ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

Tamanho: px
Começar a partir da página:

Download "ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA"

Transcrição

1 ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do Exame (Época Normal) 04 de Fevereiro de 2015; 19:00 Ano Lectivo: Semestre: Inverno

2 Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA

3 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 3 1 ç Sendo +ß,, considere as matrizes reais PARE 1 +! ", B Eœ # + ", Fœ " e \œ C. "! "! D a ç Discuta o sistema E\ œ F, nas incógnitas reais Bß Cß D, em função dos parâmetros + e,. b ç Determine os valores de + para os quais a matriz E é invertível. c ç Considere + œ# e, œ$. c1 ç Determine a matriz adjunta de E e, recorrendo a esta matriz, determine E ". c2 ç Usando propriedades dos determinantes, calcule o valor de " det # E E " #. 1a ç Levemos a matriz completa deste sistema à forma escalonada, por condensação vertical: +! ", "! "! "! "! P $ ÄP$ P# #P" ÄP# # + " " µ # + " " µ! + " " PÇP " $ P+PÄP $ " $ "! "! +! ",!! "+, No caso +œ! (em que a matriz anterior não está ainda escalonada), temos ainda que realizar uma operação elementar adicional de tipo $ : "! "! "! "! PPÄP $ # $ +œ!ê!! " " µ!! " "!! ",!!!," Estamos, agora, em condições de fazer a discussão do sistema: Designando por < a característica da matriz simples, por = a característica da matriz ampliada e por 8<œ$< o grau de indeterminação, temos: Caso +, < = < œ = Natureza do sistema Grau de indet. " +œ", œ! <œ# =œ# Sim Simplesmente indeterminado 8<œ" #, Á! < œ # =œ$ $ + œ!, œ " < œ # = œ # %,Á" <œ# = œ $ Não Sim Impossível Simplesmente indeterminado Não Impossível & + Á"ß!, <œ$ = œ $ Sim Determinado 8< œ! 8<œ" Ano Lectivo: Semestre: Inverno 2015 Fevereiro 04; 19:00

4 4 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 1b ç A matriz E é invertível sse < œ $. A discussão anterior mostra que, para tal, deverá ser +Á" +Á! e, qualquer em 1c1 ç A discussão mostra que, para + œ# e, œ$, estamos no caso & em que o sistema é determinado e dete Á!. Nesse caso, a matriz adjunta de E será # " # " # #! " " " "! # " # #! # adje œ! " # " #! œ! "! œ " "!! " " " "!! " # " #! #! % # " # " #! % # # Assim, a matriz adjunta será #! # adje œ " "! #! % Por outro lado, o determinante de E é, aplicando o teorema de Laplace à # ª coluna: #! " # " dete œ # # " œ # œ # # " œ # " " "! " Portanto, a inversa de E é " " #! # " E œ adje œ " "! dete # #! % 1c2 ç emos, sucessivamente: # $ # # # " " det " det " " " " " E E œ E E E œ dete dete det E $ " " " " " " " " " œ dete œ œ œ œ # $ detedete # $ dete # $ # #% "' 2015 Fevereiro 04; 19:00 Ano Lectivo: Semestre: Inverno

5 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 5 2 ç Considere, no espaço cartesiano real %, o subespaço a ç Determine uma base e a dimensão de J. J œbßcßdßa % ÀBœCA CœD b ç Determine uma sequência geradora de J que não seja base de J. c ç Determine, justificando, uma base de % que contenha o maior número possível de vectores de J. 2a ç Ora J pode escrever-se na forma J œ % BßCßDßA ÀBœCA C œd œcaßcßcßaàcßa œc "ß"ß"ß! A "ß!ß!ß" ÀCßA œp "ß"ß"ß! ß "ß!ß!ß" Como nenhum dos vectores da lista, œ "ß "ß "ß! ß "ß!ß!ß " é múltiplo do outro, a lista é linearmente independente e, portanto, constitui uma base de J, pelo que dimj œ #. 2b ç Basta juntar a, uma qualquer combinação linear dos seus vectores, por exemplo, o próprio vector?t ou até o vector nulo "ß "ß "ß! ß "ß!ß!ß " ß "ß #ß #ß " para obtermos uma sequência que é linearmente dependente por construção e que continua a gerar J. 2c ç Comecemos por escalonar,: " " "! PPÄP " " "! " # # µ "!! "! " " " w Portanto,, œ "ß "ß "ß! ß!ß "ß "ß " é outra base (desta vez, escalonada) de J. Como % tem w dimensão %, será necessário acrescentar a, mais dois vectores (obviamente não percentes a J) de modo a obterem-se % vectores de % linearmente independentes. A forma mais simples e óbvia será acrescentar os vectores!ß!ß "ß! e!ß!ß!ß ", o que conduzirá à seguinte base escalonada de % : "ß "ß "ß! ß!ß "ß "ß " ß!ß!ß "ß! ß!ß!ß!ß " Ano Lectivo: Semestre: Inverno 2015 Fevereiro 04; 19:00

