AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

Tamanho: px
Começar a partir da página:

Download "AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que"

Transcrição

1 Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno resolendo os problemas apresentados na bibliografia, sem consulta préia das soluções propostas, análise comparatia entre as suas resposta e a respostas propostas, e posterior exposição junto do docente de todas as dúidas associadas. TÓPICOS Exercícios. AULA. Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR... Se A é uma matriz real m n e n u R, a aplicação T : R R tal que T ( Au é uma transformação linear dado que, u, R, α, β R, T( αu + β) A( αu + β) A( α + A( β) α( A + β( A) α T( + β T( ) n n m Por exemplo, sendo A, u,, α e β 4, temos T( α u + β ) A( α u + β ) ( ) α T( + β T( ) α Au + β A ( ) + 4 ( ) Prof. José Amaral ALGA A

2 .. Recorrendo à definição aerigue se é linear a transformação T : R R ; T( x, y, z) ( xy, y, x + z) Uma função T : E E é uma transformação linear se:. T( α α T(. T ( u + ) T( + T( ) Para o caso presente temos T( α T( α( x, y, z)) ( αxαy, αy, α x +αz) αα ( xy, y, x + z) αt( α ( xy, y, x + z) Logo T não é uma transformação linear... Recorrendo à definição aerigue se é linear a transformação T : R R ; T( x) x. Uma função T : E E é uma transformação linear se:. T( α α T(. T ( u + ) T( + T( ) Para o caso presente temos T( α ( αx) αx ααt( αt( Logo T não é uma transformação linear..4. Recorrendo à definição aerigue se é linear a transformação T : R R ; T( x, y, z) x y z. Uma função T : E E é uma transformação linear se:. T( α α T(. T ( u + ) T( + T( ) Para o caso presente temos Prof. José Amaral ALGA A

3 T( α T( α( x, y, z)) αx αy αz α x y z αt( T( u + ) T(( x, y, z ) + ( x, y, z )) T( + T( ) Logo T é uma transformação linear. T(( x + x, y + y, z + z )) x + x y + y z + z x y z + x y z T(( x, y, z )) + T(( x, y, z )).5. Recorrendo à definição aerigue se é linear a transformação, x y T : R R ; T ( x, x + y + ) z. Uma função T : E E é uma transformação linear se:. T( α α T(. T ( u + ) T( + T( ) Para o caso presente temos x y T( α T α z αx αy T z α α ( αx, α x +α y +α) ( αx, α ( x + y + )) α ( xx, + y+ ) αt( Prof. José Amaral ALGA A

4 x y x y T( u + ) T + z z T( + T( ) Logo T é uma transformação linear. x + x y + y T z z + + ( x + x,( x + x ) + ( y + y ) + ( + )) ( x + x,( x + y + ) + ( x + y + )) ( x, x + y + ) + ( x, x + y + ) DETERMINAR O NÚCLEO E A IMAGEM DE UMA TL.6. Dada a transformação linear T : R R definida por Txyz (,, ) (x+ y zx, y,y z) Determine o núcleo e a imagem de T. Determine uma base e a dimensão destes subespaços. Verifique o teorema enolendo a nulidade e a característica de T. O Nuc( T ) é o conjunto de soluções do sistema homogéneo Ax, sendo A a matriz da transformação T relatia a quaisquer bases escolhidas em R. Considerando as bases canónicas temos Txyz (,, ) (x+ y zx, y,y z) x + y z x y y z x y z A transformação tem, relatiamente às bases canónicas, a matriz A Logo, sendo Nuc( T ) o conjunto de soluções do sistema homogéneo Ax, temos O sistema é simplesmente indeterminado, com z lire, x z e y z, logo com solução geral Prof. José Amaral ALGA A

5 x z z y z, z R z z Fica assim determinado Nuc( T ) e uma sua base: { } Nuc( T) L((,, )) k(,, ) : k R {(,, ) } é uma base de Nuc( T ) dim(nuc( T )) Im( T ) é o espaço gerado pelos ectores que constituem as colunas de A, sendo A a matriz da transformação T relatia a quaisquer bases escolhidas em R. Dado que, como imos, a transformação tem, relatiamente às bases canónicas, a matriz A para determinar Im( T ) basta deduzir o espaço gerado pelas colunas de A. Temos Fica assim determinado Im( T ) e uma sua base: Podemos erificar que Im( T) L((,,),(,, )) + { k(,,) k(,,) : k, k R} {( xyx,, y): xyz,, R} {( xyz,, ) R : z x y} {(,, ),(,, ) } é uma base de Im( T ) dim(im( T )) dim( R ) dim(nuc( T)) + dim(im( T)) +.7. Dada a transformação linear T : R R definida por Txy (, ) ( xyy, x,x y) Determine o núcleo e a imagem de T. Determine uma base e a dimensão destes subespaços. Verifique o teorema enolendo a nulidade e a característica de T. Prof. José Amaral ALGA A

6 O Nuc( T ) é o conjunto de soluções do sistema homogéneo Ax, sendo A a matriz da transformação T relatia a quaisquer bases escolhidas em R. Considerando as bases canónicas temos Txy (, ) ( xyy, x,x y) x y y x x y x y A transformação tem, relatiamente às bases canónicas, a matriz A Logo, sendo Nuc( T ) o conjunto de soluções do sistema homogéneo Ax, temos O sistema é simplesmente indeterminado, com y lire e x y, logo com solução geral x y y, y y y R Fica assim determinado Nuc( T ) e uma sua base: { } Nuc( T) L((,)) k(,) : k R {(, ) } é uma base de Nuc( T ) dim(nuc( T )) Im( T ) é o espaço gerado pelos ectores que constituem as colunas de A, sendo A a matriz da transformação T relatia a quaisquer bases escolhidas em R. Dado que, como imos, a transformação tem, relatiamente às bases canónicas, a matriz A para determinar Im( T ) basta deduzir o espaço gerado pelas colunas de A. Temos Prof. José Amaral ALGA A

7 Fica assim determinado Im( T ) e uma sua base: Podemos erificar que Im( T) L((,, )) {( x, x, x): x, y, z R} {( xyz,, ) R : y x z x} {(,, ) } é uma base de Im( T ) dim(im( T )) dim( R ) dim(nuc( T)) + dim(im( T)) + MOSTRAR QUE UMA TL É INJECTIVA, ETC..8. Dada a transformação linear T : R Verifique se T é injectia e sobrejectia. R definida por Txyz (,, ) (x+ y zx, y,y z) A transformação T é injectia sse Nuc( T ) E. Vimos em.6. que Nuc( T) L((,, )) {(,, ) }, logo T não é injectia. A transformação T é sobrejectia sse dim(im( T )) dim( E ) Vimos em.6. que dim(im( T )) dim( R ), logo T não é sobrejectia..9. Dada a transformação linear T : R R definida por Txyz (,, ) ( x, zx+ y) Sem efectuar quaisquer cálculos e justificando adequadamente, mostre que T não é bijectia. A transformação não é bijectia porque, sendo a dimensão do espaço dos objectos superior à dimensão do espaço de chegada a função nunca poderá ser injectia: para que T seja injectia dee ser Nuc( T ) E, ora, dado que e sendo dim( R ) dim(nuc( T)) + dim(im( T)) dim(im( T)) dim( R ), então dim(nuc( T )) logo Nuc( T ) E. Prof. José Amaral ALGA A

8 CALCULAR A IMAGEM DE UMA TRANSFORMAÇÃO LINEAR... Sendo A a matriz canónica de uma transformação linear Temos T : R R, determine T (, ). 6 Au 8 A imagem do ector u e + e é o ector T ( 6e e + 8e. >> A[ ; - -; ]; >> u[ ]'; >> A*u Sendo A a matriz canónica de uma transformação linear T : R R, determine T (,, ). Temos 6 Au A imagem do ector u e + e + e é o ector T ( 6e + e. >> A[- ; - ]; >> u[ ]'; >> A*u 6 Prof. José Amaral ALGA A

9 .. Sendo A a matriz canónica de uma transformação linear Temos T : R R, determine T (,,). Au 6 A imagem do ector u e + e + e é o ector T ( e + 6e e. >> A[- ; - ;- -]; >> u[ ]'; >> A*u Dada a transformação linear T : R R, que consiste numa reflexão sobre o eixo dos yy, seguida duma rotação de π (no sentido directo) e duma projecção ortogonal sobre o eixo dos yy, determine T (, ). Como imos, a uma reflexão sobre o eixo dos yy corresponde a matriz de transformação A, a uma rotação de um ângulo θ no sentido directo corresponde a matriz de transformação A cos( θ) sen( θ) sen( θ) cos( θ), e a uma projecção ortogonal sobre o eixo dos yy corresponde a matriz de transformação A Sendo a transformação T uma composição das transformações elementares, temos Prof. José Amaral ALGA A

10 Prof. José Amaral ALGA A π π π π ) cos( ) sen( ) sen( ) cos( ) ( u A A A u T >> A[- ; ]; >> tetapi/; >> A[cos(teta) -sin(teta); sin(teta) cos(teta)]; >> A[ ; ]; >> AA*A*A A -.. >> u[ ]'; >> A*u Considere a seguinte matriz dos értices de um triângulo em R r T Determine a imagem final (os értices) do triângulo quando é reflectido sobre o eixo dos yy, e depois rodado de π no sentido directo. Dado que a uma reflexão sobre o eixo dos yy corresponde a matriz de transformação A, e a uma rotação de um ângulo π no sentido directo corresponde a matriz de transformação θ θ θ θ ) cos( ) sen( ) sen( ) cos( A A matriz da transformação é

11 Prof. José Amaral ALGA A A A A Dado que os értices do triângulo correspondem a ectores coluna correspondentes a cada uma das colunas da matriz r T r T, resulta que ao produto r AT corresponde uma matriz [ ] [ ] [ ] [ ] [ ] [ ] r A A A AT em que cada uma das colunas corresponde à imagem de cada um dos értices do triângulo AT r >> tetapi/; >> A[cos(teta) -sin(teta);... sin(teta) cos(teta)]; >> AA*A; >> Tr[ ; ]; >> A*Tr ans

12 VERIFICAR SE UMA IMAGEM PODE RESULTAR DE UMA DADA TL.5. Seja T : R R uma transformação linear tal que T(,, ) (,,) T(,, ) (,, ) T(,,) (,, ) O ector (,, ) pertencerá à imagem de T? Justifique. Designando por A a matriz canónica da transformação, temos Txyz (,, ) A ( xyz,, ), logo, escreendo a equação matricial das equações acima, resulta, logo A A Para que (,, ) pertença à imagem de T o sistema deerá ser possíel. Sendo x y z o sistema é impossíel, logo (,, ) não pertence à imagem de T. Alternatiamente poderíamos ter determinado a expressão da transformação linear Txyz (,, ) A( xyz,, ) x y z ( x y + z, z, ( x y + z)) Prof. José Amaral ALGA A

13 e ter concluído de imediato que (,, ) não pertence à imagem de T, dado que que todos os ectores pertencentes à imagem têm a primeira coordenada simétrica à terceira..6. Diga quais das imagens, de b) a d), são compatíeis com uma transformação linear do objecto da figura a) e determine as transformações lineares correspondentes. a) b) c) d) e).7. Sendo Dados um ector u e um ector com a mesma direcção de u, ku, e sendo a imagem de u o ector Au, temos z A Aku kau k Numa transformação linear T : R R, ectores paralelos têm por imagem ectores paralelos, pelo que é imediato reconhecer que a imagem b) não resulta duma transformação linear do objecto a). Numa transformação linear T : R R a imagem do ector nulo é o ector nulo, A, pelo que é imediato reconhecer que as imagens c) e d) não resultam duma transformação linear do objecto a). Atendendo à imagem e), dado que T( e ) T(,) T(,) T( e ) T(,) T(,), e sendo a matriz da transformação linear T : R A T e ) T( e ), temos de imediato dada por [ ] ( A A transformação linear em causa é, portanto, T x, x ) (x x, x + ) ( x Por exemplo, para a diagonal do quadrado, temos Au A 4 n n n n R Prof. José Amaral ALGA A

14 a matriz canónica da transformação linear T : R R, erifique se os ectores (4,, 8), (, ), ( 8,, 8), 4 (,, ) e 5 (,, ) pertencem à imagem (ou contradomínio) de T. O ector (, ) não pertence à imagem de T, dado que R e o contradomínio de T está contido em R. O ector 4 (,, ) pertence, dado que, para toda a transformação linear, a imagem do ector nulo é o ector nulo ( A ). Quanto aos ectores, e 5 podemos erificar se pertencem à imagem de T de diersos modos. Por exemplo, dado que A é a matriz a transformação e tendo em atenção que temos Resolendo o sistema >> A[ -; ; -4]; >> B[4-8]'; >> rref([a B]) ans - - Au u 4 u 4 4 u u 8 4, concluímos que o sistema é possíel, pelo que é uma imagem da transformação. Aliás (dado que o sistema é possíel e determinado) podemos mesmo concluir que u (, ) é o objecto cuja imagem é. De modo idêntico temos u 4 8 u u 8 4 Prof. José Amaral ALGA A

15 Resolendo o sistema >> A[ -; ; -4]; >> B[-8-8]'; >> rref([a B]) ans -, concluímos que o sistema é possíel, pelo que é uma imagem da transformação ( u (,) é o objecto cuja imagem é ). Por último, temos Resolendo o sistema >> A[ -; ; -4]; >> B[ ]'; >> rref([a B]) ans 5 u5 4 u 4 u, concluímos que o sistema é impossíel, pelo que não é uma imagem da transformação. Outro modo de abordar a questão seria determinar o subespaço de R gerado pelas colunas da matriz da transformação. Ou seja, sendo a (,, ) e a (,, 4) os ectores correspondentes às colunas da matriz da transformação, uma imagem, (, ), não é mais do que uma combinação linear destes ectores, sendo os coeficientes as coordenadas do objecto que lhe dá origem u u, u ) ( Prof. José Amaral ALGA A

16 u 4 u + u u a a Au O problema pode assim ser interpretado como um problema de determinação de um subespaço gerado por um conjunto de ectores. Resolendo o sistema u 4 u, recorrendo ao método de Gauss-Jordan, resulta >> A[ -; ; -4]; >> B[ ].' >> escalonar([a B]) [, -, ] [,, ] [, -4, ] Passo : (-)*L + L > L [, -, ] [, 9, -*] [, -4, ] Passo : (/9)*L > L [, -, ] [,, /9*-/9*] [, -4, ] Passo : ()*L + L > L (4)*L + L > L [,, /*+/*] [,, /9*-/9*] [,, +4/9*-8/9*] Concluímos que, para que o sistema seja possíel, deerá ser Fica assim determinada a condição que caracteriza o subespaço das imagens. Podemos erificar que (4,, 8) e ( 8,, 8) erificam a restrição ( ( ) 9 8 e 8 ( 8) 4 9 ( 8), e portanto pertencem à imagem da transformação, mas 5 (,, ) não erifica ( ), e portanto não pertence à imagem. Prof. José Amaral ALGA A

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22). F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto

Leia mais

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES.

