquer triângulo geodésico contendo um único vértice no seu interior é sempre igual ao defeito angular desse vértice. De facto, unindo o vértice do poliedro aos vértices do triângulo geodésico, como se mostra gulos euclidianos (basta desdobrar as arestas apropriadas). Os ângulos internos destes três triângulos euclidianos sointernos do triângulo geodésico mais a soma dos ângulos do poliedro no vértice. Por outras palavras, se é o excesso angular e é a soma dos ângulos do poliedro no vértice, temos Exercício 3.1. exemplo, o excesso angular do triângulo geodésico represen Chamaremos ainda defeito angular ângulos do poliedro no vértice em questão. Por exemplo, o defeito angular do vértice contido no interior do triângulo Este facto não é uma Descartes [4] provou o seguinte teorema: Teorema 3.2. (Descartes) Demonstração. Por um lado, a soma dos defeitos angulares é igual a 2 menos a soma de todos os ângulos do poliedro. Por outro lado, a soma de todos os ângulos do poliedro é igual à soma dos ângulos de todas as suas faces. A soma dos ângulos de uma só face é igual a vezes o número de arestas dessa face menos cada aresta pertence a duas faces distintas, temos então que a soma de todos os ângulos do poliedro é também igual a. Portanto, a soma dos defeitos angulares é Exercício 3.3. Alternativamente, o teorema de Descartes pode ser formulado em termos da soma dos excessos angulares de uma decomposição do poliedro em triângulos geodésicos contendo
5 no máximo um vértice no seu interior. Esta versão pode ser geodésicos quaisquer contendo um número arbitrário de vérum polígono geodésico com n lados como a diferença entre a soma dos seus ângulos internos Teorema 3.4. (Descartes) de geodésica. O teorema de Descartes pode então ser generalizado para estas superfícies, aproximandoas por superfícies de poliedros Teorema 4.1. (GaussBonnet) Demonstração. Exercício 3.5. Exercício 3.6. círculo máximo na superfície da esfera é a interseção desta com um plano que passa pelo centro da esfera, como, por exemplo, o equador ou um meridiano. Os arcos de geodésica da superfície da esfera são precisamente a esfera em 8 triângulos geodésicos como o que se mostra na. O excesso angular total é portanto em conformidade com o teorema de GaussBonnet. Exercício 4.2. Exercício 4.3. soma dos excessos angulares reduzse ao integral de superfície onde K é o excesso angular por unidade de área, dito a curvatura da superfície. O teorema de Gauss Bonnet escrevese então [8] Exercício 4.4.
6 Exercício 4.5. [4] Exercício 4.6. College Math. J. 8 TwoYear O teorema de GaussBonnet relaciona uma propriedade geométrica local (curvatura) com uma propriedade topológi ramse extraordinariamente férteis, tendo inspirado não só [6] Givental, Geometry of Surfaces and the GaussBonnet Theorem, Theorem, Am. Math. Month. 61 vão da teoria das classes características ao teorema do índice de AtiyahSinger, mas, indiretamente, muita da geometria do século XX. [8] Euler s Gem: The Polyhedron Formula and the Birth of Topology, Princeton University Press (2008) br/~viana/out/plano.pdf
O TEOREMA DE GAUSS-BONNET
O TEOREMA DE GAUSS-BONNET JOSÉ NATÁRIO 1. Introdução Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição do espaço é identificada com outra
Poliedros. INF2604 Geometria Computacional. Waldemar Celes. Departamento de Informática, PUC-Rio. W.
Poliedros INF2604 Geometria Computacional Waldemar Celes [email protected] Departamento de Informática, PUC-Rio W. Celes Poliedros 1 Poliedros Poliedros Região 3D delimitada por uma fronteira composta
Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π
Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π Ryuichi Fukuoka Universidade Estadual de Maringá Departamento de Matemática São José do Rio Preto 26 de fevereiro de 2007 Ryuichi
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
Ainda Sobre o Teorema de Euler para Poliedro Convexos
1 Introdução Ainda Sobre o Teorema de Euler para Poliedro Convexos Elon Lages Lima Instituto de M atemática Pura e Aplicada Estr. D. Castorina, 110 22460 Rio de Janeiro RJ O número 3 da RPM traz um artigo
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
Geometria de Superfícies Planas
Geometria de Superfícies Planas Marcelo iana IMPA - Rio de Janeiro Geometria de Superfícies Planas p. 1/4 Algumas superfícies (não planas) Esfera (g = 0) Toro (g = 1) Bitoro (g = 2) Geometria de Superfícies
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
4. Superfícies e sólidos geométricos
4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
Propriedades geométricas e combinatórias dos polígonos convexos
Propriedades geométricas e combinatórias dos polígonos convexos Definição 1. Dados os pontos,,..., pontos no plano, tais que quaisquer três deles não são colineares, chamaremos de polígono a reunião dos
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
VARIEDADES COMPACTAS COM CURVATURA POSITIVA
VARIEDADES COMPACTAS COM CURVATURA POSITIVA Janaína da Silva Arruda 1, Rafael Jorge Pontes Diógenes 2 Resumo: O presente trabalho descreve o estudo das superfícies compactas com curvatura positiva. Um
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
Minicurso: Algumas generalizaçoes do Teorema: A soma dos ângulos internos de um triângulo no plano é π - (Versão preliminar e incompleta)
Minicurso: Algumas generalizaçoes do Teorema: A soma dos ângulos internos de um triângulo no plano é π - (Versão preliminar e incompleta) Ryuichi Fukuoka: DMA-UEM 18 de outubro de 2006 1 Introdução Comecemos
Geometria do Elipsoide. FGL João F Galera Monico PPGCC Abril 2018
Geometria do Elipsoide FGL João F Galera Monico PPGCC Abril 2018 Elipsoide de Revolução Rotação de uma elipse sobre um de seus eixos! Neste caso: eixo Z Elipse no plano YZ com X = 0 Z Elipse no plano XY
MA13 Geometria I Avaliação
13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada.
Figuras Geométricas planas e espaciais. Rafael Carvalho
Figuras Geométricas planas e espaciais Rafael Carvalho Figuras geométricas planas Na geometria plana vamos então nos atentar ao método de cálculo da área das figuras geométricas planas. Sendo elas os polígonos,
Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera
Projeto Teia do Saber: Fundamentando uma Prática de Ensino de Matemática Utilização do Computador no Desenvolvimento do Conteúdo Matemática do Ensino Médio Geometria 16 de outubro de 2004 Um entendimento
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
Volume e Área de Superfície, Parte II
AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo
Poliedros AULA Introdução Denições
AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para
1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante
Conceitos e Controvérsias
Conceitos e Controvérsias QUAL É A SOMA DOS ÂNGULOS (internos ou externos) DE UM POLÍGONO (convexo ou não)? Elon Lages Lima IMPA Introdução Todos sabem que a soma dos ângulos internos de um triângulo vale
Coordenadas e distância na reta e no plano
Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Geometria Computacional
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Polígonos 1 Roteiro Introdução Polígonos Teorema da Curva de Jordan Decomposição de polígonos Triangulações Estrutura
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto
O TEOREMA DE PICK: APLICAÇÕES E IMPLICAÇÕES
TEMAS E CONEXÕES Ano I Número º semestre / ARTIGO O TEOREMA DE PICK APLICAÇÕES E IMPLICAÇÕES Carlos Alberto Paixão (*) Nas séries iniciais do segmento do Ensino undamental são introduzidas as figuras planas
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
MATEMÁTICA A - 10o Ano Geometria Propostas de resolução
MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
Volume e Área de Superfície, Parte I
AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.
Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
Geometria Computacional
GeoComp 2014 p. 1/29 Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2014 GeoComp 2014 p. 2/29 Poliedros
Geometria Euclidiana II
Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros
Prof. Márcio Nascimento. 1 de abril de 2015
Geometria dos Sólidos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
CURVAS REGULARES E EQUAÇÕES DE FRENET. Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ²
1 CURVAS REGULARES E EQUAÇÕES DE FRENET Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ² ¹ Aluno do curso de Matemática CPTL/UFMS, bolsista do grupo PET Matemática CPTL/UFMS; ² Professor do curso de
Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri
Unidade 9 Geometria Espacial Poliedros Volume de sólidos geométricos Princípio de Cavalieri Poliedros palavra poliedro tem sua origem no idioma grego (poly significa, muitos, e hedra, faces). Poliedro
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano
9.º Ano Planificação Matemática 1/17 Escola Básica Integrada de Fragoso 9.º Ano Funções, sequências e sucessões Álgebra Organização e tratamento de dados Domínio Subdomínio Conteúdos Objetivos gerais /
Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto
Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos
Noções de Geometria. Professora: Gianni Leal 6º B.
Noções de Geometria Professora: Gianni Leal 6º B. Figuras geométricas no espaço: mundo concreto e mundo abstrato Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades. Mundo abstrato:
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas
Posições relativas entre elementos geométricos no espaço
Geometria no espaço Posições relativas entre elementos geométricos no espaço Plano: constituído por três pontos distintos e não colineares; o plano é bidimensional (tem duas dimensões: altura e largura);
ESPELHOS E LENTES ESPELHOS PLANOS
ESPELHOS E LENTES Embora para os povos primitivos os espelhos tivessem propriedades mágicas, origem de lendas e crendices que estão presentes até hoje, para a física são apenas superfícies polidas que
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S. Alesson e Júlio
CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S Alesson e Júlio CABRI- GEOMETRY TÍTULO SÉRIE OBJETIVOS ASSUNTO Construção de um 6º ano Identificar as triângulo Equilátero características do Construção de um
Questões da 1ª avaliação de MA 13 Geometria, 2016
uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é
Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.
FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana
3 Fibrados de Seifert de Dimensão Três
3 Fibrados de Seifert de Dimensão Três Um fibrado de Seifert de dimensão três é uma folheação por círculos numa variedade de dimensão três e pode ser visto como um fibrado sobre uma orbifold de dimensão
PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais
MATEMÁTICA 6º ANO Página 1 de 17 PLANIFICAÇÃO ANUAL Documentos Orientadores: Programa e Metas Curriculares do Ensino Básico,Perfil dos Alunos para o séc. XXI,Aprendizagens Essenciais Números e Operações
Elementos de um poliedro
RELAÇÃO DE EULER 1 Elementos de um poliedro A Face Vértice B Aresta C D Imagem: Pablo rigel / public domain O ponto A é um dos vértices desse poliedro. O segmento de reta AB é uma das arestas. A região
UMA DEMONSTRAÇÃO DO TEOREMA DE EULER PARA POLIEDROS CONVEXOS VIA GEOMETRIA ESFÉRICA
2013: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática - PROFMAT Universidade Federal de São João del-rei - UFSJ Sociedade Brasileira de Matemática - SBM UMA DEMONSTRAÇÃO DO TEOREMA
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.
Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no
Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)
MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de
MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução
MTMÁT - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. nalisando as quatro retas indicadas podemos ver que a reta é paralela
UMA DEMONSTRAÇÃO DO TEOREMA DE EULER PARA POLIEDROS CONVEXOS VIA GEOMETRIA ESFÉRICA
UMA DEMONSTRAÇÃO DO TEOREMA DE EULER PARA POLIEDROS CONVEXOS VIA GEOMETRIA ESFÉRICA Mateus do Nascimento Universidade Federal de São João del Rei UFSJ [email protected] Silvio Antônio Bueno Salgado
Geometria Espacial: Sólidos Geométricos
Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.
» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os
Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1
Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 18: Euclides e Os Elementos 11/05/2015 2 Euclides século III a.c. Pouco se sabe sobre a personalidade de Euclides. Viveu provavelmente
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
1.2. Utilizar o crivo de Eratóstenes para determinar os números primos inferiores a um dado número natural
MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA e CIENCIAS NATURAIS Matemática Números e operações (NO6) Unidade 1 Números naturais 1. Números primos e números compostos Números primos. Crivo de Eratóstenes.
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS ... 1º PERÍODO. Medidas de localização
ANO LETIVO 2017/2018... 1º PERÍODO DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos Aulas Previstas Medidas de localização
DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS
DISCIPLINA: Matemática ANO DE ESCOLARIDADE: 6º Ano 2016/2017 METAS CURRICULARES PROGRAMA DOMÍNIO/SUBDOMÍNIO OBJETIVOS GERAIS DESCRITORES DE DESEMPENHO CONTEÚDOS 1ºPeríodo Números e Operações (NO6) Números
Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...
PLANO DE ESTUDOS DE MATEMÁTICA 9.º ANO
DE MATEMÁTICA 9.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de reconhecer propriedades da relação de ordem em, definir intervalos de números reais
Planificação Global. 1º Período. Tóp Tópico/Subtópicos Nº descri. Descritor Nº aulas Avaliação diagnóstica inicial 4
Planificação Global MATEMÁTICA 6.º ANO Ano letivo 017/018 1º Período Domínio1: Potências de expoente natural (ALG 6-1) Decomposição número em fatores primos (NO 6-1) Total Aulas:0 Avaliação diagnóstica
DRAFT. Simulado 1 - Nível 2 - ângulos. Colégio: Gabarito
Estudante: Geometria Colégio: Simulado 1 - Nível 2 - ângulos i) Preencha o cabeçalho acima com atenção. ii) Cada questão tem apenas uma letra correta. iii) Preencha o gabarito ao lado com as respostas.
EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio
EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 14/fevereiro 17/fevereiro 21/fevereiro 24/fevereiro 28/fevereiro 03/março
UTILIZANDO O GEOGEBRA PARA CONSTRUÇÃO E EXPLORAÇÃO DE UM MODELO PLANO PARA A GEOMETRIA ELÍPTICA
UTILIZANDO O GEOGEBRA PARA CONSTRUÇÃO E EXPLORAÇÃO DE UM MODELO PLANO PARA A GEOMETRIA ELÍPTICA Valdeni Soliani Franco Luana Paula Goulart de Menezes [email protected] [email protected] Universidade Estadual
