MAE116 - Noções de Estatística
|
|
|
- Sandra Ramires Cabral
- 9 Há anos
- Visualizações:
Transcrição
1 MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos estudantes ingressantes em certa universidade cursaram o ensino médio em escola pública. Com o objetivo de vericar se essa porcentagem se alterou, uma amostra aleatória de 400 calouros (ingressantes em 2014) foi coletada. Seja p a proporção de estudantes, ingressantes nessa universidade em 2014, que cursaram o ensino médio em escola pública. a. Dena as hipóteses estatísticas adequadas ao problema. Seja p: proporção de estudantes da universidade que cursaram o ensino médio em escola pública. As hipóteses estatísticas do teste são: H 0 : p = 0, 18 H 1 : p 0, 18 b. Suponha que entre os 400 estudantes, observou-se o seguinte resultado: Escola Frequência Pública 54 Particular 346 Total 400 Utilizando o nível descritivo, qual é a conclusão, adotando α = 5%? Estimativa de p: ˆp = 54 = 0, 135 (proporção amostral) 400 Nivel descritivo: P = P (ˆp 0, 135 ou ˆp 0, 225 p = 0, 18) = 0, 135 0, 18 2 P Z 0,18 0, = 2 P (Z 2, 34) = 2 (1 A(2, 34)) = 2 (1 0, 9904) = = 0,
2 Para α = 0.05, temos que o valor P é menor que 0, 05, decidimos por rejeitar a hipótese nula H 0, ou seja, concluímos que há evidência suciente para se armar que houve uma mudança na proporção de alunos da universidade, que cursaram ensino público, ao nível de signicância de 5%. c. Construa um intervalo de conança para a proporção de alunos que cursaram o ensino médio em escola pública. Use coeciente de conança de 95%. Ao nível de conança γ = 0, 95, temos que z = 1, 96 e ˆp = 0, 135, o Intervalo de Conança (IC) é dado por : ] ˆp(1 ˆp) ˆp(1 ˆp) IC(p; γ) = ˆp z ; ˆp + z n n ] 0, 135(1 0, 135) 0, 135(1 0, 135) IC(p; 0, 95) = 0, 135 1, 96 ; 0, , = 0, 135 0, 0335 ; 0, ] = 0, 1015 ; 0, 1685] Temos então que a estimativa intervalar para p é 0, 1015 ; 0, 1685] com 95% de conança. 2
3 Exercício 2. (2 pontos) Uma companhia farmacêutica está interessada em investigar se uma nova droga tem a propriedade de baixar a taxa de colesterol. Um dos estudos dessa pesquisa foi conduzido com 15 pacientes, sendo medida a taxa de colesterol no inicio do experimento (antes de tomar a droga) e após 2 meses tomando o medicamento. Os decréscimos observados nas taxas de colesterol (taxa após 2 meses menos a taxa inicial) foram: -4; -9; 3; 1; -2; 2; -2; 0; -6; -3; 1; -5; 2; 0; -7. a. Quais são as hipóteses estatísticas adequadas ao problema? Seja a v.a. D: diferença entre taxas de colesterol de após 2 meses tomarem a nova droga, em relação ao início do tratamento, sem ter tomado a nova droga e µ é a média da variável diferença na taxa de colesterol 2 meses após o uso da nova droga em relação do antes de tomar a droga. As hipóteses a serem testadas são dadas por H 0 : µ = 0, H 1 : µ < 0. Em palavras, poderíamos entender H 0 e H 1 da seguinte forma: H 0 : A nova droga não altera a taxa de colesterol dos individuos que a utilizam. H 1 : A nova droga tem a propriedade de baixar a taxa de colesterol. b. Quais suposições são necessárias para realizar o teste? Supomos que os 15 pacientes tenham sido escolhidos ao acaso, isto é, de maneira aleatória. Como o tamanho de amostra é pequena (n=15) o TCL não pode ser utilizado. Faremos, então, a suposição que a variável aleatória D pode ser modelada pela distribuição normal. Como nada foi informado sobre o desvio padrão σ de D, utilizamos o desvio padrão amostral das diferenças s, como uma estimativa de σ. Portanto, a variável utilizada no teste é T = X µ 0 s/ n t n 1, sob H 0. c. Calcule o nível descritivo do teste e conclua a um nível de signicância de 5%. Interprete sua conclusão em termos práticos. Se necessário construa intervalo de 90% de conança apropriado. Dos dados amostrais temos que a média amostral é d = ( 7) 15 = = 1, 933 e 3
4 n (d i d) 2 i=1 s = n 1 = ( 4 + 1, 933) ( 7 + 1, 933) 2 14 = 186, = 3, Assim, o nível descritivo para esse teste será dado por P = P ( ( ) X 1, 933 µ = 0 = P T ) 1, , 6541 = P (T 2, 049) = 0, , onde T tem distribuição t Student com n 1 = 15 1 = 14 graus de liberdade. O cálculo exato da probabilidade dada acima pode ser obtido pelo Rcmdr pela sequência: Distribuições Distrib. Contínua Distrib. t Probabilidades da Distrib. t valor = , graus de liberdade 14, cauda inferior. Pela tabela da t-student, pode ser visto que P < 0, 05, pois o valor 2, 049 > 1, 761 com 1 A = P = Assim, como P < α = 0, 05, há evidências para rejeitarmos H 0 ao nível de signicância de 5%, ou seja, ao nível de signicância de 5%, há evidências de que a nova droga tem a propriedade de baixar a taxa de colesterol. Intervalo de 90% de conança para µ. Lembre-se que, nessas condições, um intervalo com coeciente de conança γ para µ ca, de modo geral, dada por ] s s IC(µ, γ) = x t n 1 ; x + t n 1 n n Nesse caso, temos γ = 90%, n = 20, x = 1, 9333 e s = 3, Ademais, pela Tabela da t Student com 14 graus de liberdade, segue que, para γ = 90%, t 14 = 1, 761. Portanto, IC(µ, γ = 90%) = ] 3, , , , 761 ; 1, , 761 = 3, 5945 ; 0, 2715] Ademais, o fato do intervalo construído conter apenas valores negativos rearma o que já havia sido estabelecido no teste de hipóteses realizado acima, isto é, há evidências de que a nova droga tem a propriedade de baixar a taxa de colesterol. 4
5 (3 pontos) Num programa de diminuição da poluição sonora em cidades grandes, realizou-se uma campanha educativa durante 2 meses. A tabela abaixo apresenta os índices de poluição alcançados antes e após a campanha, em 40 pontos da cidade sorteados ao acaso. Exercício 3. Pontos Antes Depois Pontos Antes Depois Pontos Antes Depois Pontos Antes Depois Descreva o procedimento de testes de hipóteses estatístico adequado para vericar se a campanha surtiu efeito e, utilizando o nível descritivo, qual é a conclusão ao nível de 6%? (Dica: Exercício 3 da lista de classe) A companha surtiu efeito se o índice depois é menor do índice antes da campanha, ou seja, µ = µ D µ A < 0. A Tabela seguinte mostra as diferencias observadas entre os índices de polução antes e depois da campanha educativa, dos 40 pontos da cidade. Pontos d Pontos d Pontos d Pontos d Seja D: a diferença entre os índices de poluição, medidas depois da campanha menos o índice antes da campanha e µ é a diferencia média dos índices de poluição depois e antes da companha educativa. Então, as hipoteses estatísticas do teste são: H 0 : µ = 0, H 1 : µ < 0. Em palavras podemos entender H 0 e H 1 da seguinte forma H 0 : A companha educativa não alterou o índice de poluição H 1 : A companha educativa diminuiu o índice de polução Estatística de teste: X Nível de signicância : α = 0, 06 5
6 Evidência amostral: Tamanho de amostra: n = 40 Média amostral: x obs = 5, 95 Desvio padrão amostral: s = 5, 373 Cálculo do nível descrito P. A região crítica é da forma RC = {X k}. Portanto, o nível descritivo ou valor P é calculado por: P = P (X 5, 95 µ = 0) = P ( X µ S/ n = P (T 7, 00) 1, , 0000 Decisão e conclusão: Como P α, rejeitamos H 0. 5, , 373/ 40 ) Logo ao nível de 6%, há evidências sucientes para concluir que a campanha educativa surtiu efeito, ou seja, diminuiu o índice de polução da cidade. 6
7 Exercício 4. (3 pontos) Considere o problema descrito no Exemplo 2 da Aula 2. Os dados estão disponíveis no arquivo CEA08P05.xls. Dos levantamentos dos últimos anos nas varas dessa Comarca, o tempo médio (em dias) desde a entrada do processo até a audiência preliminar era 200 dias. Recentemente, foram implantadas algumas medidas com o intuito de diminuir esse tempo. a. (a) Formule esse problema como um problema de teste de hipóteses, especicando o parâmetro que está sendo testado. Temos que X é o tempo (em dias) desde a entrada do processo até a audiência preliminar, após implantação das medidas, na Comarca de São Bernardo do Campo. Então as hipóteses são H 0 : µ = 200, H 1 : µ < 200, sendo µ: tempo médio em dias do início ate a 1 a audiência, após implantação de medidas na Comarca da São Bernardo do Campo. b. (b) Interprete os erros. Erro tipo I: Rejeitar H 0 quando H 0 é verdadeira. Armar que o tempo médio desde a entrada do processo ate a audiência preliminar, após mudanças diminuiu em relação ao padrão histórico, quando na verdade o tempo médio não se alterou, ou seja, µ = 200. Erro tipo II: Não rejeita H 0 quando H 0 é falsa. Armar que o tempo médio desde a entrada do processo até a audiência preliminar, apos mudanças se manteve no padrão histórico quando, na verdade, ele diminuiu µ < 200. c. Usando as informações pertinentes do arquivo, calcule o nível descritivo e conclua a um nível de signicância de 5%? Estatística de teste: média amostral X Nível de signicância : α = 0, 05 Evidência amostral: Tamanho de amostra: n = 184 Média amostral: x obs = 166, 277 Desvio padrão amostral: s = 220, 492 Cálculo do nível descrito P. A região crítica é da forma RC = {X k}. Portanto, o nível descritivo ou valor P é calculado por: P = P (X 166, 277 µ = 200). 7
8 Como não temos informação que X é normal, e desconhecemos σ, sendo o tamanho da amostra grande, então temos pelo TCL que P = P ( X µ S/ n = P (Z 2, 07) = 0, , , 492/ 184 ) Decisão e conclusão: Para α = 0.05, P < α então H 0 é rejeitada, ou seja, há evidências sucientes para concluir que o tempo médio desde a entrada do processo até a audiência preliminar, após implementação de medidas é menor que 200, indicando que, as medidas implantadas surtiram o efeito desejado. d. Se as medidas implantadas surtiram o efeito desejado, encontre uma estimativa intervalar do tempo médio atual, com 90% de conança. Considerando as mesmas condições em (c), um intervalo de conança com coeciente de conança γ para µ é expresso por IC(µ, γ) = x z s ; x + z s ] n n IC(µ, γ = 90%) = ] 220, , , 277 1, 64 ; 166, , = 139, 679 ; 192, 935]. Como esperado, o IC não contem o valor
Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança
Hipótese estatística Unidade 5. Teste de Hipóteses (uma população) Hipótese estatística-qualquer afirmação feita sobre um parâmetro populacional desconhecido. Hipótese: Duração média da bateria (µ) > 300
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de
Probabilidade e Estatística, 2009/2
Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma
Aula 12 Teste de hipótese sobre proporções amostras grandes
Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva [email protected]
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva [email protected] Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição
cuja distribuição é t de Student com n 1 graus de liberdade.
Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma
Teorema do Limite Central e Intervalo de Confiança
Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma
Teste de Hipótese e Intervalo de Confiança. Parte 2
Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos
Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida
Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Objetivo: Nesta aula, iremos aplicar os conceitos básicos sobre a teoria de teste de hipótese a uma situação específica.
Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança
Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade
AULA 12 Inferência a Partir de Duas Amostras
1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
AULA 04 Estimativas e Tamanhos Amostrais
1 AULA 04 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 27 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario
Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística
25 a 30 de novembro de 2013
LSD Introdução à Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 LSD 1 2 3 LSD 4 Parte 2 - Conteúdo LSD Quando o F da ANOVA está sendo utilizado
Introdução. Ou seja, de certo modo esperamos que haja uma certa
UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,
Intervalo de Confiança - Margem de Erro
Intervalo de Confiança - Margem de Erro Tatiene Correia de Souza / UFPB [email protected] October 26, 2014 Souza () Intervalo de Confiança - Margem de Erro October 26, 2014 1 / 31 Margem de erro - relatórios
Testes Qui-Quadrado - Teste de Aderência
Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades
Aula 8. Teste Binomial a uma proporção p
Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma
A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE
Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção
Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão
Capítulo 5 Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Hipóteses do Modelo de Regressão Linear Simples RS1. y x e t 1 t t RS. RS3. RS4. RS5. RS6. Ee
Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira
Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.