6 6 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 3 ç Sejam 0 o endomorfismo de $ definido por 0BßCßD œb%cdßbc$dß%d "! e Kœ "! a matriz canónica de uma aplicação linear 1.! " a ç Determine a matriz canónica J do endomorfismo 0. b ç Calcule os valores próprios de 0 e mostre que 0 é diagonalizável. c ç Determine o núcleo e a imagem de 1. 3a ç As colunas de J são as coordenadas de 0 "ß!ß! ß0!ß"ß! e 0!ß!ß" na base canónica de $. Ora estas imagens são: Portanto, 0 "ß!ß! œ "ß"ß! ß0!ß"ß! œ%ß"ß! ß0!ß!ß" œ "ß$ß% " % " Jœ " " $!! % 3b ç Aplicando o teorema de Laplace à $ ª linha, o polinómio característico de 0 é dado por: "- % " : 0 - œ detj -M$ œ " "- $!! %- " - % # œ %- œ % " % " " œ % -"-# "-# œ-" -$ -% Conclui-se que o espectro de 0 é E0 œ "ß $ß %. A multiplicidade algébrica dos valores próprios é igual a ", pelo que o mesmo acontece com a multplicidade geométrica. Sendo assim, ficamos com - E0 7 - œ $ 1 Isto significa que 0 é diagonalizável. Outra forma de justificar o facto de 0 ser diagonalizável é atender a que vectores próprios associados a valores próprios distintos são necessariamente linearmente independentes, pelo que, tomando um vector próprio associado a cada um dos valores próprios de 0, obtém-se uma base formada em exclusivo por vectores próprios de 0 e em relação à qual a matriz de 0 é diagonal (com os valores próprios de 0 na diagonal, pela ordem correspondente à ordem dos vectores próprios na base escolhida) Fevereiro 04; 19:00 Ano Lectivo: Semestre: Inverno

7 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 7 3c ç As coordenadas de 1BßC na base canónica de $ são "! B B "! œ B! " C C Portanto, Então, 1Bß C œ Bß Bß C Ker1œ BßCÀ1BßC œ!ß!ß! œbßcàbßbßc œ!ß!ß! œ!ß! A igualdade anterior significa que 1 é injectiva. Quanto à imagem de 1, ela é o subespaço de $ gerado por 1 "ß! œ "ß"ß! e 1!ß" œ!ß!ß", que são as colunas de K: Img1œP "ß"ß! ß!ß!ß" rata-se de um subespaço de $ de dimensão #(a característica de 1 e de K). Ano Lectivo: Semestre: Inverno 2015 Fevereiro 04; 19:00

8 8 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 4 ç Considere, no espaço euclidiano $ dotado do produto interno canónico, três e At tais %ß%ß# e a ç Determine a área do triângulo definido por?t b ç Determine um vector ortogonal a?t com norma igual a "#. c ç Determine a projecção ortogonal sobre "ß"ß#. 4a ç A área do triângulo definido por?t é: " " " œ %ß%ß# œ " "'"'%œ " $'œ 'œ$ # # # # # 4b ç O é ortogonal a?t e pelo que o vector =t pedido será múltiplo i.e., Então, deverá ser =t œ "#: =t =t œ œ œ "# Í œ "# Í ' 5 œ "# Í 5 œ # Í 5 œ # 5 œ # Portanto, existem duas soluções para o problema, a saber, =t œ# %ß%ß# œ )ß)ß% =t œ # %ß %ß # œ )ß )ß % 4c ç A projecção ortogonal de :t %ß%ß# sobre ;t œ "ß "ß # Á 9t é: proj ;t :t œ :t ;t ;t œ %ß %ß # "ß "ß # "ß"ß# œ % "ß"ß# œ # ;t ;t "ß"ß# "ß"ß# ' $ "ß"ß# 2015 Fevereiro 04; 19:00 Ano Lectivo: Semestre: Inverno

9 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 9 PARE 2 1 ç Sejam Eß F e G matrizes reais arbitrárias, quadradas de ordem 8 ". Apenas uma das seguintes proposições é verdadeira. Assinale-a: ú a EFœS8 ÊEœS 8 FœS8 EßF 8ß8 ú a " " dete Á! E œeêe œe E 8ß8 # # ú a 8ß8 EFEF œ E F EßF ú a característicae œ8 EFœGEÊFœG EßFßG 8ß8 ç A proposição dada é falsa: Para obter um contra-exemplo, basta que E seja singular não nula e as colunas de F sejam soluções não nulas (que existirão garantidamente) do sistema homogéneo E\ œ S. Por exemplo, " # # # Eœ ÁS Fœ ÁS EFœS # % # " " # # ç A proposição dada é verdadeira: " Como dete Á!, E é invertível, i.e., existe E tal que " " EE œ E E œ M8 ranspondo os membros das igualdades acima, elas equivalem a " E E œ E " E œ M œ M Estas igualdades mostram, por definição de inversa, que E " " 8 8 é invertível e que E œ E " Como E e E são ambas invertíveis, se E for simétrica ( E œ E), será, invertendo ambos os membros, Recorrendo a o que significa que E ", a igualdade anterior equivale a E " ç A proposição dada é falsa: De facto, tem-se, E é também simétrica, q.e.d. œ E " " " " œ E # # EFEF œe EFFEF A igualdade dada será válida sse E e F forem permutáveis ( EF œ FE). Por exemplo, para " # $ # Eœ Fœ " $ " " Ano Lectivo: Semestre: Inverno 2015 Fevereiro 04; 19:00

10 10 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) temos: % % #!! ) EFEF œ œ! % # # ) ) # # $ ) ( ) %! E F œ œ % "" % " ) "# ç A proposição dada é falsa: Por exemplo, para " " "!! " Eœ ßFœ Gœ! " " " e " # temos! " característicae œ# EFœGEœ FÁG " " A chamada lei do corte é válida apenas quando E é regular e a matriz E a "cortar" está no mesmo lado do produto em ambos os membros da igualdade: isto é, é falso que a característicae œ8 EFœGEÊFœG EßFßG a EßFßG 8ß8 8ß8 característicae œ8 FEœEGÊFœG odavia, é verdadeiro (demonstre!) que a característicae œ8 EFœEGÊFœG EßFßG a EßFßG A resposta correcta é, portanto, a segunda. 8ß8 8ß8 característicae œ8 FEœGEÊFœG 2015 Fevereiro 04; 19:00 Ano Lectivo: Semestre: Inverno

11 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 11 2 ç Seja 0 a aplicação linear entre espaços vectoriais cartesianos reais cuja matriz canónica é "! " "! " Jœ. # " "!! # Apenas uma das seguintes proposições é verdadeira. Indique-a: ú a 0 +ß,ß-ß. œ +,#-ß-ß+,-#.. +ß,ß-ß. % ú A imagem de 0 é igual a %. ú 0 é injectiva e não é sobrejectiva. ú O vector!ß!ß " pertence ao núcleo de 0. ç A proposição é falsa: $ % A matriz J é do tipo % $, o que significa que 0 é uma função linear de em. Pelo contrário, a % $ função definida por 0 +ß,ß-ß. œ +,#-ß-ß+,-#. é de em. ç A proposição é falsa: $ % Sendo 0À Ä, a dimensão de Img 0 é < Ÿ $, devido ao teorema fundamental: <œ$ dimker0 Ÿ$ Portanto, a imagem de 0 não é igual a %, i.e., 0 não é sobrejectiva. ç A proposição é verdadeira: Já vimos que 0 não é sobrejectiva; todavia, é injectiva, visto que a característica de 0 (e de J ) é < œ $ : "! " "! " "! " "! " PPÄP # " #!!! PÇP # $! " " µ µ Ê < œ $ # " " P$ #P" ÄP$! " " P$ ÇP%!! #!! #!! #!!! Assim, Img 0 é um subespaço de com dimensão $. % ç A proposição é falsa: A $ ª coluna de J é exactamente 0!ß!ß" ; Portanto, 0!ß!ß" œ "ß "ß"ß# Á!ß!ß!ß!, logo!ß!ß " não pertence ao núcleo de 0. Em face do exposto, a resposta correcta é a terceira.! Ano Lectivo: Semestre: Inverno 2015 Fevereiro 04; 19:00

12 12 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época Normal) 3 ç Seja : - œ- " -# o polinómio característico de uma matriz E. # # Das seguintes proposições, apenas uma é verdadeira. Aponte-a: ú A matriz E é necessariamente diagonalizável. ú O espectro de E é igual a #ß "ß"ß#. ú A dimensão do subespaço próprio de Eassociado a - œ # é necessariamente igual a #. ú As multiplicidades geométricas dos valores próprios - œ" e - œ" são ambas iguais a ". Da observação do polinómio característico de E, conclui-se que E é matriz quadrada de % ª ordem e que o espectro de E é EE œ #ß "ß " - œ# é valor próprio de Ecom multiplicidade algébrica 7+# œ# e - œ" e - œ" são valores próprios de E com multiplicidade algébrica 7 + " œ ". Observe-se que, para qualquer valor próprio - EE, tem-se: "Ÿ7- Ÿ7 -à- EE 1 + No caso vertente, isto significa que: "Ÿ71" Ÿ"Í71" œ" "Ÿ71" Ÿ" Í7 1" œ" "Ÿ7# Ÿ# 1 ç A proposição é falsa: Do que acabámos de ver, conclui-se que - œ# pode ter multplicidade geométrica igual a " ou a #: no primeiro caso, E não é diagonalizável; no segundo, sê-lo-á. Portanto, E não é necessariamente diagonalizável. ç A proposição é falsa: Vimos que o espectro de E é igual a #ß "ß ". ç A proposição é falsa: Vimos que a multiplicidade algébrica de - œ# (que é a dimensão do subespaço próprio de E associado a - œ#) pode ser igual a ", logo não necessariamente igual a #. ç A proposição é verdadeira: Mostrámos acima que as multiplicidades geométricas dos valores próprios - œ" e - œ" são ambas iguais a ". Em face do exposto, a resposta correcta é a quarta Fevereiro 04; 19:00 Ano Lectivo: Semestre: Inverno

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução da Repetição do 1º este 04 de Fevereiro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Inverno Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 15 de Julho de 2015; 10:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época Especial) 17 de Setembro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 1º Teste 29 de Abril de 2015; 18:30 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 2º Teste 30 de Junho de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 20 de Fevereiro de 2015; 10:00 Ano Lectivo: 2014-2015 Semestre: Inverno Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do 1º este 05 de Maio de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear e Geometria

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 2º Teste 11 de Junho de 2013 Ano Lectivo: 2012-2013 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 1º Teste 01 de Fevereiro de 2013 Ano Lectivo: 2012-2013 Semestre: Inverno ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear e Geometria

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 1º Teste Realizado em 01 de Fevereiro de 2012 Ano Lectivo: 2011-2012 Semestre: Inverno ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do 1º este 07 de Maio de 2012 Ano Lectivo: 2011-2012 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução do

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do Exame Parcial 2

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do Exame Parcial 2 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame arcial 2 25 de Junho de 2007 Ano Lectivo: 2006-2007 Semestre: Verão ISEL è DEETC Secção de Matemática ç ALGA Álgebra Linear e Geometria Analítica

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

Valores e vectores próprios

Valores e vectores próprios ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x

Leia mais

Multiplicidade geométrica

Multiplicidade geométrica Valores e Vectores Próprios - ALGA - /5 Multiplicidade geométrica Chama-se multiplicidade geométrica de um valor próprio ao grau de indeterminação do sistema (A I n ) X : O grau de indeterminação de corresponde

Leia mais

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W. Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica

Leia mais

Ficha de Trabalho 09 e 10

Ficha de Trabalho 09 e 10 Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

Números Complexos Ficha 01

Números Complexos Ficha 01 Instituto Superior de Engenharia de Lisboa Departamento de Engenharia de Electrónica e elecomunicações e de Computadores Secção de Matemática Números Complexos Ficha 01 ñ A Ficha sobre Números Complexos

Leia mais

6 Valores e Vectores Próprios de Transformações Lineares

6 Valores e Vectores Próprios de Transformações Lineares Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)

Leia mais

Resolução do efólio B

Resolução do efólio B Resolução do efólio B Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss

Leia mais

Álgebra Linear 1 o Teste

Álgebra Linear 1 o Teste Instituto Superior Técnico Departamento de Matemática 1 o Semestre 2008-2009 6/Janeiro/2008 Prova de Recuperação Álgebra Linear 1 o Teste MEMec, MEAer Nome: Número: Curso: Sala: A prova que vai realizar

Leia mais

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada

Leia mais

ficha 4 valores próprios e vectores próprios

ficha 4 valores próprios e vectores próprios Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial

TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial Nome: Número: O que vai fazer? Só T1+T2 Só T3 T1+T2 e T3 Problema a b c d lalala Problema a b c

Leia mais

Indicação de uma possível resolução do exame

Indicação de uma possível resolução do exame Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere

Leia mais

Tópicos para a resolução do exame de Álgebra de 11 de Janeiro de 2000 (1ª Chamada)

Tópicos para a resolução do exame de Álgebra de 11 de Janeiro de 2000 (1ª Chamada) 6 & ' 6 a Tópicos para a resolução do eame de Álgebra de de Janeiro de 000 (ª Chamada) Im z z - - z Re b c d ( artg ) ( artg ) ; 9 6 ; z e z e e z e 6 6 p e z e z z ( )e ( ) e ( ) ( ) i z z z z z 6 Re(

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1 Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

7 temos que e u =

7 temos que e u = Capítulo 1 Complementos de Álgebra Linear 11 Introdução Seja A = [a ij ] uma matriz quadrada de ordem n e pensemos na transformação linear R n! R n que a cada cada vector u R n faz corresponder um vector

Leia mais

Álgebra linear e geometria analítica

Álgebra linear e geometria analítica 27//29 o teste Álgebra linear e geometria analítica OCV Instruç~oes escolha n exercícios e responda em Portugu^es.. (2 valores) Determine uma equação cartesiana da recta que passa pelos pontos (, ) e (

Leia mais

Álgebra Linear para MBiol MAmb

Álgebra Linear para MBiol MAmb Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Álgebra Linear para MBiol MAmb Teste 3 22 de Dezembro de 212 Duração: 9 minutos Resolução da versão A (1. val.) 1. Considere

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

10 a Lista de Exercícios

10 a Lista de Exercícios Álgebra Linear Licenciaturas: Eng. Biológica, Eng. Ambiente, Eng. Química, Química 1 ō ano 2004/05 10 a Lista de Exercícios Problema 1. Decida quais das expressões seguintes definem um produto interno.

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

ÁLGEBRA LINEAR A FICHA 2

ÁLGEBRA LINEAR A FICHA 2 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 7/Out/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Matrizes: Inversão e Formas

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e vectores próprios Álgebra Linear C (Engenharia Biológica) 0 de Dezembro de 006 Conteúdo Motivação e definições Propriedades 4 3 Matrizes diagonalizáveis 5 Motivação e definições Considere a matriz

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA REGIMES DIURNO/NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA EXAME DE ÉPOCA

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 1 3 Departamento de Matemática Álgebra Linear e Geometria Analítica D Primeiro Teste 21 de Novembro de 2009 Nome: Número de caderno: PREENCHA DE FORMA BEM LEGÍVEL Grelha de Respostas A B C D 1 2 3 4 5

Leia mais

Álgebra Linear - Exercícios resolvidos

Álgebra Linear - Exercícios resolvidos Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos

Leia mais

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique. Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 Expansão linear e geradores Se u 1 ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u 1 ; u ;

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Prática Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação

Leia mais

ALGA I. Representação matricial das aplicações lineares

ALGA I. Representação matricial das aplicações lineares Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e

Leia mais

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003 Funções reais de várias variáveis 1. Faça um esboço de alguns conjuntos de nível das seguintes funções: (a) f (x,y) = 1 + x + 3y, (x,y)

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Departamento de Matemática

Departamento de Matemática Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

Valores próprios (de uma matriz): tais que det(a I) = 0. Vectores próprios (de uma matriz) associados a um valor próprio : v 2 N (A I)n f0g

Valores próprios (de uma matriz): tais que det(a I) = 0. Vectores próprios (de uma matriz) associados a um valor próprio : v 2 N (A I)n f0g Polinómio característico: det(a I) Valores próprios (de uma matriz): tais que det(a I) Vectores próprios (de uma matriz) associados a um valor próprio : v N (A I)n fg N (A I) é o subespaço próprio associado

Leia mais

ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7.

ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 20/Nov/2003 ÁLGEBRA LINEAR A FICHA 6 SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Propriedades dos Determinantes

Leia mais

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica Departamento de Matemática Álgebra Linear e Geometria Analítica João Pessoa, 16 de março de 2013 AGENDA Primeira prova: 31 de janeiro de 2013 - Sistemas de Equações Lineares e Espaços Vetoriais Segunda

Leia mais

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0 Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual

Leia mais

Problemas de Álgebra Linear

Problemas de Álgebra Linear Problemas de Álgebra Linear Curso: Engenharia Aeroespacial o Semestre 203/204 Prof Paulo Pinto http://wwwmathistutlpt/ ppinto/ Conteúdo Sistemas de equações lineares e álgebra matricial Álgebra de matrizes

Leia mais

Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19

Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Capítulo 6 Espaços vectoriais com produto interno ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Definição e propriedades ALGA 2008/2009 Mest.

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que:

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: 21002 - Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: Verifique se o ficheiro que recebeu está correcto. O

Leia mais

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen Espaços vectoriais Matemática 1º Ano 1º Semestre 2008/2009 Capítulos Características de um Espaço Vectorial Dimensão do Espaço Subespaço Vectorial Combinação Linear de Vectores Representação de Vectores

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 2 Sistemas de Equações Lineares 21 Generalidades Chamamos equação linear nas variáveis (incógnitas) x 1, x 2, x 3,, x n uma igualdade da forma a a 1 x 1 + a 2 x 2 + a 3 x 3 + + a n x n = b Os

Leia mais

ESPAÇOS LINEARES (ou vetoriais)

ESPAÇOS LINEARES (ou vetoriais) Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios extra de Álgebra Linear Ano Lectivo 204/205 . Sejam A = 0 2 0 0 2 e B = 0 0 0 0. (a) Calcule, se possível, as matrizes AB, BA e B

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

ÁLGEBRA LINEAR A FICHA 7

ÁLGEBRA LINEAR A FICHA 7 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Dez/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Cálculo de Valores Próprios

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

Lista 8 de Álgebra Linear /01 Produto Interno

Lista 8 de Álgebra Linear /01 Produto Interno Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z

Leia mais

Resolução do efólio A Álgebra Linear I Código: 21002

Resolução do efólio A Álgebra Linear I Código: 21002 Resolução do efólio A Álgebra Linear I Código: I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6). F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.

Leia mais

Lista 6: transformações lineares.

Lista 6: transformações lineares. Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Álgebra Linear e Geometria Analítica. 7ª aula

Álgebra Linear e Geometria Analítica. 7ª aula Álgebra Linear e Geometria Analítica 7ª aula ESPAÇOS VECTORIAIS O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

Unidade 4 - Matrizes elementares, resolução de sistemas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 4 - Matrizes elementares, resolução de sistemas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 4 - Matrizes elementares, resolução de sistemas A Hefez e C S Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade, veremos

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22). F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto

Leia mais