TESTES DE HIPÓTESES - Generalidades
|
|
|
- Larissa Carvalhal de Sequeira
- 8 Há anos
- Visualizações:
Transcrição
1 TESTES DE HIPÓTESES - Generalidades Uma hipótese estatística é uma conjectura sobre uma característica da população. Um teste de hipóteses é um procedimento estatístico que averigua se os dados sustentam uma hipótese. Bioestatística,
2 As hipóteses: Num teste de hipóteses há sempre duas hipóteses: Hipótese Nula H 0 vs Hipótese alternativa H 1 Exemplo: H 0 : µ = 3 vs H 1 : µ < 3 (População Normal) Bioestatística,
3 Tipos de erros: Hipótese verdadeira H 0 H 1 Decisão Rejeito H 0 Erro de tipo I do teste Não rejeito H 0 Erro de tipo II P(Erro de tipo I) = α P(Erro de tipo II) = β. Tamanho do teste ou Nível de significância: α = P(Erro de tipo I) = P(rejeitar H 0 H 0 verdadeiro). Potência do teste: 1 β = 1 P(Erro de tipo II) = P(rejeitar H 0 H 1 verdadeiro). Bioestatística,
4 Exemplos de hipóteses 1. H 0 : µ = 0 vs H 1 : µ 0 (População Normal) 2. H 0 : µ = 3 vs H 1 : µ < 3 (População Normal) 3. H 0 : σ 2 = 1 vs H 1 : σ 2 > 1 (População Normal) 4. H 0 : µ = 4 vs H 1 : µ = 7 (População Normal) 5. H 0 : µ > 1 vs H 1 : µ 1 (População Normal) 6. H 0 : X Normal vs H 1 : X outra distribuição. 7. H 0 : X Normal(10, 0.4) vs H 1 : X outra distribuição. Os dois últimos exemplos designam-se habitualmente por testes de ajustamento. Tipos de hipóteses: As várias hipóteses podem ser simples ou compostas. Uma hipótese simples apenas contempla uma possibilidade (sinal de =). Iremos apenas considerar testes em que H 0 é simples. Bioestatística,
5 Tipos de testes: Os testes podem ser unilaterais ou bilaterais. Nos testes unilaterais a hipótese alternativa apenas contempla possibilidades à direita ou à esquerda da hipótese nula. Exemplos de testes unilaterais à direita: H 0 : µ = 1 vs H 1 : µ > 1 H 0 : µ = 4 vs H 1 : µ = 7 Exemplos de um testes unilaterais à esquerda: H 0 : µ = 1 vs H 1 : µ < 1 H 0 : µ = 4 vs H 1 : µ = 2 Nos testes bilaterais a hipótese alternativa contempla possibilidades à direita e à esquerda da hipótese nula. Exemplo de um teste bilateral: H 0 : µ = 1 vs H 1 : µ 1 Bioestatística,
6 Ingredientes: Estatística de teste: é uma estatística calculada a partir da amostra e que é usada para tomar a decisão acerca de rejeitar ou não a hipótese nula. Costuma-se representar por T. Região de rejeição (ou região crítica, RC):é o conjunto de valores da estatística de teste que nos levam a rejeitar a hipótese nula. Região de não rejeição: é o complementar da região de rejeição. Se T pertencer à região crítica rejeita-se H 0 a favor de H 1. Caso contrário não se rejeita H 0. (Dada a incerteza associada a um teste de hipóteses não se costuma dizer que se aceita H 0, mas sim que não se rejeita H 0.) Bioestatística,
7 Procedimentos para a realização de um teste de hipóteses de tamanho α: 1-Procedimento com base na região de rejeição 1. Identificar o parâmetro de interesse e especificar as hipóteses H 0, H Escolher uma estatística de teste, T, com distribuição conhecida (admitindo que H 0 é verdadeira). 3. Identificar a região de rejeição. 4. Calcular t obs que é o valor que T assume para os dados observados. 5. Tomar uma decisão. 6. Concluir. Bioestatística,
8 Concluir sempre referindo-se à hipótese alternativa. Desta forma as hipóteses (e tipo de teste) ficam sempre bem identificadas. Bioestatística,
9 Exemplo 1: Teste bilateral Os tubarões são por natureza peixes de água salgada. No entanto, em alguns rios já foram vistos tubarões e várias pessoas foram violentamente agredidas por esses animais. O rio Ganges é um desses rios onde vários indianos foram já violentamente agredidos. Dada a raridade destas ocorrências não se sabe ao certo qual a espécie que se aventura a subir as águas do rio. Os biólogos crêem que se trata de uma só espécie mas não sabem ao certo qual. As suspeitas populares incidem sobre o tubarão branco, um animal que atinge os 5 m de comprimento, mas os biólogos têm dúvidas. Sabe-se que quando um tubarão ataca uma presa por vezes deixa cair um ou mais dos seus dentes. Assim, os biólogos procuraram o leito do rio e encontraram 4 dentes de tubarão. O comprimento médio destes dentes foi de 3.31cm e o respectivo desvio padrão s = Sabendo que os dentes do tubarão branco apresentam um comprimento médio (populacional) de 3.6cm, será de considerar que estamos perante uma amostra de dentes de tubarão branco? Considere α = H 0 : µ = 3.6 vs H 1 : µ 3.6 onde µ representa a média da distribuição dos comprimentos dos dentes. Bioestatística,
10 Exemplo 2: Teste unilateral à esquerda Os biólogos desconfiam que a espécie de tubarões que invade o Ganges não é o tubarão branco mas sim o tubarão touro. Este tubarões têm menor porte mas são igualmente agressivos. Devido ao seu menor porte os seus dentes têm comprimento médio inferior aos do tubarão branco. Com base nesta amostra será de considerar que estamos perante uma amostra de dentes de tubarão branco ou de outra espécie com dentes mais curtos, como é o caso do tubarão touro? Considere α = H 0 : µ = 3.6 vs H 1 : µ < 3.6. Bioestatística,
11 Exemplo 3: Teste unilateral à direita Um viveiro produz trutas salmonadas. Os gestores do viveiro estão a introduzir alterações na dieta das trutas com vista a aumentar o peso dos animais em estado de serem capturados para consumo humano. De acordo com a dieta regular dos viveiros as trutas pesam em média 760g e apresentam um desvio padrão de 40 (valores populacionais). Um grupo de 25 trutas recém-nascidas foi sujeito à nova dieta. Quando atingiram a idade necessária para poderem ser abatidas pesaram-se e obteve-se x = 784. Supondo que a dieta não altera o desvio padrão e que os dados são bem modelados por um distribuição Normal, será de acreditar que a nova dieta faz aumentar o peso médio das trutas salmonadas (α = 0.05)? H 0 : µ = 760 vs H 1 : µ > 760 onde µ representa o peso médio das trutas sujeitas à nova dieta (populacional) Bioestatística,
12 2-Procedimento alternativo com base nos intervalos de confiança (válido apenas para testes bilaterais) 1. Identificar o parâmetro de interesse e especificar as hipóteses H 0, H Construir um intervalo de confiança para o parâmetro. 3. Rejeitar H 0 se o valor do parâmetro especificado em H 0 não pertencer ao intervalo de confiança. (O intervalo de confiança fornece uma região de não rejeição do teste.) Bioestatística,
13 3-Procedimento com base no p-value (SPSS) p-value do teste é a probabilidade de observar um valor da estatística de teste tanto ou mais afastado que o valor observado na amostra, assumindo que H 0 é verdadeira. 1. Identificar o parâmetro de interesse e especificar as hipóteses H 0, H Determinar o p-value do teste. (O software estatístico fornece o resultado.) 3. Rejeitar H 0 se p-value α. Não rejeitar H 0 se p-value > α. 4. Concluir. Bioestatística,
14 Exemplo 4.11: Pretende-se averiguar se o diâmetro médio dos discos de travão é significativamente diferente de 322 mm. Isto corresponde a testar as hipóteses seguintes H 0 : µ = 322 vs H 1 : µ 322. No SPSS: Analyze / Compare Means / One-Sample T Test, Test value= 322 One-Sample Statistics Diametro do disco de travao N Mean Std. Deviation Std. Error Mean ,00201, , One-Sample Test Diametro do disco de travao Test Value = % Confidence Interval of the Mean Difference t df Sig. (2-tailed) Difference Lower Upper 2, ,038, ,000492, Bioestatística,
15 Como determinar o p-value Quando a região de rejeição é da forma T > c (rejeitar para valores elevados da estatística de teste), o p-value é igual a P(T > t obs H 0 ). f T (x) H0 p-value t obs Quando a região de rejeição é da forma T < c (rejeitar para valores reduzidos da estatística de teste), o p-value é igual a P(T < t obs H 0 ). f T (x) H0 p-value t obs Bioestatística,
16 Quando a região de rejeição é da forma T < c 1 ou T > c 2 (com igual probabilidade para os dois casos), o p-value é igual a { 2P(T < t obs H 0 ) se t obs for reduzido 2P(T > t obs H 0 ) se t obs for elevado. Dizer que t obs é reduzido (elevado) significa dizer que a estimativa que se obtém para o parâmetro a testar é inferior (superior) ao valor especificado em H 0. f T (x) H0 f T (x) H0 1 2 p-value 1 2 p-value 1 2 p-value 1 2 p-value t obs t obs Bioestatística,
17 Exemplo 4.7: Recordemos os Exemplos 4.1 e 4.2 onde o Rocha durante uns quantos dias registou a quantidade de álcool no sangue dos clientes à saída do bar. A sua amostra tinha 125 valores com x = 0.6 e s 2 c = e podia ser considerada como proveniente de uma população Normal. A GNR tem interesse em saber se os clientes do bar conduzem ultrapassando o valor estabelecido pela lei, ou seja 0.5mg/l. Estabeleçamos para tamanho do teste o valor típico α = H 0 : µ = 0.5 vs H 1 : µ > 0.5 onde µ representa a média da distribuição que modela a quantidade de álcool no sangue dos clientes do bar onde o Rocha trabalha. 2. Estatística de teste: T = X 0.5 S c / 125 t 124. sob H 0 Bioestatística,
18 3. Uma vez que se trata de um teste unilateral à direita, rejeita-se H 0 para valores elevados de T, ou seja, se T > c. 4. t obs = = / p-value = P(T > t obs H 0 ) = P(T > 5.52 H 0 ) = Como p-value< 0.05 rejeita-se H 0. Aliás, para este valor do p-value, rejeita-se H 0 para qualquer nível de significância usual. Conclui-se, ao nível de significância 0.05, que os clientes conduzem, em média, ultrapassando os limites impostos pela lei. Bioestatística,
19 Exemplo 4.6 (continuação): Suponhamos que uma certa amostra forneceu x = e s c = 0.2. Com base nesta amostra pretende-se realizar um teste de hipóteses. O tamanho de teste é pre-estabelecido, α = (neste tipo de aplicações não se podem permitir erros com probabilidade elevada). 1. H 0 : µ = 20 vs H 1 : µ 20, onde µ representa a verdadeira média da quantidade de Fluoxetina contida nas cápsulas. 2. Estatística de teste: T = X 20 S c / 100 t 99. sob H 0 3. Rejeita-se H 0 se T for muito reduzido ou muito elevado, ou seja se T < c 1 ou T > c Para este exemplo x = que é superior ao valor especificado em Bioestatística,
20 H 0 : µ = 20. Assim, vamos ter um valor eventualmente elevado para a estatística de teste T. O p-value para este teste é dado por 2 P(T > t obs H 0 ) = 2 P(T > 2 H 0 ) = Como este valor é superior a α = não se rejeita H 0. Logo, ao nível de significância de 0.001, não há razões para acreditar que as cápsulas não contenham 20mg de Fluoxetina, em média. Bioestatística,
21 Procedimento para transformação de p-values bilaterais em unilaterais. Por vezes o software estatístico apenas fornece o valor do p-value bilateral e nós estamos interessados em realizar um teste unilateral. Nesses casos há que transformar o p-value bilateral em unilateral. se a(s) amostra(s) aponta(m) no sentido da hipótese alternativa deve-se dividir o p-value por 2 e tomar esse valor como o p-value do teste unilateral, p-value uni = p-value bil /2; se a(s) amostra(s) não aponta(m) no sentido da hipótese alternativa, então o p-value do teste unilateral é igual a p-value uni = 1 p-value bil /2. RC f T (x) H0 1 2 p-value 1 2 p-value t obs Bioestatística,
Testes de Hipóteses Estatísticas
Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ
Aula 8. Teste Binomial a uma proporção p
Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma
Teste de Hipótese e Intervalo de Confiança. Parte 2
Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos
AULA 19 Análise de Variância
1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
MOQ-14 Projeto e Análise de Experimentos
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] Regressão Linear
Probabilidade e Estatística
Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta
([DPHGH5HFRUUrQFLDGH0pWRGRV(VWDWtVWLFRV
Data: 09/07/2003 ([DPHGH5HFRUUrQFLDGH0pWRGRV(VWDWtVWLFRV Duração: 2 horas Nome: N.º: Curso: Regime: Número de folhas suplementares entregues pelo aluno: Declaro que desisto (VWDSURYDFRQVLVWHHPTXHVW}HVGHUHVSRVWDDEHUWDHDVUHVSHFWLYDVFRWDo}HVHQFRQWUDPVHQDWDEHODTXHVHVHJXH
Métodos Estatísticos Avançados em Epidemiologia
Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem
ActivALEA. ative e atualize a sua literacia
ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL
Análise de Variância simples (One way ANOVA)
Análise de Variância simples (One way ANOVA) Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam
APLICAÇÃO COLETIVA DA FIGURA COMPLEXA DE REY
APLICAÇÃO COLETIVA DA FIGURA COMPLEXA DE REY Álvaro José Lelé (Centro Universitário de Lavras, Laboratório de Avaliação das Diferenças Individuais-UFMG), Marilourdes do Amaral Barbosa (Universidade da
DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis
Modelos Lineares Generalizados - Verificação do Ajuste do Modelo
Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X
Pressuposições à ANOVA
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades
MANUAL DO USUÁRIO. Figura 1: Tela de Apresentação do FaçaCalc.
Apresentação MANUAL DO USUÁRIO O FAÇACALC é um software que realiza cálculos hidráulicos, tais como: Motor Hidráulico, Trocador de Calor, Acumulador Hidráulico e Cilindro Hidráulico. Na sessão Funcionalidades
3º Ano do Ensino Médio. Aula nº06
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta
OPERAÇÕES COM FRAÇÕES
OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que
Pós-Graduação em Computação Distribuída e Ubíqua
Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation
Probabilidade e Estatística, 2009/2
Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma
Finanças Empresariais I. Cap. 4
Finanças Empresariais I Cap. 4 1. Se o payback de um projeto de investimento é menor do que a vida útil desse projeto o que podemos concluir acerca do VAL? E quanto ao payback atualizado? 2. A empresa
cuja distribuição é t de Student com n 1 graus de liberdade.
Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma
Probabilidade. Luiz Carlos Terra
Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.
Aula 6 Propagação de erros
Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
Métricas de Software
Métricas de Software Plácido Antônio de Souza Neto 1 1 Gerência Educacional de Tecnologia da Informação Centro Federal de Educação Tecnologia do Rio Grande do Norte 2006.1 - Planejamento e Gerência de
Engenharia de Software II
Engenharia de Software II Aula 26 http://www.ic.uff.br/~bianca/engsoft2/ Aula 26-21/07/2006 1 Ementa Processos de desenvolvimento de software Estratégias e técnicas de teste de software Métricas para software
Resolução da Lista de Exercício 6
Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução
Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística
Group Statistics. residência N Mean Std. Deviation Std. Error Mean. Avaliação Breve do Estado Mental. meio rural 11 27,73 1,849,557
ANEXO M: Output 1 Teste t de Student para amostras independentes, para comparação entre médias obtidas nos quatro instrumentos de avaliação pelas duas amostras: meio rural e meio urbano. Group Statistics
Estatística Analítica
Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação
MATEMÁTICA. Professor Diego Viug
MATEMÁTICA Professor Diego Viug PORCENTAGEM QUESTÃO 1 Os dados do gráfico foram coletados por meio da Pesquisa Nacional por Amostra de Domicílios. Supondo-se que, no Sudeste, 14900 estudantes foram entrevistados
PRESIDÊNCIA. Declaração
Declaração Os órgãos de comunicação social do passado fim-de-semana falavam num memorando de informação facultado aos interessados na privatização da ANA Aeroportos de Portugal, que tiveram de entregar
15.053 26 de fevereiro de 2002
15.053 26 de fevereiro de 2002 Análise de Sensibilidade apresentado como Perguntas Freqüentes Pontos ilustrados em um exemplo contínuo de fabricação de garrafas. Se o tempo permitir, também consideraremos
AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL)
AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL) Características Utiliza-se de três princípios básicos da experimentação: repetição, casualização e controle local. Possui um controle local mais eficiente que
Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.)
Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) De acordo com o PMBok 5ª ed., o escopo é a soma dos produtos, serviços e resultados a serem fornecidos na forma de projeto. Sendo ele referindo-se a: Escopo
P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03)
UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS DA SAÚDE E DO ESPORTE - CEFID DEPARTAMENTO DE EDUCAÇÃO FÍSICA - DEF CURSO: LICENCIATURA EM EDUCAÇÃO FÍSICA CURRÍCULO: 2008/2 P R O G
Hipótese Estatística:
1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,
Métodos Estatísticos Avançados em Epidemiologia
Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/
Análise de Variância (ANOVA)
Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta
MAE116 - Noções de Estatística
MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos
Observando embalagens
Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de
Relatório do Experimento 1 Sistema Massa - Mola. Fernando Henrique Ferraz Pereira da Rosa
FEP0111 - Física I Relatório do Experimento 1 Sistema Massa - Mola Fernando Henrique Ferraz Pereira da Rosa 4 de novembro de 2005 Sumário 1 Introdução 2 2 Objetivos 2 3 Procedimento experimental 2 3.1
Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial
Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo
1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza
1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1) Arredonde os valores abaixo, para apenas dois algarismos significativos: (a) 34,48 m (b) 1,281 m/s (c) 8,563x10
Análise Qualitativa no Gerenciamento de Riscos de Projetos
Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real
SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA
SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA Leitura e Análise de Texto O π e a agulha de Buffon O estudo da probabilidade, aparentemente, não tem uma ligação direta com a Geometria. A probabilidade
Manual do Revisor Oficial de Contas. Recomendação Técnica n.º 5
Recomendação Técnica n.º 5 Revisão de Demonstrações Financeiras Intercalares Janeiro de 1988 Índice Julho de 1993 (1ª Revisão) Parágrafos Introdução 1-3 Justificação 4-5 Objectivos 6-8 Recomendações 9-17
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente
[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013
Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4
AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA
AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA 1.0 INTRODUÇÃO 1.1 Ponte de Wheatstone O método da ponte de Wheatstone, estudado por Wheatstone no sec. XIX é um dos métodos mais empregados para a medição de resistências
1331 Velocidade do som em líquidos Velocidade de fase e de grupo
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ondas longitudinais, velocidade do som em líquidos, comprimento de onda, freqüência,
ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior
ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios
CRIAÇÃO DE TABELAS NO ACCESS. Criação de Tabelas no Access
CRIAÇÃO DE TABELAS NO ACCESS Criação de Tabelas no Access Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Criação de um Banco de Dados... 4 3. Criação de Tabelas... 6 4. Vinculação de tabelas...
Bombons a Granel. Série Matemática na Escola. Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes.
Bombons a Granel Série Matemática na Escola Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes. Bombons a granel Série Matemática na Escola Conteúdos Produto de matrizes. Duração Aprox.
Especificação do Código de Barras para Bloquetos de Cobrança Sem Registro e Registrada no SIGCB
1 INTRODUÇÃO... 2 2 ESPECIFICAÇÕES GERAIS... 2 2.1 FORMATO... 2 2.2 GRAMATURA DO PAPEL... 2 2.3 DIMENSÃO... 2 2.4 NÚMERO DE VIAS OU PARTES... 2 2.5 DISPOSIÇÃO DAS VIAS OU PARTES... 2 2.6 COR DA VIA/IMPRESSÃO...
Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano
Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com
Aula 10. ANOVA Análise de Variância em SPSS
Aula 10. ANOVA Análise de Variância em SPSS Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Análise de Variância Objectivo: comparar medidas de localização para mais do que
Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões
Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de
Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:
Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,
Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a)
Questão 1 Cada nova pilha tem dois cubinhos a mais em sua base. Assim, como a terceira pilha tem 5 cubinhos em sua base, a quarta pilha tem 5 + 2 = 7 cubinhos e a quinta pilha tem 7 + 2 = 9 cubinhos em
Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.
ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva [email protected]
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva [email protected] Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição
Teste t de Student para o caso de uma amostra (Teste de hipóteses
Teste t de Student para o caso de uma amostra (Teste de hipóteses para a média populacional) Exemplo: Quinze alunos foram inquiridos quanto ao seu grau de satisfação (numa escala de 0 a 00) em relação
Aula de aplicação de categorias e critérios da IUCN para avaliação do estado de conservação da fauna
Aula de aplicação de categorias e critérios da IUCN para avaliação do estado de conservação da fauna Categorias da IUCN Categorias de Espécies ameaçadas CR Criticamente em Perigo: espécie que, de acordo
A 'BC' e, com uma régua, obteve estas medidas:
1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,
Aula 12 Teste de hipótese sobre proporções amostras grandes
Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.
CAPÍTULO IV Análise de variância
CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,
QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES
QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a
EXAME DE MACS 2º FASE 2014/2015 = 193
EXAME DE MACS 2º FASE 2014/2015 1. Divisor Padrão: 00+560+80+240 200 = 190 = 19 200 20 Filiais A B C D Quota Padrão 1,088 58,01 86,010 24,870 L 1 58 86 24 L(L + 1) 1,496 58,498 86,499 24,495 Quota Padrão
Teoria dos erros em medições
Teoria dos erros em medições Medições Podemos obter medidas diretamente e indiretamente. Diretas - quando o aparelho ( instrumento ) pode ser aplicado no terreno. Indireta - quando se obtêm a medição após
Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.
MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar
GRADUAÇÃO TECNOLÓGICA EM GESTÃO DA PRODUÇÃO INDUSTRIAL GERENCIAMENTO ESTATÍSTICO DOS PROCESSOS PRODUTIVOS (tópicos da aula 3)
1 GRADUAÇÃO TECNOLÓGICA EM GESTÃO DA PRODUÇÃO INDUSTRIAL GERENCIAMENTO ESTATÍSTICO DOS PROCESSOS PRODUTIVOS (tópicos da aula 3) ANÁLISE DO PROCESSO Só é possivel monitorar um processo após conhecê-lo bem.
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de
Conteúdo programático por disciplina Matemática 6 o ano
60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números
www.interaulaclube.com.br
A UU L AL A O mar Observe atentamente a figura abaixo. Uma olhada mais despreocupada para o desenho pode dar a impressão de que estamos diante de uma região desértica na superfície da Terra. Mas, prestando
A dissertação é dividida em 6 capítulos, incluindo este capítulo 1 introdutório.
1 Introdução A escolha racional dos sistemas estruturais em projetos de galpões industriais é um fator de grande importância para o desenvolvimento de soluções padronizadas e competitivas. No mercado brasileiro
PROCEDIMENTOS PARA INCLUSÃO DE PERIÓDICOS NO PORTAL DE PERIÓDICOS FCLAR UNESP
PROCEDIMENTOS PARA INCLUSÃO DE PERIÓDICOS NO PORTAL DE PERIÓDICOS FCLAR UNESP Os editores interessados em incluir sua revista no Portal de Periódicos FCLAr UNESP, devem apresentar um breve projeto, em
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Fabielli Vieira de July 1.2 Público alvo: alunos do 8º e 9º anos 1.3 Duração: 2 h 1.4 Conteúdos desenvolvido: As Pirâmides do Egito e a
3 - Bacias Hidrográficas
3 - Bacias Hidrográficas A bacia hidrográfica é uma região definida topograficamente, drenada por um curso d água ou um sistema interconectado por cursos d água tal qual toda vazão efluente seja descarregada
Custo de Oportunidade do Capital
Custo de Oportunidade do Capital É o custo de oportunidade de uso do fator de produção capital ajustado ao risco do empreendimento. Pode ser definido também como a taxa esperada de rentabilidade oferecida
Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.
Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses
Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos
Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:
Organização e Arquitetura de Computadores. Ivan Saraiva Silva
Organização e Arquitetura de Computadores Hierarquia de Memória Ivan Saraiva Silva Hierarquia de Memória A Organização de Memória em um computador é feita de forma hierárquica Registradores, Cache Memória
Uso de escalas logaritmicas e linearização
Uso de escalas logaritmicas e linearização Notas: Rodrigo Ramos 1 o. sem. 2015 Versão 1.0 Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas
LINEARIZAÇÃO DE GRÁFICOS
LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma
Os dados quantitativos também podem ser de natureza discreta ou contínua.
Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado
Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana
Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar
Usando potências de 10
Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.
Testes Qui-Quadrado - Teste de Aderência
Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades
FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)
FACULDADE DE CIÊNCIAS E TECNOLOGIA Redes de Telecomunicações (2006/2007) Engª de Sistemas e Informática Trabalho nº4 (1ª aula) Título: Modelação de tráfego utilizando o modelo de Poisson Fundamentos teóricos
UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO.
UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO. Silveira, Priscila Silva; Valner Brusamarello. Universidade Federal do Rio Grande do Sul UFRGS Av. Osvaldo Aranha, 103 - CEP: 90035-190 Porto
Inferência sobre duas proporções
Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações