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES. Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Ficha de Trabalho 06 e 07

Ficha de Trabalho 06 e 07 Ficha de rabalho 06 e 07 Produto Interno. (Aulas 1 a 18). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto interno. Norma. Desigualdade de

Leia mais

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof. Isabel Matos & José Amaral ALGA A - 8--9. Eercícios. DETERMINAR MA ASE DE M SESPAÇO... Determinar uma base do subespaço de R { } (,,, ) (,,, ) : ( ) ( ) L u u u u R W ma ve que qualquer conjunto

Leia mais

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof Isabel Matos & José Amaral ALGA A3-7--8 3 ercícios DTRMINAR MA BAS D M SBSPAÇO 3 Determinar uma base do subespaço de 4 R { } 4 3 4 (,,, ) (,,, ) : ( ) ( ) L u u u u R ma ve que qualquer conjunto de

Leia mais

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof. Isabel Matos & José Amaral ALGA A - 6--9. Eercícios. DETERMINAR MA ASE DE M SESPAÇO... Determinar uma base do subespaço de R { } (,,, ) (,,, ) : ( ) ( ) L u u u u R ma ve que qualquer conjunto de

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

Lista 6: transformações lineares.

Lista 6: transformações lineares. Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA 7 a LISTA DE PROBLEMAS E EXERCÍCIOS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2006/07 - aulas práticas de 2006-12-04 e 2006-12-06

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR. Prefácio 3. Parte 1. Sistemas de equações lineares 4. Parte 2. Matrizes 10. Parte 3.

EXERCÍCIOS DE ÁLGEBRA LINEAR. Prefácio 3. Parte 1. Sistemas de equações lineares 4. Parte 2. Matrizes 10. Parte 3. EXERCÍCIOS DE ÁLGEBRA LINEAR PEDRO MATIAS Conteúdo Prefácio 3 Parte 1. Sistemas de equações lineares 4 Parte 2. Matrizes 10 Parte 3. Determinantes 16 Parte 4. Geometria analítica 18 Parte 5. Espaços lineares

Leia mais

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1 Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07 Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações

Leia mais

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( +

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( + Lista de exercícios: Unidade 3 Transformações Lineares 1) Consideremos a transformação linear : ² ² definida por (,) = (3 2, +4). Utilizar os vetores = (1,2) e = (3, 1) para mostrar que (3 +4) = 3() +

Leia mais

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios extra de Álgebra Linear Ano Lectivo 204/205 . Sejam A = 0 2 0 0 2 e B = 0 0 0 0. (a) Calcule, se possível, as matrizes AB, BA e B

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES ransformação Linear RNSFORMÇÕES LINERES Sejam e espaços vetoriais reais Dizemos que uma função : é uma transformação linear se a função preserva as operações de adição e de multiplicação por escalar, isto

Leia mais

Álgebra Linear e Geometria Analítica. 7ª aula

Álgebra Linear e Geometria Analítica. 7ª aula Álgebra Linear e Geometria Analítica 7ª aula ESPAÇOS VECTORIAIS O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Espaços Vetoriais e Produto Interno

Espaços Vetoriais e Produto Interno Universidade Federal do Vale do São Francisco Engenharia Civil Álgebra Linear Prof o. Edson 1 o Semestre 1 a Lista de Exercícios 2009 Data: Sexta-feira 27 de Fevereiro Prof o. Edson Espaços Vetoriais e

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 7 II SEMESTRE DE 00 Professores: Flávia, Gustavo e Lana. Suponha que uma força

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Álgebra Linear Transformações Lineares

Álgebra Linear Transformações Lineares Álgebra Linear Transformações Lineares Prof. Carlos Alexandre Mello cabm@cin.ufpe.br cabm@cin.ufpe.br 1 Transformações Lineares Funções lineares descrevem o tipo mais simples de dependência entre variáveis

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019 Álgebra Linear ECT2202 Prof. Ronaldo Carlotto Batista 20 de março de 2019 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser entendidos como referência

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

Ficha de Trabalho 09 e 10

Ficha de Trabalho 09 e 10 Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização

Leia mais

TÓPICOS. Transformação linear.

TÓPICOS. Transformação linear. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira Chama-se a ateção para a importâcia do trabalho pessoal a realizar pelo aluo resolvedo

Leia mais

Lista de Exercícios cap. 4

Lista de Exercícios cap. 4 Lista de Exercícios cap. 4 1) Consideremos a transformação, linear T: IR² IR² definida por T(x, y) = (3x 2y, x + 4y). Utilizar os vetores u = (1,2) e v = (3, 1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).

Leia mais

Resolução do efólio B

Resolução do efólio B Resolução do efólio B Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

Universidade Federal de Uberlândia Faculdade de Matemática

Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais

Leia mais

ESPAÇOS LINEARES (ou vetoriais)

ESPAÇOS LINEARES (ou vetoriais) Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha

Leia mais

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W. Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica

Leia mais

AULA Exercícios O sistema de equações lineares. tem a matriz completa. , pelo que

AULA Exercícios O sistema de equações lineares. tem a matriz completa. , pelo que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003 Funções reais de várias variáveis 1. Faça um esboço de alguns conjuntos de nível das seguintes funções: (a) f (x,y) = 1 + x + 3y, (x,y)

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Lista 8 de Álgebra Linear /01 Produto Interno

Lista 8 de Álgebra Linear /01 Produto Interno Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.

1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof. ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V

Leia mais

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning. 1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

5. Funções lineares em R n. ALGA (M1002) Ano letivo 2016/17 1 / 39

5. Funções lineares em R n. ALGA (M1002) Ano letivo 2016/17 1 / 39 5. Funções lineares em R n ALGA (M1002) Ano letivo 2016/17 1 / 39 5.1 Definição e propriedades básicas 5.1 Definição e propriedades básicas Definição: uma função f : E F entre espaços vetoriais E e F diz-se

Leia mais

Colectânea de Exercícios

Colectânea de Exercícios ÁLGEBRA Colectânea de Exercícios P. Milheiro de Oliveira 1998/1999 Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto A presente colectânea de exercícios foi elaborada para

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

Produto Interno. Prof. Márcio Nascimento.

Produto Interno. Prof. Márcio Nascimento. Produto Interno Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear

Leia mais

{ 1 2 3, 2 4 6, T

{ 1 2 3, 2 4 6, T Ficha de rabalho 0 e 05 Espaços Vectoriais. (Aulas 9 a 1). Vectores em n. Vectores livres. Vectores em 2 e. Vectores em n. Vectores iguais. Soma de vectores. Produto de um escalar por um vector. Notação

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).

Leia mais

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

Primeira Lista de Álgebra Linear

Primeira Lista de Álgebra Linear Serviço Público Federal Ministério da Educação Universidade Federal Rural do Semi-Árido UFERSA Departamento de Ciências Ambientais DCA Prof. D. Sc. Antonio Ronaldo Gomes Garcia a a Mossoró-RN 18 de agosto

Leia mais

Lista de exercícios 14 Ortogonalidade

Lista de exercícios 14 Ortogonalidade Universidade Federal do Paraná Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.est.ip.pt/paginaspessoais/lucas lucas@mat.est.ip.pt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen Espaços vectoriais Matemática 1º Ano 1º Semestre 2008/2009 Capítulos Características de um Espaço Vectorial Dimensão do Espaço Subespaço Vectorial Combinação Linear de Vectores Representação de Vectores

Leia mais

Lista 1: sistemas de equações lineares; matrizes.

Lista 1: sistemas de equações lineares; matrizes. Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 2º Teste 11 de Junho de 2013 Ano Lectivo: 2012-2013 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução

Leia mais

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal

Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal positiva de V 3. 1Q1. Seja m R não nulo e considere as retas: r :

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R: MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

3 a. Lista de Exercícios

3 a. Lista de Exercícios Última atualização 07/05/008 FACULDADE Engenharia Disciplina: Álgebra Linear Professor(: Data / / Aluno(: urma a Lista de Exercícios Dentre as aplicações, as mais importantes são as aplicações lineares

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais