REPRESENTAÇÃO DE DADOS EM CG
|
|
|
- Rosângela Benevides Fortunato
- 8 Há anos
- Visualizações:
Transcrição
1 REPRESENTAÇÃO DE DADOS EM CG Cap 4 MODELAGEM E ESTRUTURA DE DADOS Aula 3 UFF
2 REPRESENTAÇÃO DE DADOS Um objeto pode ser representado de forma vetorial (pelo conjunto das coordenadas dos seus pontos) ou matricial (por uma matriz que representa seus pontos em 2D). os efeitos de aliasing
3 amostragem pobre O sinal digitalizado fica completamente diferente do sinal original devido à baixa freqüência de amostragem.
4 Uma linha horizontal perfeita Rotacionada de 30 graus...
5 MODELO E DADOS um objeto complexo, como um personagem poderá ter vetores.
6 Definição: O termo modelagem de sólidos designa um conjunto de teorias, técnica e sistemas que permitem criar um objeto com suas propriedades geométricas e topológicas. A modelagem de sólidos está presente em quase todas as aplicações da CG do entretenimento (para criar personagens e cenários virtuais em games) as simulaçoes e em todas as áreas do conhecimento.
7 que é um sólido. é considerado um sólido se tem uma forma própria. A modelagem de líquidos, gazes, materiais flexíveis ou de coisas que não tenham forma própria (roupas, tecidos, plásticos, gel e outros) é também necessária e representável em computação gráfica. Mas não é assunto da Modelagem de Sólidos
8 sólido é algo essencialmente tridimensional (3D). Definição: Um sólido é um subconjunto fechado e limitado do espaço Euclidiano tridimensional: E 3 sólido é um elemento da geometria Euclidiana, geometria formulada pelo matemático grego Euclides, que viveu na Alexandria no século III A.C.,
9 Outras geometrias? A geometria não-euclidianas: Lobatchevski (Nicolai Ivanovitch Lobachevski, matemático russo: ) e Riemann (Georg Friedrich Bernhard Riemann, matemático alemão: ).
10 um sólido é Fechado? Limitado? Fechado => tem todos os seus pontos de contorno, tem um interior e exterior. Limitado está associado à idéia de não ser Infinito no sentido de realmente não ter fim, e não apenas de ser muito grande.
11 Modelos realizáveis e não realizáveis A garrafa de Klein é um exemplo de uma as estruturas não orientáveis como a faixa de Möbius. São exemplos de sólidos não realizável. Operadores de Euler = grupo pequeno de operações (e suas inversas) que permitam a modificação dos modelos B-Rep, seguras o bastante para não produzirem modelos não orientáveis ou não realizáveis.
12
13 Maurits Cornelis Escher ( ) artsta grc conhecido por desenhos que tendem a representar construções impossíveis queda d'água de Escher.
14 o número dos furos que trespassam o sólido é denominado de genus, G.
15 Formula ou lei de Euler: (pronuncia-se "Óiler") O grande matemático Leonhard Euler foi, para todos os efeitos, quem inaugurou um ramo da matemática chamado topologia. Nasceu na suíça em abril de 1707, produziu suas maiores obras quando já estava idoso e cego. Em um objeto tridimensional vamos chamar o número de faces de F, o número de arestas de E e o número de vértices de V. Euler provou que por mais que o objeto se transforme é sempre constante o que hoje chamamos de número de Euler definido assim: 2 = F - E + V Para a maioria dos sólidos.
16 Formula ou lei de Euler: Em um objeto tridimensional vamos chamar : o número de faces de F, o número de arestas de E e o número de vértices de V. Euler provou que por mais que o objeto se transforme é sempre constante o que hoje chamamos de número de Euler definido assim: 2 = F - E + V
17 E = (edges) arestas
18 faces não planas A fórmula de Euler é aplicável mesmo a objetos que não tenham faces planas como o cilindro. Neste caso, o conceito de faces deve ser estendido para considerar toda as superfícies As arestas devem ser entendidas como os limites entre as faces e Os vértices definidos pelos limites das arestas. V=2 E=3 F=3
19 faces não planas Assim, um cilindro pode ser considerado formado por: dois vértices, três arestas e três faces. V=E=1 F=2 E Uma esfera pode ser entendida a partir de um caso limite do cilindro, quando as faces planas e as arestas que as limitavam desaparecem e a aresta antes reta, vai se deformando até formar uma semi circunferência limitada pelos dois vértices: a figura passa a ser formada por uma única face, só uma aresta e dois vértices.
20 Leonhard Euler Fórmula ou lei de Euler: V-E+F=2 V=E=4 F=2 ( ) 1783) V=E=8 F=2 V=E=6 F=2
21 NÚMERO DE EULER N E = V E + F Imagine que o cubo é feito de massa de moldar. Com jeito, é possível transformá-lo em uma esfera, uma pirâmide ou uma batata sem rasgar nem cortar nada. Isso só é possível com objetos topologicamente iguais. O cubo tem 6 faces, 12 arestas e 8 vértices. Portanto, o número de Euler do cubo é: N E (cubo) = = 2.
22 O teorema de Euler diz que: o número de Euler é constante para uma superfície qualquer. Isso quer dizer o seguinte: suponha que você divide cada face do cubo em 4 partes, traçando 2 segmentos de reta perpendiculares entre si Agora, pontos como (A) ou (B) serão considerados novos vértices, linhas como (AB) serão novas arestas e áreas como (ABCD), novas faces. Pois conte os novos números de faces, arestas e vértice. Você obterá: F = 24, E = 48 e V = 26. E, terá: N E = F - E + V = = 2!!! Inalterado
23 O resultado é o mesmo de antes. Pois acredite: mesmo se você desenhar linhas malucas sobre o cubo, criando uma porção de novas arestas, vértices e faces, obterá sempre o mesmo número de Euler: 2. Você pode constatar que o número de Euler continuará o mesmo até quando o cubo for deformado como mostra a figura. E a deformação pode ser tal que o cubo acabe virando uma esfera ou mesmo uma batata toda cheia de calombos, ou até um pão árabe. Tecnicamente, diz-se que o cubo, a esfera e a batata são todas superfícies topologicamente idênticas. Todas têm o mesmo número de Euler: 2.
24 Imagine que o cubo é feito de massa de moldar, que as crianças brincam. Com jeito, é possível transformá-lo em uma esfera, uma pirâmide ou uma batata sem rasgar nem cortar nada. Isso só é possível com objetos topologicamente iguais. A coisa muda se o objeto tiver um furo. O objeto furado mais amado pelos matemáticos é o toro, uma coisa com forma de rosquinha ou de biscoito globo. Se a gente fizer sobre a superfície do toro o mesmo que fizemos sobre a superfície do cubo (traçando linhas que formam faces, arestas e vértices) e depois fizermos as contas, acharemos um número de Euler nulo! N E (toro) =0
25 O toro, e qualquer superfície com um furo, é topologicamente diferente do cubo e da esfera. Isto é: Não dá para transformar uma esfera de massa em um toro sem cortar ou rasgar alguma coisa.
26 Topologicamente equivalentes: Rubber sheet deformation Massinha de modelar
27 Topologicamente equivalentes: Rubber sheet deformation Massinha de modelar Genus 0 Genus 1 Op. Topológicas Locais Genus 2 Genus 3 Op. Topologicas Globais = mudam o genus. Como a soma de dois torus
28 Se o objeto tem componentes múltiplos S ou C 1, G (genus) é a soma dos Gs de cada objeto Jules Henri Poincaré ( ). considered to be one of the founders of the field of Topologia
29 Quando a superfície tem buracos a expressão para o número de Euler fica sendo: N E = F - E + V H = 2 ( C G ), sendo H - o número de buracos superfície ou faces C- o número de partes separadas G - o número de furos trespassantes. E é chamado de Euler/Poincaré Para esfera ou um cubo, G = 0, logo, N E = 2. Para o toro, G = 1, logo, N E = 0. Com mais de um buraco, o número de Euler fica negativo.
30
31 Definição: Um manifold é um espaço topológico que é localmente Euclidiano (R 2,d E ) (i.e., em torno de todo ponto tem uma vizinhança que é topologicamente equivalente a uma bola aberta).
32 2-manifold = Sólidos cujos limites seja topologicamante equivalentes a um disco Limitações da maioria dos modeladores baseado em Limites (que é o que ocorrem em modelos físicos reais e não abstrações matemáticas) = variedades de dimensão 2" Sólido com superfícies non manifold
33 Superfícies non manifold x 2 manifold Ou seja se você for modelar uma folha, ela tem 2 faces, 4 vértices e 4 arestas.
34
35 FORMAS DE REPRESENTAÇÃO Representação Aramada (Wire Frame) representação ambígua com margem para várias interpretações; dificuldade de realizar certas operações como a determinação de massa ou volume. e não tem como garantir que o objeto desenhado seja um sólido válido,
36 Representação por Faces (ou Superfícies Limitantes) Essas superfícies são supostas fechadas e orientáveis. Orientáveis = significa que é possível distinguir entre dois lados da superfície, de modo que um esteja no interior e o outro no exterior do sólido.
37 Formula ou lei de Euler-Poincar Poincaré: V-A+F-H=2(C-G) H= loops de faces fechadas; C= numero de partes separadas do objeto G= numero de buracos (genus( genus)
38 Descrição da: topologia e a geometria das faces. relações entre os elementos posições dos elementos no espaço, e sua forma geométrica (semi-reta, arco de círculo, etc )
39 Geometria x topologia
40 Representação dos limites do sólido Boundary Representation Brep É a forma mais usada Muito vezes confundida com a modelagem de superfícies, mas agora toda a topologia é considerada para garantir que o objeto seja realizável e continue realizável após as operações que serão realizadas nele. Agora a topologia deve ser validada não só a geometria gerada (Equação de Euler)
41 estrutura de dados do objeto.
42 Estrutura de dados baseada em Vértice os vértices limites das faces devem ser descritos sempre no mesmo sentido horário (ou anti-horário) do exterior do objeto, para todas as faces.
43 Estrutura de Dados Baseada em Arestas ou lados Na estrutura de dados baseada em arestas além das listas de coordenadas de vértices e definição das faces, tem-se uma lista que identifica cada aresta e seus vértices limitantes.
44 Baseada em lados (edges) Lados são considerados orientados. Cada lado pertence a duas faces. Faces são consideradas orientadas, positivas se sua lista de lados apontar para fora se for no sentido horário
45
46 Sweep representation = superficies GERAM o OBJETO
47 Referencias D. F. Rogers, J. A. Adams. Mathematical Elements for Computer Graphics, 2dn Ed., Mc Graw Hill, 1990 E. Azevedo, A. Conci, Computação Gráfica: teoria e prática, Campus ; - Rio de Janeiro, 2003 J.D.Foley,A.van Dam,S.K.Feiner,J.F.Hughes. Computer Graphics- Principles and Practice, Addison-Wesley, Reading, 1990.
48 Teste 3 Desenhe um objeto 2D com tantos pontos quando o numero de sua ordem na lista de chamada mais 3. Depois indique como voce poderia representar esse objeto nas duas formas descritas no slide 2. (1,5) Procure o que é aliasing em sites de curso de CG e quais as maneiras de evita-lo. (1,0) Pense um pouco e responda: p que seriam as chamadas técnicas de anti-aliasing. (0,5). Explique o termo B-Rep (vale procurar pela internet, mas use suas palavras) (1.0).
49 Teste 3 (cont) O seu objeto satisfaz a formula de Euler? INDIQUE V,F e E. (0,5) Transforme seu objeto em um sólido. E faça uma estrutura de dados para ele. (1,5) Parte 1 do Primeiro Trab.. de implementação: Use sua estruturas de dados para desenhar um sólido s que será desenvolvido no seu futuro trabalho 1 de implementação (a ser entregue em 26/09 e ainda seré definido) (4.0).
Projeções. Cap 2 (do livro texto) Aula 6 UFF
Projeções Cap 2 (do livro texto) Aula 6 UFF - 2014 Projeções PLANAS: Classificação BÁSICA: B Características: Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente
Introdução à Computação Gráfica Modelagem. Claudio Esperança Paulo Roma Cavalcanti
Introdução à Computação Gráfica Modelagem Claudio Esperança Paulo Roma Cavalcanti Histórico Modelagem por arames (wireframes). Representa os objetos por arestas e pontos sobre a sua superfície. Gera modelos
Modelagem Geométrica: Boundary Representation
Modelagem Geométrica: Boundary Representation Prof. Dr. André Tavares da Silva Gabriel Caixeta Silva [email protected] Prof. Dr. Marcelo da Silva Hounsell PPGCA UDESC 2017/01 Introdução Modelagem
Geometria Computacional
GeoComp 2014 p. 1/29 Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2014 GeoComp 2014 p. 2/29 Poliedros
Aula 8 Reconhecimento de Padroes : parte 2.
Aula 8 Reconhecimento de Padroes : parte 2. Análise de Imagens - 2015 Aura Conci Etapas de um sistema de reconhecimento de padrões. Padrão como generalização de um Pixel, Voxel ou Região Vizinhança do
Histórico. Estado da Arte. Histórico. Modelagem de Objetos. Modelagem por arames (wireframes). Modelagem por superfícies (década de 60).
Histórico Modelagem de Objetos Renato Ferreira Modelagem por arames (wireframes). Representa os objetos por arestas e pontos sobre a sua superfície. Gera modelos ambíguos. Modelagem por superfícies (década
Objetos Gráficos Espaciais
Universidade Federal de Alagoas Instituto de Matemática Objetos Gráficos Espaciais Prof. Thales Vieira 2014 Objetos Gráficos Espaciais f : U R m 7! R 3 Universo físico Objetos gráficos Representação de
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
Computação Gráfica - 09
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos
Modelação de Sólidos. Sistemas Gráficos/ Computação Gráfica e Interfaces FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Modelação de Sólidos Sistemas Gráficos/ Computação Gráfica e Interfaces 1 Modelação de Sólidos Em 2D um conjunto de segmentos de recta ou curvas não formam necessariamente uma área fechada. Em 3D uma colecção
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras
Introdução à Computação Gráfica. Claudio Esperança Paulo Roma Cavalcanti
Introdução à Computação Gráfica Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Ênfase na parte prática Avaliação através de trabalhos de implementação C / C++ OpenGL c/ GLUT Grau (nota) baseado
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
Professor: Computação Gráfica I. Anselmo Montenegro Conteúdo: - Objetos gráficos planares. Instituto de Computação - UFF
Computação Gráfica I Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Objetos gráficos planares 1 Objetos gráficos: conceitos O conceito de objeto gráfico é fundamental para a Computação
Desenhando perspectiva isométrica
Desenhando perspectiva isométrica Introdução Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes
Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato
Desenho Técnico Desenho Mecânico Eng. Agr. Prof. Dr. Cristiano Zerbato Introdução O desenho, para transmitir o comprimento, largura e altura, precisa recorrer a um modo especial de representação gráfica:
DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008
DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4
Geometria Descritiva. Geometria Descritiva. Geometria Descritiva 14/08/2012. Definição:
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Origem: Criada para fins militares (projeto de fortes militares) para Napoleão Bonaparte pelo matemático francês Gaspar Monge.
1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0
Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A
PLANO CURRICULAR DISCIPLINAR. Matemática 5º Ano
PLANO CURRICULAR DISCIPLINAR Matemática 5º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUB-TÓPICOS METAS DE APRENDIZAGEM 1º Período Compreender as propriedades das operações e usá-las no cálculo. Interpretar uma
Prof. Márcio Nascimento. 1 de abril de 2015
Geometria dos Sólidos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas
Processamento de Malhas Poligonais
Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento
VARIEDADES COMPACTAS COM CURVATURA POSITIVA
VARIEDADES COMPACTAS COM CURVATURA POSITIVA Janaína da Silva Arruda 1, Rafael Jorge Pontes Diógenes 2 Resumo: O presente trabalho descreve o estudo das superfícies compactas com curvatura positiva. Um
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
Geometria Euclidiana II
Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I
Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.
Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas
Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:
Sugestão: Use papel transparente para copiar as figuras e comparar os lados e os ângulos.
Você se lembra dos triângulos e quadriláteros do final da Aula 28? Eles estão reproduzidos na figura abaixo. Observe que a forma de cada triângulo, por exemplo, varia conforme aumentamos ou diminuímos
INTRODUÇÃO À TEORIA DOS CONJUNTOS
1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
O TEOREMA DE GAUSS-BONNET
O TEOREMA DE GAUSS-BONNET JOSÉ NATÁRIO 1. Introdução Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição do espaço é identificada com outra
UARCA-E.U.A.C. Escola Universitária de Artes de Coimbra
GDI - Geometria Descritiva I Exercícios práticos para preparação da frequência de semestre. Objectivos: Estes exercício-tipo, pretendem por um lado apresentar uma minuta, uma definição de exercício-tipo
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Invadindo o espaço Dinâmica 5 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 2ª Campo Algébrico Simbólico Introdução à geometria espacial Aluno
APOSTILA GEOMETRIA DESCRITIVA
APOSTILA GEOMETRIA DESCRITIVA 1 GEOMETRIA MÉTRICA E ESPACIAL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SISTEMAS DE PROJEÇÃO Conforme o que foi exposto anteriormente, o estudo da Geometria Descritiva está
Poliedros Teorema de Euler no Plano Poliedros Regulares Volume de Sólido. Poliedros, Volume e Principio de Cavallieri
Poliedros, Volume e Principio de Cavallieri O resultado central deste capítulo é o Teorema de Euler. Seu enunciado, por sua beleza e simplicidade, costuma fascinar os alunos quando tomam contato com ele
ESPAÇO, MATÉRIA E TEMPO
ESPAÇO, MATÉRIA E TEMPO O Livro dos Espíritos 82. Será certo dizer-se que os Espíritos são imateriais? Como se pode definir uma coisa, quando faltam termos de comparação e com uma linguagem deficiente?
Introdução Geral a Computação Gráfica. Universidade Católica de Pelotas Curso de Engenharia da Computação Disciplina de Computação Gráfica
Introdução Geral a Computação Gráfica Universidade Católica de Pelotas Curso de Engenharia da Computação Disciplina de 2 Introdução Geral a O que é CG? Áreas de Atuação Definição, Arte e Matemática Mercado
... n = 10, então n não é múlti- a = 2, então. log c = 2,7, então a, b, c, nesta ordem, formam
1. (UFRGS/000) As rodas traseiras de um veículo têm 4,5 metros de circunferência cada uma. Enquanto as rodas dianteiras dão 15 voltas, as traseiras dão somente 1 voltas. A circunferência de cada roda dianteira
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2
VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
1 Cônicas Não Degeneradas
Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de dezembro de 2001 Estudaremos as (seções) cônicas,
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Plano Curricular de Matemática 6ºAno - 2º Ciclo
Plano Curricular de Matemática 6ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Geometria Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental
Devlin e os problemas do milênio
Seminários de Ensino de Matemática (SEMA FEUSP) Coordenação: Nílson José Machado - 2012/1 Marisa Ortegoza da Cunha [email protected] Devlin e os problemas do milênio 8 de agosto de 1900 Congresso
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março)
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas
6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0
QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada
10 Visualização em 3D - Projeções
INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE CIÊNCIAS DE COMPUTAÇÃO E ESTATÍSTICA 10 Visualização em 3D - Projeções Após a criação de cenas e objetos tridimensionais o próximo passo
MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE
MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE Como pode cair no enem (ENEM) Uma indústria fabrica brindes promocionais em forma de pirâmide. A pirâmide é obtida a partir de quatro cortes em um sólido
Aplicação de Integral Definida: Volumes de Sólidos de Revolução
Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Geometria de Superfícies Planas
Geometria de Superfícies Planas Marcelo iana IMPA - Rio de Janeiro Geometria de Superfícies Planas p. 1/4 Algumas superfícies (não planas) Esfera (g = 0) Toro (g = 1) Bitoro (g = 2) Geometria de Superfícies
Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades:
Poliedros Teoria Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: P1. Todo polígono da Superfície Poliédrica possui algum lado
INTRODUÇÃO À TEORIA DOS CONJUNTOS1
INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto
Volume e Área de Superfície, Parte II
AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.
Geometria de Posição. Conceitos primitivos. Prof. Jarbas
Geometria de Posição Conceitos primitivos Prof. Jarbas Conceitos primitivos A partir do mundo real, matemáticos da antiguidade, como Euclides (séc. III a.c.) estabeleceram entes com os quais construíram
Dupla Projeção Ortogonal / Método de Monge
Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade Para a Frequência do Ensino Superior dos Maiores de 23 Anos 2016 Prova de Desenho e Geometria Descritiva - Módulo de Geometria Descritiva
Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes
Grafos Planares Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução Os exemplos mais naturais de grafos são os que se referem à representação de mapas
(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.
(UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5
UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08
UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de
Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva.
META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. PRÉ-REQUISITOS O aluno deverá ter compreendido as aulas anteriores. .1 Introdução
Planificação Anual Departamento 1.º Ciclo
Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º
Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números
Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA
CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe
Exercícios Resolvidos Esboço e Análise de Conjuntos
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras
01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II
01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01
Geometria analítica - Programação linear
Ga - Programação linear 1 Geometria analítica - Programação linear Período de 014.1 - Prof. Fernando Carneiro Rio de Janeiro, Junho de 014 1 Introdução Estudaremos as retas no plano euclidiano bidimensional
Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D
Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Duas esferas de raios distintos se interceptam formando um conjunto com mais de um ponto na interseção. Qual a figura geométrica formada por esse conjunto de pontos? (a) Esfera
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
Algoritmos geométricos
Algoritmos geométricos introdução a conceitos básicos de geometria computacional que serão abordados de forma mais avançada na disciplina Computação Gráfica disciplina de computação gráfica arquitetura
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
Poliedros AULA Introdução Denições
AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para
Superfícies e Curvas no Espaço
Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de deembro de 2001 1 Quádricas Nesta
O Teorema de Gauss-Bonnet
O Teorema de GaussBonnet Não distinguimos superfícies que têm a mesma forma, ou geometria. Assim, uma superfície esférica numa dada posição mo raio noutra posição qualquer do espaço, mas não com a superfície
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais
UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL DEPARTAMENTO DE DESIGN E EXPRESSÃO GRÁFICA COMPUTAÇÃO GRÁFICA 1 JÉFERSON DOUGLAS DE FAVERI
UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL DEPARTAMENTO DE DESIGN E EXPRESSÃO GRÁFICA COMPUTAÇÃO GRÁFICA 1 JÉFERSON DOUGLAS DE FAVERI TUTORIAL RHINOCEROS joystick Playstation 2 Semstre 1-2011 Desenhando
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA
O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA SERGIO ALVES IME-USP [email protected] Sejam A e A dois pontos distintos de um fixado plano euclidiano E. Se E indica a circunferência de diâmetro
Geometria Computacional
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Polígonos 1 Roteiro Introdução Polígonos Teorema da Curva de Jordan Decomposição de polígonos Triangulações Estrutura
Avaliação 2 - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados
Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.
GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida
RETAS. A marca de uma ponta de lápis bem fina no papel dá a idéia do que é um ponto. Toda figura geométrica é considerada um conjunto de pontos.
1 RETAS PONTO: A Geometria é a Ciência da extensão. O espaço é extenso sem interrupção e sem limite. Um lugar concebido sem extensão no espaço chama-se Ponto. O ponto não tem dimensão. A marca de uma ponta
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
