ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

Tamanho: px
Começar a partir da página:

Download "ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA"

Transcrição

1 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 15 de Julho de 2015; 10:00 Ano Lectivo: Semestre: Verão

2 Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA

3 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 3 PARTE 1 1 ç Considere o sistema de equações lineares nas incógnitas Bß Cß D, onde + e, são parâmetros reais: BC+D œ +B C +D œ " + BCD œ,$ a ç Discuta a natureza do sistema, em função dos parâmetros + e,. b ç Resolva-o, para +œ" e,œ", indicando ainda a solução geral do sistema homogéneo associado. c ç Faça +œ! e,œ$ e designe por Ea matriz simples do sistema: c1 ç Justifique que E é invertível e determine E ". c2 ç Resolva o sistema, recorrendo à matriz E " calculada na alínea anterior. Resposta 1a ç Levemos a matriz completa ÒE FÓdo sistema à forma escalonada, por condensação vertical: Para + œ", fica ainda: " " + " " + P+PÄP $ + " + "+! +" + +" +" " ",$ µ " $ PPÄP $ " $!! +," " " " " " " PÇP $ +œ"ê!!!! µ!! "," "!! ","!!!! Estamos, agora, em condições de fazer a discussão do sistema: Designando por < a característica da matriz E simples, por = a característica da matriz ÒE FÓ completa e por 8 œ $ o número de incógnitas, resumimos a discussão no quadro seguinte: Caso +, < = < œ = 8< " " Sim " Á" $ Não Natureza do sistema Possível simplesmente indeterminado Impossível $ " Sim " Possível simplesmente indeterminado % Á Á " $ $ Sim! Possível determinado 1b ç Para +œ "(caso $ ), o sistema é possivel e simplesmente indeterminado (independentemente do valor real de,). Para determinar a respectiva solução geral, basta agora fazer, œ " em " e levar a matriz completa à forma escalonada reduzida, por mais uma operação do tipo $ : " " " " "!! B œ C PPÄP " ",œ"ê!! " µ!! " Ê C œ C!!!!!!!! D œ Ano Lectivo: Semestre: Verão 2015 Julho 15; 10:00

4 4 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) Deste modo, a solução geral do sistema é: BßCßD œcßcß œ!ß!ß C"ß"ß! à C O vector!ß!ß é uma solução particular de E\ œ F e C"ß "ß! é a solução geral do sistema homogéneo associado. 1c1 ç A discussão do sistema antes realizada mostra que, para +œ! e qualquer,, o sistema é determinado (caso %) e sê-lo-á, em particular, para,œ$: A matriz E terá característica <œ$, logo, Eé invertível e " "! T. Lap "! dete œ! "! œ œ " " " Então,! "! " " " " E œ E œ! œ!! dete adj!! " "! " T 1c2 ç Temos, sucessivamente, M " " " " E\ œ F Ê E E\ œ E F Ê E E \ œ E F $ "! " " ÊM\œ $ E FÊ\œE FÊ\œ!! " "! " ' Ê\œ " " œ " % 2015 Julho 15; 10:00 Ano Lectivo: Semestre: Verão

5 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 5 $! $ $ $ 2 ç Seja 0À Ä o endomorfismo de cuja matriz canónica é J œ " " ". "!! a ç Prove que ß "ß " é um vector próprio de 0. Qual o valor próprio associado? b ç Determine todos os valores próprios de 0, bem como as respectivas multiplicidades algébricas. c ç Sem efectuar quaisquer cálculos, mostre que o núcleo de 0 é!ß!ß! e conclua que 0 é um automorfismo de $. d ç Determine os subespaços próprios de 0 e indique uma base de $ em relação à qual a matriz de 0 seja "!! Hœ! "!!!. $ % e ç Considere a aplicação linear 1À Ä definida por 1Bß Cß D œ B Cß B Cß!ß D: e1 ç Justifique que 1 é injectiva e não sobrejectiva. e2 ç Determine a matriz de 1 0 em relação às bases canónicas dos espaços envolvidos e use-a para determinar 1 0BßCßD, para todo o BßCßD $. 2a ç As coordenadas na base canónica de Resposta $ da imagem do vector ß "ß " por 0 são $! % - " " " " œ œ " "!! " " Portanto, 0 ß"ß" œ ß"ß" o que mostra que ß"ß" é um vector próprio de 0 associado ao valor próprio - œ. 2b ç Aplicando o teorema de Laplace à coluna, o polinómio característico de 0 é dado por: $-! : 0 - œ detj -M$ œ " "- " "! - $- œ "- œ " $ " œ "-- -" œ -" - Conclui-se que o espectro de 0 é E0 œ "ß. A multiplicidade algébrica do valor próprio - œ " é e a multiplicidade algébrica do valor próprio - œ é "(consequentemente, também a geométrica). 2c ç Como! não é valor próprio de 0, segue-se que não existem vectores BßCßD não nulos tais que 0BßCßD œ! BßCßD œ!ß!ß!, ou seja, o único vector com imagem nula é o próprio vector nulo. Isto significa que o núcleo de 0 é!ß!ß!. Então, 0 é injectiva (um automorfismo de $ ). Ano Lectivo: Semestre: Verão 2015 Julho 15; 10:00

6 6 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 2d ç Para determinar os subespaços próprios I-0, temos que calcular os vectores próprios de 0, resolvendo os sistemas homogéneos J-M \ œs, para cada - 0Þ ç Para - œ": $ - E!! "! "! "! "! B œ D " PÄP " " PPÄP " "! "! µ "! "! µ!!!! Ê C œ C PPÄP $ " $ "! "! "! "!!!!! D œ D A solução geral do sistema homogéneo duplamente indeterminado anterior é BßCßD œc!ß"ß! D "ß!ß" à CßD O subespaço próprio associado ao valor próprio - œ" é, pois: I"0 œc!ß"ß! D "ß!ß" ÀCßD œp!ß"ß! ß "ß!ß" Portanto, a multiplicidade geométrica o valor próprio " é 7 " œ dimi 0 œ 1 " ç Para - œ: "!! "!! B œ D PPÄP " " " "! µ! " "! Ê C œ D PPÄP $ " $ "!!!!!! D œ D A solução geral do sistema homogéneo simplesmente indeterminado anterior é D ß"ß" à D. O subespaço próprio associado ao valor próprio - œ é, pois: I0 œ D ß "ß " À D œ P ß "ß " Portanto, a multiplicidade geométrica o valor próprio é O quadro seguinte resume a situação de 0: 7 œ dimi 0 œ " 1 - I " P!ß "ß! ß "ß!ß " P ß "ß " " " 7 - œ $ - E0 Como a soma das multiplicidades geométricas dos valores próprios de 0 é igual a dim œ $, a função 0 é diagonalizável. A base /œ!ß"ß! ß "ß!ß" ß ß"ß" é formada exclusivamente por vectores próprios de 0 (associados respectivamente aos valores próprios "ß"ß ) pelo que, nessa base, a matriz de 0 é: "!! Hœdiag"ß "ß œ! "!!! 1 $ 2015 Julho 15; 10:00 Ano Lectivo: Semestre: Verão

7 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 7 Observe-se que a matriz diagonal H anterior é também a representação de 0 em relação, por exemplo, à base "ß!ß " ß!ß "ß! ß ß "ß " e ainda em relação às infinitas bases da forma + - +!ß"ß!, "ß!ß" ß-!ß"ß!. "ß!ß" ß> ß"ß" àcom Á! >Á! (porquê?),. 2e1 ç Como a dimensão do domínio é inferior à do codomínio, 1 não pode ser sobrejectiva. Por outro lado, a matriz canónica de 1 é É óbvio que a característica de " "! " "! Kœ!!!!! K (e de 1 ) é igual a $, o que mostra que 1 é injectiva. 2e2 ç A matriz canónica de 1 0 é " "! $! % " $ " "! " " KJ œ " " " œ!!!!!! "!!!!!! As coordenadas de 1 0BßCßD na base canónica de % são: % " $ %BC$D B " " BCD C œ!!!!!! D B Portanto, 1 0BßCßD œ %BC$DßBCDß!ßB Ano Lectivo: Semestre: Verão 2015 Julho 15; 10:00

8 8 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 3 ç Em $, dotado do produto interno canónico, considere os vectores?t œ "ß!ß " œ!ß "ß " e At œ "ß "ß ". a ç Determine o ângulo entre?t e a projecção de At sobre?t. b ç Calcule a área do triângulo definido por?t c ç Usando determinantes, prove que a At é uma base de $. d ç Utilizando o processo de Gram-Schmidt, construa uma base ortogonal At. Resposta 3a ç O ângulo entre? t t é dado por:? ang? œ arccos? "ß!ß "!ß "ß " œ arccos "ß!ß "!ß "ß " " " 1 œ arccos œ arccos œ $ A projecção de At sobre?t é $, a partir da base At?t "ß"ß" "ß!ß"! proj?t At œ?t œ "ß!ß " œ "ß!ß " œ!ß!ß!? t?t "ß!ß" "ß!ß" 3b ç Sendo t-ß-ß- " t t$ a base canónica de $ (que é ortonormada para o produto interno usual), tem-se "! -t "! " "! " -t œ t- t- t- œ- t - t - t œ "ß"ß" " " " " "! " $ " $ " " -t $ A área do triângulo definido por?t será então: " " " œ "ß "ß " œ $ œ $ 2015 Julho 15; 10:00 Ano Lectivo: Semestre: Verão

9 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 9 3c ç Basta mostrar que At Á!: "! " At œ! " " œ"!!"!"œ$á! " " " 3d ç O método de ortogonalização de Gram-Schmidt permite obter uma sequência ortogonal /œ /tß/tß/t " $ a partir de uma sequência = At linearmente independente (esta condição é essencial e, como vimos na alínea anterior, ela verifica-se no presente problema). O referido método define a sequência ortogonal /t" ß/tß/t $ a partir da sequência linearmente independente =, por recorrência, de acordo com as expressões seguintes: /t " œ?t œ "ß!ß /t "!ß "ß " "ß!ß " /t œ@ t /t" œ!ß"ß" "ß!ß" /t" /t " "ß!ß " "ß!ß " œ!ß"ß" " " "ß!ß " œ "ß ß " At /t" At /t /t$ œ A t /t" /t /t" /t" /t /t " "ß "ß " "ß!ß " "ß "ß " "ß ß" " œ "ß "ß " "ß!ß " "ß!ß " "ß!ß " " " "ßß" "ßß" "ßß" œ "ß"ß"! "ß!ß"! "ßß" œ "ß"ß" Portanto, a sequência /t" ß/tß/t $ œ "ß!ß" ß"ßß" ß"ß"ß" é a base ortogonal pedida. Ano Lectivo: Semestre: Verão 2015 Julho 15; 10:00

10 10 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) PARTE 2 1 ç Seja E uma matriz real quadrada de ordem 8 ". Atente nas seguintes proposições envolvendo E: T +ç a E é invertível Í dete E Á!. E 8ß8,ç a det - E œ - det E. 8ß8 - ßE -ç a EE œ E E 8ß8det det. " ".çdete œ Ê E œ adj E. A lista completa formada pelas proposições verdadeiras é: úç +ß -ß. úç,ß - ú ç +ß. úç +ß - Resposta Vejamos agora o valor de verdade das proposições: +ç Aproposição é verdadeira. Temos, sucessivamente, det T det T EE œ EdetE œdetedete œdete Á!ÍdetE Á!ÍEé invertível 8 8,çNeste caso, é det-e œ - dete. A igualdade -dete œ - detesó é verdadeira para E é singular - œ! - œ" - œ" 8ímpar A proposição dada é, pois, falsa. 8 -çneste caso, temos: detee œ dete œ dete. Por ser 8", a igualdade 8 dete œ detesó é verdadeira se Efor singular, isto é, se dete œ!. A proposição dada é, portanto, falsa..ç A proposição é verdadeira. A hipótese dete œ Á! mostra que E é invertível e então: " " " E œ adje œ adje œ adje dete "Î " Em face do exposto, a resposta correcta é a terceira, +ß Julho 15; 10:00 Ano Lectivo: Semestre: Verão

11 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 11 2 ç Seja I um espaço vectorial real e At vectores de I tais que?t Atœ?t$@t. Sendo J o subespaço de I gerado At, então: úç dimj œ! ú ç dimj œ " úç dimj œ úç dimj œ $ Resposta O enunciado permite-nos escrever At œ?t$@tœ?t$ %?t œ "!?t. Assim, At œ?t, %?t ß "!?t?tá9t Então, JœP?t, %?t ß"!?t œ P?t?tÁ9tÊdimJ œ" Concluímos que a opção correcta é a segunda. Ano Lectivo: Semestre: Verão 2015 Julho 15; 10:00

12 12 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 3 ç Seja 0À $ Ä $ uma aplicação linear tal que 0 "ß!ß! œ "ß "ß! 0!ß "ß! œ!ß "ß " 0!ß!ß " œ "ß!ß ". Apenas uma das seguintes proposições é verdadeira. Assinale-a: ú 0 é sobrejectiva. ú A nulidade de 0 é igual a. ú 0 ß!ß" œ ß"ß". ú O núcleo de 0 é o subespaço gerado por "ß"ß". Resposta A matriz canónica J de 0 tem por colunas as coordenadas na base canónica de 0 "ß!ß!, 0!ß"ß! e 0!ß!ß", portanto: "! " Jœ " "!! " " A expressão geral de 0 é 0BßCßD œbdßbcßcd, como se mostra a seguir: "! " B BD " "! C œ BC! " " D CD A seguir, mostramos que a característica de 0 é igual a : "! " "! " "! " PPÄP " PPÄP $ $ " "! µ! " " µ! " "! " "! " "!!! ç A primeira proposição dada é falsa: Como a característica de 0 é $, 0 não é sobrejectiva. ç A segunda proposição dada é também falsa: A nulidade de 0 é igual a $ œ ". ç A terceira proposição é, igualmente, falsa: Temos, usando a expressão 0BßCßD œbdßbcßcd, com BßCßD œ ß!ß" : 0 ß!ß" œ "ß!ß!" œ $ßß" Á ß"ß" ç A última proposição dada é verdadeira: Por definição, tem-se Ker0 œbßcßdà0bßcßd œ!ß!ß! œbßcßdàbdßbcßcd œ!ß!ß! œbßcßdàbdœ! BCœ! CDœ! Trata-se, portanto, do espaço das soluções do sistema homogéneo anterior (espaço nulo de J ): "! "! "! "! "! "! B œ D PPÄP " PPÄP $ $ " "!! µ! " "! µ! " "! Ê C œ D! " "!! " "!!!!! D œ D 2015 Julho 15; 10:00 Ano Lectivo: Semestre: Verão

13 Álgebra Linear e Geometria Analítica - Resolução do Exame (Época de Recurso) 13 A solução geral é BßCßD œ DßDßD œ D "ß"ß " ; portanto, Ker0 œ D "ß "ß " À D œ > "ß "ß " À > œ P "ß "ß " A resposta correcta é, portanto, a última. Ano Lectivo: Semestre: Verão 2015 Julho 15; 10:00

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 20 de Fevereiro de 2015; 10:00 Ano Lectivo: 2014-2015 Semestre: Inverno Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 1º Teste 29 de Abril de 2015; 18:30 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução da Repetição do 1º este 04 de Fevereiro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Inverno Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do 1º este 07 de Maio de 2012 Ano Lectivo: 2011-2012 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução do

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 1º Teste 01 de Fevereiro de 2013 Ano Lectivo: 2012-2013 Semestre: Inverno ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear e Geometria

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Multiplicidade geométrica

Multiplicidade geométrica Valores e Vectores Próprios - ALGA - /5 Multiplicidade geométrica Chama-se multiplicidade geométrica de um valor próprio ao grau de indeterminação do sistema (A I n ) X : O grau de indeterminação de corresponde

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

6 Valores e Vectores Próprios de Transformações Lineares

6 Valores e Vectores Próprios de Transformações Lineares Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)

Leia mais

ALGA I. Representação matricial das aplicações lineares

ALGA I. Representação matricial das aplicações lineares Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

ficha 2 determinantes

ficha 2 determinantes Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto

Leia mais

Lista 6: transformações lineares.

Lista 6: transformações lineares. Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 1 3 Departamento de Matemática Álgebra Linear e Geometria Analítica D Primeiro Teste 21 de Novembro de 2009 Nome: Número de caderno: PREENCHA DE FORMA BEM LEGÍVEL Grelha de Respostas A B C D 1 2 3 4 5

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral

ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral Módulo 9 ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral Contents 9.1 Operadores auto-adjuntos (simétricos e hermitianos) 136 9. Teorema espectral para operadores auto-adjuntos...........

Leia mais

Departamento de Matemática

Departamento de Matemática Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que:

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: 21002 - Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: Verifique se o ficheiro que recebeu está correcto. O

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 7 II SEMESTRE DE 00 Professores: Flávia, Gustavo e Lana. Suponha que uma força

Leia mais

Produto interno no espaço vectorial R n

Produto interno no espaço vectorial R n ALGA - 00/0 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR. Prefácio 3. Parte 1. Sistemas de equações lineares 4. Parte 2. Matrizes 10. Parte 3.

EXERCÍCIOS DE ÁLGEBRA LINEAR. Prefácio 3. Parte 1. Sistemas de equações lineares 4. Parte 2. Matrizes 10. Parte 3. EXERCÍCIOS DE ÁLGEBRA LINEAR PEDRO MATIAS Conteúdo Prefácio 3 Parte 1. Sistemas de equações lineares 4 Parte 2. Matrizes 10 Parte 3. Determinantes 16 Parte 4. Geometria analítica 18 Parte 5. Espaços lineares

Leia mais

FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS. Matemática I 1 a Frequência: 27 de Outubro de 2009

FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS. Matemática I 1 a Frequência: 27 de Outubro de 2009 FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS Matemática I 1 a Frequência: 27 de Outubro de 2009 A frequência consiste em duas partes, tem uma duração de 2h30m e está cotado para 20 valores, é efectuado

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Método de Gauss-Jordan e Sistemas Homogêneos

Método de Gauss-Jordan e Sistemas Homogêneos Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

Apontamentos das aulas teóricas de Álgebra Linear

Apontamentos das aulas teóricas de Álgebra Linear Apontamentos das aulas teóricas de Álgebra Linear Cursos: MEAmbi e MEBio 1 o Semestre 2015/2016 Prof Paulo Pinto http://wwwmathtecnicoulisboapt/ ppinto Conteúdo 1 Matrizes e sistemas lineares 1 11 Álgebra

Leia mais

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM2 - Introdução à Álgebra Linear - Turmas 8, 82 e 84 Lista - Tiago de Oliveira Reveja a teoria e os exercícios feitos em sala. 2 3 2 0. Sejam

Leia mais

UFSC Matrizes. Prof. BAIANO

UFSC Matrizes. Prof. BAIANO UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em

Leia mais

Sebenta de exercícios de Álgebra Linear e Geometria Analítica. Curso: Eng. Topográ ca

Sebenta de exercícios de Álgebra Linear e Geometria Analítica. Curso: Eng. Topográ ca Sebenta de exercícios de Álgebra Linear e Geometria Analítica Curso: Eng. Topográ ca Ano Lectivo 009/010 4 de Setembro de 009 (Versão: 1.0) Índice Notações e terminologia ii 1 Revisão sobre noções elementares

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria da Graça Marcos Marisa João Guerra Pereira de Oliveira Alcinda Maria de Sousa Barreiras

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria da Graça Marcos Marisa João Guerra Pereira de Oliveira Alcinda Maria de Sousa Barreiras ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Maria da Graça Marcos Marisa João Guerra Pereira de Oliveira Alcinda Maria de Sousa Barreiras EDIÇÃO, DISTRIBUIÇÃO E VENDAS SÍLABAS & DESAFIOS - UNIPESSOAL LDA. NIF:

Leia mais

Análise Dinâmica de Sistemas Mecânicos e Controle

Análise Dinâmica de Sistemas Mecânicos e Controle Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 3 Espaço de Estados: álgebra e resolução das equações dinâmicas Prof. Thiago da Silva Castro [email protected] Para trabalhar no

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA. UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA

Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA EMENTA: Vetores. Matrizes. Determinantes. Sistemas Lineares Transformações Lineares. Produto Vetorial. Produto Escalar. Espaços vetoriais.

Leia mais

2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz

2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz 1 Projeto Jovem Nota 10 1. (Uff 2000) Numa progressão aritmética, de termo geral aš e razão r, tem-se a=r=1/2. Calcule o determinante da matriz mostrada na figura adiante. 2. (Ufrj 2003) Os números reais

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

Mensagem descodificada. Mensagem recebida. c + e

Mensagem descodificada. Mensagem recebida. c + e Suponhamos que, num determinado sistema de comunicação, necessitamos de um código com, no máximo, q k palavras. Poderemos então usar todas as palavras a a 2 a k F k q de comprimento k. Este código será

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores

Leia mais

Os Quatro Subespaços Fundamentais

Os Quatro Subespaços Fundamentais Álgebra Linear e Geometria Analítica Texto de apoio Professor João Soares 7 páginas Universidade de Coimbra 26 de Novembro de 29 Os Quatro Subespaços Fundamentais Seja A uma matriz m n de elementos reais.

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou

Leia mais

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA ÍNDICE MATRIZES Definição 1 Igualdade 2 Matrizes Especiais 2 Operações com Matrizes 3 Classificação de Matrizes Quadradas 9 Operações Elementares 11 Matriz Equivalente por Linha 11 Matriz na Forma Escalonada

Leia mais

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas.

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas. Aplicações: Diagonalização unitária e diagonalização ortogonal (Positividade do produto interno) Raíz quadrada Formas quadráticas Mínimos quadrados Produto externo e produto misto (Área do paralelogramo.

Leia mais

2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h)

2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h) 3.. determinante de uma riz página /5 departamento de emática universidade de aveiro. Determine o número de inversões e classifica qnto à paridade as seguintes permutações de {,, 3, 4, 5}: (3, 4,, 5, )

Leia mais

αx + 2y + (α + 1)z + 2αw = β 1. [40 pontos] Discuta o sistema em função dos parâmetros α, β e γ.

αx + 2y + (α + 1)z + 2αw = β 1. [40 pontos] Discuta o sistema em função dos parâmetros α, β e γ. Católica Lisbon School of Business and Economics UCP MATEMÁTICA I MINI-TESTE 1 - versão A Duração: 90 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

(Todos os cursos da Alameda) Paulo Pinto

(Todos os cursos da Alameda) Paulo Pinto Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas

Leia mais

Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Sistemas Lineares. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Sistemas Lineares Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

Trabalhos e Exercícios 1 de Álgebra Linear

Trabalhos e Exercícios 1 de Álgebra Linear Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:

Leia mais

Universidade Federal de Uberlândia Faculdade de Matemática

Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais

Leia mais

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

PROGRAMA DE DISCIPLINA

PROGRAMA DE DISCIPLINA PROGRAMA DE DISCIPLINA Disciplina: ÁLGEBRA LINEAR E CÁLCULO VETORIAL Código da Disciplina: NDC152 Curso: Engenharia Civil Semestre de oferta da disciplina: 2 Faculdade responsável: NÚCLEO DE DISCIPLINAS

Leia mais

. Repare que ao multiplicar os vetores (-1,1) e

. Repare que ao multiplicar os vetores (-1,1) e Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais

Leia mais