Resolução do efólio A Álgebra Linear I Código: 21002
|
|
|
- Vinícius Tomé Mota
- 8 Há anos
- Visualizações:
Transcrição
1 Resolução do efólio A Álgebra Linear I Código: I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado respetivo.. Considere as seguintes matrizes: C e D. Então: Ü a) detpdc q. Ò b) detpdc q. Ü c) detpdc q 9. Ü d) detpdc q {.. Considere a matriz ampliada. O sistema de equações que corresponde a esta matriz é: Ü a) $ '& ' % x y z x y z w Ò x z x x y $' & x y z b) x y z '% y. A matriz k não é invertível para Ü Ò a) k c) k Ü Ü x y $' & x y z c) x y z '% y x y $' & x y z d) x y z '% z Ü b) k Ü d) k e-fólio A
2 . Seja Rrxs o espaço vetorial dos polinómios na variável real x, e consideremos os seguintes subconjuntos de Rrxs: (i) S tp P Rrxs: ppq u, (ii) S tp P Rrxs: ppq ppq u, (iii) S tp P Rrxs: p P Ru. Então: Ü a) S é um subespaço vetorial de Rrxs. Ü b) S não é um subespaço vetorial de Rrxs. Ò c) S e S são subespaços vetoriais de Rrxs. Ü d) S, S e S são subespaços vetoriais de Rrxs. II. Aplicando o Método de Eliminação de Gauss, determine para que valores de a a matriz a R a a é invertível, e para esses valores calcule R usando o Método de Eliminação de Gauss- Jordan aplicado à matriz rr I s. III. Utilizando o Teorema de Laplace calcule o valor de 9 det 9 9 IV. Considere as matrizes A α α α α P M prq e B α α P M prq. a) Estude a característica da matriz A α. Determine todos os valores de α tais que A α seja invertível. b) Considere agora α e defina A : A. i) Determine adj A e A, por esta ordem. ii) Use a matriz A para resolver o sistema AX. iii) Resolva o sistema AX B pelo método de Cramer. V. Seja A P M n n pkq uma matriz invertível tal que A A J. Mostre que detpa q. VI. Considere matrizes A, B P M prq tais que detpa necessariamente det B? Bq det A. Será que se tem FIM e-fólio A
3 Grupo I.. Como todas as matrizes envolvidas são matrizes tem-se detpcd q detpcd q det C detpd q det C pdet Dq. Por outro lado det C l p q e det D e portanto pdet Dq {. Conclui-se assim que detpcd q det C pdet Dq. Assim, a alínea certa é a alínea b).. Facilmente se verifica que a alínea certa é a alínea b).. Aplicando a regra de Laplace à a coluna da matriz tem-se det k pk q pk q 9pk q ðñ k. Assim, a alínea certa é a alínea c).. S não é um subespaço de Rrxs. Em S nenhuma das condições de subespaço é verificada. Por exemplo, dados polinómios p, q P S, tem-se ppq qpq e portanto ppq qpq mas por definição pp qqpq ppq qpq, logo p q R S. O polinómio nulo também não pertence a S pois o seu valor em é, e portanto não verifica ppq. Finalmente se multiplicarmos um polinómio de S por uma constante λ P Rztu, então pλpqpq λppq λ. Tanto S como S são subespaços de Rrxs pois satisfazem as condições de subespaço. Assim, a alínea certa é a alínea c). Grupo V. Para este exercício convinha usar as seguintes propriedades, válidas para qualquer matriz A invertível: i) detpa q pdet Aq det A ; ii) detpa J q det A; iii) pdet Aq detpa q. Por hipótese A A J e portanto usando i)(à esquerda) e ii)(à direita) tem-se que det A det A J ñ pdet Aq det A, e multiplicando esta última igualdade por det A dos lados tem-se det A det A. Usando agora iii) vem det A det A pdet Aq detpa q. Grupo VI. Uma vez que sabemos que em geral é falso que detpa Bq det A det B, com um pouco de paciência era fácil construir um exemplo em que det B. Tomando por exemplo A e B, tem-se detpa Bq det A e det B. e-fólio A
4 Álgebra Linear I Efólio A II. Considerando que e que a matriz já está em forma de escada, não é necessária mais qualquer transformação pelo método de eliminação de Gauss. Assim, e como, a matriz R é invertível. Pelo método de eliminação de Gauss-Jordan temos:
5 III. Utilizando o Teorema de Laplace calcule o valor de Resolução : 9 det 9 9 Cálculo do determinante da matriz do enunciado (que designei por A) utilizando o Teorema de Laplace. As seguintes notações, para o determinante, são equivalentes : det A det(a) A. Foi aplicado o teorema à quarta linha, pois é uma das linhas que tem maior número de elementos iguais a zero e além disso, essa linha tem elementos com valores e. det(a) det 9 9 ( ) 9 d d 9 + ( ) ( ) 9 d + ( ) 9 9 d + d d Ficamos assim com determinantes para calcular, designados por d, d e d. Para aplicação do teorema, foi escolhida a quinta linha para estes determinantes (e a segunda linha e a segunda coluna nos níveis seguintes), pelas razões anteriormente expostas. Para simplificação de escrita, serão omitidos os termos ( ) de expoente par e substituídos os termos ( ) de expoente ímpar, por troca de sinal. Há um determinante parcial que se repete com frequência designado por d. d d c d (8 ) + ( + ) + ( ) d d d d 9 + d 9 d d d + d 9 9 Então det (A) d + d d +. UC E-fólio A
6 IV. a) Começando por analisar a caracterísca da matriz A,facilmenteseverificaqueestadependedosvaloresde. Seosvaloresde forem tais que A éinvertível,entãor (A )n,poisexisteumamatrizequivalente por linhas a A,nasuaformadeescadareduzidatalqueA! I. De forma análoga, se A não for (linhas) invertível, r (A ) <n. Determinando os valores de para os quais A éinvertível,atravésdoseudeterminante(poissea é invertível det(a ) ): + l ( ) ( ) + ( )( + )+ + ( ) + ( + ) _ + _ Pelo que se conclui que A éinvertívelpara R \{, }. Logo para R \{, } r (A )n. Verificando agora a característica da matriz para os valores de para os quais A não é invertível: A!! (f.e.r) l+l l l
7 Pelo que se conclui que: A! l+l! l$l 8 < se R \{, } r (A ) : se _ (f.e.r) b) A ( ) ( ) + i) Adj A ( ) T T Cálculo da inversa a partir da adjunta: A det A adj A deta ( ) + ( ) ( ) +( )
8 A ii) Porque A ( ) éumamatrizquadradaeinvertível,osistemadeequaçõeslinearesax B éumsistemade Cramer. Sendo assim, é possível afirmar que: AX B A AX A B X A B h Neste caso B i T,peloqueX A B: Logo a solução do sistema é S (,, ). iii) Resolvendo o sistema AXB pelo método de Cramer: x l ( )( ) +
9 x x l ( ) + x x l ( ) + x Pelo que a solução do sistema AX B é S,,. 8
Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que:
21002 - Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: Verifique se o ficheiro que recebeu está correcto. O
ficha 2 determinantes
Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo
Aulas práticas de Álgebra Linear
Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto
Resolução do efólio A
Resolução do efólio A Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das armações a), b), c), d) é verdadeira. Indique-a marcando ˆ no quadrado
ÁLGEBRA LINEAR I 21002
text ÁLGEBRA LINEAR I 21002 Período de Realização Decorre de 23 de novembro a 3 de dezembro de 2108 Data de Limite de Entrega 3 de dezembro de 2108, até às 23h55 de Portugal Continental Conteúdos Matrizes.
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
Departamento de Matemática
Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F
Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A
MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode
1. Seja G = (V, A) um grafo orientado em que o conjunto dos vértices é dado por V = {a, b, c, d, e} e a lista de arestas por
INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA 4 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE o semestre 004/05 - aulas práticas de 004-0-3 a 004-0-0. Seja G = (V, A)
Indicação de uma possível resolução do exame
Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x
Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17
Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz
Álgebra Linear 1 o Teste
Instituto Superior Técnico Departamento de Matemática 1 o Semestre 2008-2009 6/Janeiro/2008 Prova de Recuperação Álgebra Linear 1 o Teste MEMec, MEAer Nome: Número: Curso: Sala: A prova que vai realizar
Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia
Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Álgebra Linear - Exercícios resolvidos
Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7.
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 20/Nov/2003 ÁLGEBRA LINEAR A FICHA 6 SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Propriedades dos Determinantes
Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios
Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada
Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES
Sistemas lineares e matrizes, C = e C =
1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente
Aulas práticas de Álgebra Linear
Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA REGIMES DIURNO/NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA EXAME DE ÉPOCA
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
1 a LISTA DE EXERCÍCIOS Sistemas de Equações Lineares e Matrizes Álgebra Linear - 1 o Semestre /2018 Engenharia Aeroespacial
1 a LISTA DE EXERCÍCIOS Sistemas de Equações Lineares e Matrizes Álgebra Linear - 1 o Semestre - 217/218 Engenharia Aeroespacial Problema 1 Calcule A 2 2B + I, ( ( 2 1 onde A =, B =, e I é a matriz identidade
Sistema de Equaçõs Lineares
Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
ÁLGEBRA LINEAR AULA 4
ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da
Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química
Código do Teste: 105 Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química 1. Para as matrizes A = ( 1 0 3 1 ) B = ( 5 4 1 0 2 1 3 1 ) C = 1 1 1 0 5 1
1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0
1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo
Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica
Lista de exercícios 7 Independência Linear.