IND 1115 Inferência Estatística Aula 8
Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória
AULA 11 Experimentos Multinomiais e Tabelas de Contingência
1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos
Inferência sobre duas proporções
Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações
Aula 8 Intervalos de confiança para proporções amostras grandes
Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado
Tópico 9. Teste t-student
Tópico 9 Teste t-student Teste t Teste t pode ser conduzido para Comparar uma amostra com uma população Comparar duas amostras pareadas Mesmos sujeitos em dois momentos distintos Comparar duas amostras
Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos
Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:
Probabilidade e Estatística, 2011/2
média verdadeira de 104F? Estabeleçamos a média 100F como um limite não tolerado:, Probabilidade e Estatística, 2011/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses Problemas Resolvidos em
Análise de Regressão Linear Simples III
Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos
Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná
1º Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este relatório apresenta uma análise estatística
MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar
ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior
ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios
AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA
AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA META Dimensionar o tamanho ideal de amostra para cada população.
1 Hipótese Nula e Hipótese Alternativa
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 203 Aula Professor: Carlos Sérgio UNIDADE 7 - TESTES DE HIPÓTESES (NOTAS DE AULA) Hipótese Nula e Hipótese
Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná
Quinto Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este documento apresenta a análise dos resultados
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010.
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010 Curso: 12/06/2010 Nome: N o Instruções: Estaprovatemaduraçãode120 minutos e é constituída
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS» PROBABILIDADE E ESTATÍSTICA «21. Uma fábrica, que produz pequenas peças utilizadas em materiais eletrônicos, armazena essa mercadoria em lotes com 1000 unidades. Inspecionada
Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra
Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Fernando Deeke Sasse 14 de maio de 2010 Introdução Quão boa é uma dada estimação de um parâmetro? Suponha que estimamos
MAE116 Noções de Estatística
Exercício 1 (Estimação) Um agente de viagens deseja estimar a proporção de clientes satisfeitos com os serviços da agência. (a) Determine o tamanho da amostra necessário para que o erro cometido na estimação
Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2
Aula 6 Distribuição amostral da proporção Nesta aula você verá uma importante aplicação do Teorema Central do Limite: iremos estudar a distribuição amostral de proporções. Assim, você verá os resultados
Avaliação e Desempenho Aula 1 - Simulação
Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo
Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência
Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas
Aula 1 Variáveis aleatórias contínuas
Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição
Teste de hipóteses para médias e proporções amostrais
Teste de hipóteses para médias e proporções amostrais Prof. Marcos Pó Métodos Quantitativos para Ciências Sociais Intervalo de confiança: outro entendimento É o intervalo que contém o parâmetro que queremos
X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H
NOÇÕES DE TESTE DE HIPÓTESES (II) Nível Descritivo valor P Resumo X ~ Binomial (n ; p) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) (2) Escolher um nível de
Técnicas estatísticas para análise de dados e de resultados de modelos de simulação
Parte XIV Técnicas estatísticas para análise de dados e de resultados de modelos de simulação A saída de um modelo de simulação geralmente constitui-se de VA s, muitas das quais podem ter variância grande.
Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.
Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido
Carta de controle para o desvio-padrão
Carta de controle para o desvio-padrão O desvio padrão é um indicador mais eficiente da variabilidade, principalmente para amostras grandes (a amplitude perde eficiência). Recomenda-se o uso da carta Xb
CAPÍTULO 8. de Variância - ANOVA ANOVA. Análise
CAPÍTULO 8 Análise de Variância - UFRGS Os testes de hipótese apresentados até aqui limitaram-se à comparação de duas médias ou duas variâncias. Contudo, há situações onde se deseja comparar várias médias,
[ORGANIZAÇÃO DE DADOS: TABELAS DE FREQUENCIAS & GRÁFICOS]
FATEC GT/ FATEC SJC [LISTA 1] [ORGANIZAÇÃO DE DADOS: TABELAS DE FREQUENCIAS & GRÁFICOS] Prof. Herivelto Tiago Marcondes dos Santos [Fevereiro de 2009] Organização de dados: [Tabelas de freqüências, histogramas
3 Modelos de Simulação
43 3 Modelos de Simulação 3.1 Simulação de Monte Carlo O método de Monte Carlo foi concebido com este nome nos anos 40 por John Von Neumann, Stanislaw Ulam e Nicholas Metropolis durante o projeto de pesquisa
Qual é o estoque mínimo que irá garantir o nível de serviço ao cliente desejado pela empresa?
O estoque de segurança remete a erros de previsão de demanda; Falta de confiança nas entregas devido a atrasos no ressuprimento de materiais; Rendimento da produção abaixo do esperado. Qual é o estoque
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas
Distribuição Binomial e Normal
Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que
PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula
Curso Análise de Dados e Políticas Públicas Professor: Pablo Cerdeira Ementa O que Matemática tem a ver com Direito? Muita coisa. Neste curso de Análise de Dados e Políticas Públicas abordaremos três importantes
UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM
Unidade 6 Testes de Hipóteses UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Escolher o teste de hipótese adequado; Formular um
Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística
PLANO DE ENSINO 1. IDENTIFICAÇÃO Disciplina: PROBABILIDADE E ESTATÍSTICA Código: IEE001 Pré-Requisito: IEM011 - CÁLCULO I N O de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: 0 Semestre: 1 O Ano:
Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5
Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área
Testes de Hipóteses I
Testes de Hipóteses I Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 5a AULA 23/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 1. Introdução Neste capítulo pretendemos resolver
Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292
Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Título PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA Código da disciplina SIA CCE0292 16 Número de semanas de aula 4 Número
Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana
Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar
1 Introdução. 1.1 Importância da Utilização da Amostragem
1 Introdução Um dos principais objetivos da maioria dos estudos, análises ou pesquisas estatísticas é fazer generalizações seguras com base em amostras, sobre as populações das quais as amostras foram
Princípios de Bioestatística Teste de Hipóteses
1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância
x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.
1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito
é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.
Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento
Desvio Padrão ou Erro Padrão
NOTAS METODOLÓGICAS ISSN 0871-3413 ArquiMed, 2006 Desvio Padrão ou Erro Padrão Nuno Lunet, Milton Severo, Henrique Barros Serviço de Higiene e Epidemiologia da Faculdade de Medicina da Universidade do
Para mais de duas variáveis independentes, em função de uma variável dependente.
MÉTODOS QUANTlTATlVOS APLlCADOS À CONTABlLlDADE Prof. Héber Lavor Moreira Plano de Aula TEMA: REGRESSÃO MÚLTlPLA - Caso Multiplan S/A lntrodução Em muitos casos uma variável pode estar relacionada com
Intervalos Estatísticos para Uma Única Amostra
Intervalos Estatísticos para Uma Única Amostra OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Construir intervalos de confiança para a média de uma distribuição
Probabilidade. Distribuição Binomial
Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca
Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.
de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que
Matemática Aplicada às Ciências Sociais
ESCOLA SECUNDÁRIA DE AMORA PLANIFICAÇÃO ANUAL Matemática Aplicada às Ciências Sociais Ensino Regular Curso Geral de Ciências Sociais e Humanas 11º ANO Ano Letivo 2014 / 2015 PLANIFICAÇÃO A LONGO PRAZO
Regressão linear múltipla. Prof. Tatiele Lacerda
Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,
Testes Não Paramétricos
Testes Não Paramétricos Nos testes abordados até agora, ditos testes paramétricos, as hipóteses envolvem apenas parâmetros populacionais, como a média, a variância, uma proporção, etc. Além disso, em geral,
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
Jogos Bayesianos Estratégias e Equilíbrio Aplicações. Jogos Bayesianos. Prof. Leandro Chaves Rêgo
Jogos Bayesianos Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Estatística - UFPE Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Outubro de 2014 Jogos Bayesianos Jogos
DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS)
DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) O QUE É ESTATÍSTICA Estatística é a ciência de obter conclusões a partir de dados. Envolve métodos para
Aula 1 Assimetria e Curtose
2º Bimestre 1 Estatística e Probabilidade Aula 1 Assimetria e Curtose Professor Luciano Nóbrega Medidas de assimetria As medidas de assimetria e curtose (esta última veremos na próxima aula) são as que
Inspeção de Qualidade
Roteiro Inspeção de Qualidade 1. Inspeção para Aceitação 2. Planos de Amostragem Simples 3. Determinação Plano de Amostragem 4. Inspeção Retificadora 5. Plano de Amostragem Dupla 6. Planos de Amostragem
Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1
Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação
Estatística - exestatmedposic.doc 25/02/09
Medidas de Posição Introdução Vimos anteriormente que, através de uma distribuição de freqüências se estabelece um sistema de classificação que descreve o padrão de variação de um determinado fenômeno
Testes de variância e Análise de Variância (ANOVA)
Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos
Análise de Regressão. Notas de Aula
Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas
Faculdades Integradas de Ariquemes (FIAR) Pós-Graduação Lato Sensu
Faculdades Integradas de Ariquemes (FIAR) Pós-Graduação Lato Sensu em Educação Matemática com ênfase em Matemática Financeira Componente Curricular: Estatística Professora: Carma Maria Martini Identificação
Francisco Cavalcante ([email protected])
COMO FAZER UMA ANÁLISE FINANCEIRA COMPLETA PARA DEFINIR O PREÇO DE LANÇAMENTO DE UMA AÇÃO (e definir a participação acionária do(s) novo(s) acionista(s)) Como definir o percentual de participação acionária
A Significância Estatística do Proger na Redução da Taxa de Desemprego por Haroldo Feitosa Tajra
A Significância Estatística do Proger na Redução da Taxa de Desemprego por Haroldo Feitosa Tajra 1. INTRODUÇÃO O objetivo desta análise é verificar a significância estatística das aplicações do Programa
Diplomados com o Ensino Superior
Ensino dos 30 aos 34 anos - dados e projeções Julho de 2016 Direção-Geral de Estatísticas da Educação e Ciência Ensino Julho de 2016 Ensino dos 30 aos 34 anos - dados e projeções Esta nota técnica visa
PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS
1 PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS Instruções: Tenha sempre em mãos uma Calculadora Científica, pois a mesma será utilizada exaustivamente
Regressão Linear Múltipla
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EATAS E NATURAIS FACULDADE DE ESTATÍSTICA DISCIPLINA: Estatística Aplicada PROFESSORES: Heliton Tavares e Regina Madruga ALUNO: Wemenson avier Trabalho
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
Aula demonstrativa Apresentação... 2 Prova Resolvida Matemática Financeira TRF 3ª Região... 4
Aula demonstrativa Apresentação... 2 Prova Resolvida Matemática Financeira TRF 3ª Região... 4 1 Apresentação Olá, pessoal! Tudo bem com vocês? Saiu o edital para Auditor Fiscal de Teresina. Esta é a aula
OBSERVAÇÕES: EXERCÍCIOS
OBSERVAÇÕES: 1. Esta lista de exercícios poderá ser resolvida individualmente ou em grupos de 2 pessoas. 2. A lista possui 25 exercícios, destes você deve responder os 5 primeiros exercícios e os outros
Experimento. Guia do professor. Quantos peixes há no lago? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia
Análise de dados e probabilidade Guia do professor Experimento Quantos peixes há no lago? Objetivos da unidade Introduzir um método que permite estimar o tamanho de uma deter minada população. licença
Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas).
Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Na comparação de duas populações, dispomos de duas amostras, em
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
Distribuições Conjuntas (Tabelas de Contingência)
Cruzamento de Dados Distribuições Conjuntas (Tabelas de Contingência) Lorí Viali, Dr. DESTAT/FAMAT/PUCRS [email protected] http://www.pucrs.br/famat/viali Distribuição Conjunta Exemplo (tabela um) Suponha
Prof. Herivelto Tiago Marcondes dos Santos. MAGALHÃES, M. N. e LIMA, A. C. P., Noções de Probabilidade e Estatística, Edusp, 2005.
MAGALHÃES, M. N. e LIMA, A. C. P., Noções de Probabilidade e Estatística, Edusp, 2005. 1. Vinte e cinco residências de um bairro foram sorteadas e visitadas por um entrevistador que, entre outras questões,
Processos Estocásticos
Processos Estocásticos Hélio Lopes INF2035 - Introdução à Simulação Estocástica 1 Introdução Um processo estocástico é uma família de variáveis aleatórias {X(t), t T } definidas em um espaço de probabilidade,