Universidade Federal do Paraná semestre 6. Algebra Linear Olivier Brahic Lista de exercícios 7 Independência Linear. Exercício : Determine se os seguintes vetores são linearmente independentes em R : (
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Sistemas de Equações lineares
LEIC FEUP /4 Sistemas- Sistemas de Equações lineares SEL- Dado o sistema coeficientes + + + +, resolva-o invertendo a matriz dos SEL- SEL- Considere o seguinte sistema de equações lineares: + + + a + a
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser
Matemática. Lic. em Enologia, 2009/2010
Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1
setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste
ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do 1º este 05 de Maio de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear e Geometria
ficha 4 valores próprios e vectores próprios
Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12
Apontamentos I. Álgebra Linear aulas teóricas. Mestrado Integrado em Engenharia Eletrotécnica e de Computadores
Apontamentos I Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice
ÁLGEBRA LINEAR A FICHA 2
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 7/Out/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Matrizes: Inversão e Formas
CM005 Algebra Linear Lista 1
CM005 Algebra Linear Lista Alberto Ramos. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique
(c) A 1 = (d) A 1 = 5. Seja T : R 7 R 3 uma transformação linear sobrejetiva. (b) dim(n(t )) = 3. (d) dim(im(t )) = 0
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Cesar, Flavio, Luiz Carlos, Mario, Milton, Monique e Paulo Data: 30 de outubro de 2013 (c) A 1 = 3 1 5 2 3 7 7 3 2
apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13
apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice 1 1 Matrizes,
Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto
3 a Lista para auto-avaliação (com um exercício resolvido)
Álgebra Linear Cursos: Engenharia Civil, Engenharia de Minas, Engenharia do Território 1 ō ano/1 ō Semestre 21/211 3 a Lista para auto-avaliação (com um exercício resolvido) 1. Indique a característica
Matriz, Sistema Linear e Determinante
Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde
Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5
Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c
ESPAÇOS LINEARES (ou vetoriais)
Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas
ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO
ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz
Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0
Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual
Álgebra Linear e Geometria Analítica D
1 3 Departamento de Matemática Álgebra Linear e Geometria Analítica D Primeiro Teste 21 de Novembro de 2009 Nome: Número de caderno: PREENCHA DE FORMA BEM LEGÍVEL Grelha de Respostas A B C D 1 2 3 4 5
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. Exercícios sobre Sistemas de Equações Lineares.
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ANÁLISE NUMÉRICA Exercícios sobre Sistemas de Equações Lineares Considere as seguintes matrizes: [ 0 3 4 Calcule
Interbits SuperPro Web
1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)
Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)
Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão
ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R
ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações
Instituto Universitário de Lisboa
Instituto Universitário de Lisboa Departamento de Matemática Exercícios extra de Álgebra Linear Ano Lectivo 204/205 . Sejam A = 0 2 0 0 2 e B = 0 0 0 0. (a) Calcule, se possível, as matrizes AB, BA e B
Lista de exercícios 8 Bases e Dimensão.
Universidade Federal do Paraná semestre 05. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 8 Bases e Dimensão. Exercício : No exercício da Folha 7, indique se os vetores formam uma base para
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 01/1 LEIC - A EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Determinantes. 1 1 Determinantes Pode-se de nir det A, o determinante de uma matriz A M nn (K), como o valor da função de M nn (K)
Notas em Álgebra Linear
Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método
AUTOVALORES E AUTOVETORES
AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos
Revisão: Matrizes e Sistemas lineares. Parte 01
Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de
UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE
DETERMINANTES Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario Determinantes Determinantes Introdução Determinante é um número associado a uma matriz quadrada. Permutação Considere n objetos distintos
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal
Análise multivariada
UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para
(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de
EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis
EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003 Funções reais de várias variáveis 1. Faça um esboço de alguns conjuntos de nível das seguintes funções: (a) f (x,y) = 1 + x + 3y, (x,y)
I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple
1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0
Capítulo 3 - Sistemas de Equações Lineares
Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipbpt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 22
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
Álgebra Linear e Geometria Analítica
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha
Autovetor e Autovalor de um Operador Linear
Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é
DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)
DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha
Trabalhos e Exercícios 1 de Álgebra Linear
Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:
Álgebra Linear Semana 05
Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais
Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector
GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.
GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais
