Capítulo 4 Inferência Estatística

Tamanho: px
Começar a partir da página:

Download "Capítulo 4 Inferência Estatística"

Transcrição

1 Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de uma variável aleatória Intervalo de Confiança para a diferença de duas proporções Intervalo de Confiança para a diferença dos valores médios de duas variáveis aleatórias

2 Resenha Slide 2 As duas maiores áreas de aplicação da inferência estatística envolvem o uso de amostras aleatórias para: (1) estimar o valor de um parâmetro da população ou de um intervalo de valores que esse mesmo parâmetro pode tomar; (2) testar alguma hipótese sobre a população ou, em particular, sobre um certo parâmetro da população. Este capítulo aborda a primeira situação e o capítulo 5 a segunda.

3 Estimador Definições Slide 3 é uma fórmula ou um processo que usa os valores da amostra para estimar um parâmetro populacional. Estimativa é um valor específico, ou intervalo de valores, usado para aproximar o valor do parâmetro de uma população. Estimativa pontual é um valor único usado para aproximar o valor do parâmetro de uma população. ˆ A proporção amostral p ( p-chapéu ) é a melhor estimativa pontual da proporção populacional p. A média amostral x-barra é a melhor estimativa pontual da média populacional µ.

4 Definição Slide 4 Grau de confiança / Nível de significância O grau de confiança é habitualmente escrito como 1 - α, onde α é o complementar do grau de confiança, ou seja, é o nível de significância. Assim, dizer que temos um grau de confiança de 0.95 (ou 95%) é o mesmo do que dizer que temos um nível de significância α = Do mesmo modo, se 1 - α =0.99 (99%) então α = 0.01.

5 Notação para proporções Slide 5 p = proporção populacional p ˆ x = n proporção amostral (pronuncia-se p-chapéu ) de x sucessos numa amostra de dimensão n ˆ ˆ q = 1 - p = proporção amostral de insucessos numa amostra de dimensão n

6 Definição Slide 6 Intervalo de Confiança Um intervalo de confiança (ou intervalo de estimativas) é um intervalo de valores usado para estimar o verdadeiro valor de um parâmetro populacional. O nível de confiança é a probabilidade 1 α (frequentemente representada através da expressão em percentagem) de que o intervalo de confiança, de facto, contenha o verdadeiro valor do parâmetro. É usual trabalhar com valores na ordem de 90%, 95%, ou 99%. (α = 10%), (α = 5%), (α = 1%)

7 Definição Slide 7 Valores críticos Um valor crítico é um valor de referência para separar os valores das estatísticas amostrais que são prováveis de ocorrer daqueles que não o são. O valor z 1- α/2 é um valor crítico pois é um valor de z com a característica de separar a área igual a α/2 na cauda direita da distribuição Normal Standard (Ver Figura 4-1).

8 Como determinar z 1 α/2 para um intervalo de confiança de 95% Slide 8 α =5% α/2 = 2.5% =.025 z z α/ 2 1 α/ 2 Figura 4-1 Valores Críticos

9 Intervalo de Confiança para a proporção de uma população ˆ p ± z 1 1 α / 2 p ˆ q ˆ p ˆ q ˆ p ˆ z 1 α / 2 < p < p ˆ + z 1 n n 1 α / 2 Slide 9 p ˆ q ˆ n (p ˆ z p ˆ q ˆ 1 α / 2, p ˆ + z 1 n p ˆ q ˆ 1 α / 2 ) n

10 Procedimento para construir um intervalo de confiança para p Slide Verifique que são verdadeiras as seguintes condições: a amostra é uma amostra aleatória são válidas as condições da distribuição binomial, a qual pode ser aproximada pela distribuição Normal (recorde que para a aproximação ser válida tem que se verificar np 5 e nq 5). 2. Na tabela correspondente à distribuição Normal, encontre o valor crítico z 1 α2 que corresponde ao nível de confiança pretendido. 3. Calcule p ˆ q ˆ n

11 Procedimento para construir um intervalo de confiança para p Slide Use os cálculos já efectuados para determinar o intervalo de confiança na forma, por exemplo, p ˆ p ˆ q ˆ z 1 α / 2 < p < p ˆ + z 1 n 1 α / 2 p ˆ q ˆ n 5. Apresente os resultados com 3 casas decimais.

12 Dimensão da amostra para estimar a proporção p Quando se conhece uma estimativa de p, p ˆ : n= ˆ p ˆ z q 1-α 2 d onde d é a diferença máxima entre p e p ˆ. 2 Slide 12 Quando não se conhece uma estimativa de p: n 1 4 z 1-α 2 d 2

13 Estimação da média populacional: σ conhecido Slide 13 Pressupostos 1. O valor do desvio padrão populacional, σ, é conhecido. 2. Uma ou ambas as condições seguintes são satisfeitas: A população tem distribuição Normal ou n>30.

14 Intervalo de Confiança para a média de uma população Slide 14 x ± z 1 1 α/ α/ 2 σ/ n x z 1 α / 2 σ/ n < µ < x + z α / 2 σ/ n (x z 1 α / 2 σ/ n, x + z α / 2 σ/ n)

15 Procedimento para construir um Intervalo de Confiança para µ quando σ é conhecido 1. Verifique que os pressupostos são válidos. Slide Determine o valor crítico z 1 α/ 2 que corresponde ao nível de significância pretendido. 3. Calcule σ/ n e, em seguida, z 1 4. Calcule x z 1 x z 1 1 α/ 1 α/ 1 α/ α/ 2 σ/ n e x + z 1 Apresente os valores na forma: α/ 2 σ/ n < µ < x + z 1 α/ 2 σ/ n. 1 α/ α/ 2 σ/ n. 1 α/ α/ 2 σ/ n 5. Apresente os resultados com 3 casas decimais.

16 Dimensão da amostra para estimar a média µ Slide 16 n = (z ) σ 1- α/2 d 2 onde d é a diferença máxima entre x e µ. No caso de o valor não dar inteiro, aproxima-se para o inteiro imediatamente a seguir.

17 Estimação da média Slide 17 populacional: σ desconhecido Pressupostos 1. O valor do desvio padrão populacional, σ, é desconhecido. 2. Uma ou ambas as condições seguintes são satisfeitas: A população tem distribuição Normal ou n>30.

18 Procedimento para construir um intervalo de confiança para µ quando σ é desconhecido 1. Verifique que os pressupostos são satisfeitos 2. Se n 30, consulte a tabela da distribuição t de Student para encontrar o valor do quantil 1- α/ distribuição t de Student com n-1 graus de liberdade. 3. Calcule s / n e, em seguida, t 1 α/ 2 s / n. 4. Calcule x t 1 1 α/ α/ 2 s / n e x + t 1 Apresente os valores na forma: x t 1 1 α/ 1 α/ 1 α/ α/ 2 s / n < µ < x + t 1 α/ 2 s / n. 1 α/ 5. Apresente os resultados com 3 casas decimais. Slide 18 α/2 da α/ 2 s / n

19 Procedimento para construir um intervalo de confiança para µ quando σ é desconhecido Slide Verifique que os pressupostos são satisfeitos 2. Se n>30, consulte a tabela da distribuição Normal para encontrar o valor do quantil 1- α/2. 3. Calcule s / n e, em seguida, z 1 4. Calcule x z 1 x z 1 1 α/ 1 α/ 1 α/ α/ 2 s / n e x + z 1 Apresente os valores na forma: α/ α/ 2 s / n < µ < x + z 1 α/ 2 s / n. 1 α/ α/ 2 s / n. 1 α/ 5. Apresente os resultados com 3 casas decimais. α/ 2 s / n

20 Estimação da variância Slide 20 populacional: Pressupostos 1. A amostra é uma amostra aleatória. 2. A população deve ter distribuição Normal (mesmo se a amostra for de dimensão grande).

21 Intervalo de Confiança para a variância de uma população Slide 21 (n-1)s 2 χ 2 (α/2 α/2; n-1) < σ 2 < (n-1)s2 χ 2 (1-α/2 α/2; n-1) onde: n é a dimensão da amostra s 2 é a variância da amostra χ 2 (α/2 α/2; n-1) é o quantil α/2 da distribuição quiquadrado com n-1 graus de liberdade

22 Procedimento para construir um intervalo de confiança para σ 2 ou σ 1. Verifique que os pressupostos são válidos. Slide Consulte a tabela da distribuição χ 2 para encontrar os valores críticos χ 2 (α/2; n-1) e χ2 (1-α/2; n-1). α/2 α/2 3. Determine os extremos do intervalo de confiança pretendido usando as seguintes desigualdades: (n-1)s 2 (n-1)s 2 χ 2 (α/2 α/2; n-1) < σ 2 < χ 2 (1-α/2 α/2; n-1) 4. Se pretender obter um intervalo de confiança para σ, calcule a raiz quadrada dos extremos do intervalo anterior e substitua σ 2 por σ.

23 Notação para Duas Proporções Slide 23 Para a população 1, seja: p 1 = proporção populacional n 1 = dimensão da amostra x 1 = nº de sucessos na amostra ^ p = x 1 1 (a proporção amostral) n 1 q^ = 1 p 1^ 1 Com o mesmo significado temos p, n, x, p ^ e q ^, mas provenientes da população 2.

24 estimar p 1 - p 2 Intervalo de Confiança para Slide 24 ^ ^ ( p 1 p 2 ) ± z 1 1 α/2 p^ 1 q^ 1 p^ 2 q^ 2 n 1 + n 2 Este intervalo só se aplica se as amostras forem grandes, isto é, se n 1 >30 e n 2 >30.

25 Definições Slide 25 Duas Amostras Independentes Os valores de uma amostra aleatória de uma população não estão relacionados ou emparelhados com os valores da outra amostra aleatória proveniente da outra população. Se os valores de uma amostra estiverem relacionados com os valores da outra amostra, as amostras são dependentes. Um exemplo de tais amostras são as designadas por amostras emparelhadas.

26 Pressupostos Slide As duas amostras são independentes. 2. Ambas as amostras são amostras aleatórias. 3. Uma ou ambas as condições seguintes são satisfeitas: As amostras têm dimensão grande (com n 1 > 30 e n 2 > 30) ou ambas as amostras são provenientes de populações com distribuição Normal.

27 Intervalo de Confiança Slide 27 Quando σ 1 e σ 2 são desconhecidos: (x 1 x 2 ) ± z 1 1 α/2 s 2 s n n 1 2 onde x 1 é a média da amostra 1, s 12 é a variância da amostra 1 e n 1 é a dimensão da amostra 1. Analogamente no que diz respeito a x 2, s 22 e n 2, relativamente à amostra 2.

28 Intervalo de Confiança Slide 28 Quando σ 1 e σ 2 são conhecidos: (x 1 x 2 ) ± z 1 1 α/2 σ 2 σ 2 + n 1 n onde x 1 é a média da amostra 1, σ 12 é a variância da população 1 e n 1 é a dimensão da amostra 1. Analogamente no que diz respeito a x 2, σ 22 e n 2, relativamente à amostra e à população 2.

29 Pressupostos Slide As amostras são emparelhadas. 2. As amostras são amostras aleatórias. 3. Uma ou ambas as seguintes condições são satisfeitas: O nº de pares da amostra é grande (n > 30) ou as diferenças entre os pares de valores são provenientes de uma população com distribuição aproximadamente Normal.

30 Notação para Amostras Emparelhadas Slide 30 µ d = valor médio das diferenças resultantes de cada par de indivíduos da população. d = valor médio das diferenças resultantes de cada par de observações (x 1 -y 1 =d 1,, x n -y n =d n ). s d = desvio padrão das diferenças resultantes de cada par de observações. n = nº de pares de observações.

31 Intervalo de Confiança Slide 31 d t 1 α/2 < µ d < d + t 1 α 1 α s d n 1 α/2 s d n onde t 1 α/2 tem n 1 graus de 1 α liberdade.

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de

Leia mais

AULA 04 Estimativas e Tamanhos Amostrais

AULA 04 Estimativas e Tamanhos Amostrais 1 AULA 04 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 27 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva [email protected]

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva [email protected] Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

Aula 12 Teste de hipótese sobre proporções amostras grandes

Aula 12 Teste de hipótese sobre proporções amostras grandes Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança Hipótese estatística Unidade 5. Teste de Hipóteses (uma população) Hipótese estatística-qualquer afirmação feita sobre um parâmetro populacional desconhecido. Hipótese: Duração média da bateria (µ) > 300

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Capítulo 5 Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Hipóteses do Modelo de Regressão Linear Simples RS1. y x e t 1 t t RS. RS3. RS4. RS5. RS6. Ee

Leia mais

Estatística. Slide 0. Ana M. Abreu - 2006/07

Estatística. Slide 0. Ana M. Abreu - 2006/07 Estatística Slide 0 Capítulo 1 Estatística Descritiva Slide 1 I-1 Introdução à organização e ao processamento de dados. I-2 Amostra e população; cuidados a ter na recolha da amostra. I-3 Ordenação dos

Leia mais

Intervalos Estatísticos para Uma Única Amostra

Intervalos Estatísticos para Uma Única Amostra Intervalos Estatísticos para Uma Única Amostra OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Construir intervalos de confiança para a média de uma distribuição

Leia mais

cuja distribuição é t de Student com n 1 graus de liberdade.

cuja distribuição é t de Student com n 1 graus de liberdade. Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA META Dimensionar o tamanho ideal de amostra para cada população.

Leia mais

Desvio Padrão ou Erro Padrão

Desvio Padrão ou Erro Padrão NOTAS METODOLÓGICAS ISSN 0871-3413 ArquiMed, 2006 Desvio Padrão ou Erro Padrão Nuno Lunet, Milton Severo, Henrique Barros Serviço de Higiene e Epidemiologia da Faculdade de Medicina da Universidade do

Leia mais

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas PLANO DE ENSINO FACULDADE: CIÊNCIAS DA SAÚDE DE JUIZ DE FORA CURSO: FARMÁCIA Período: 2º DISCIPLINA: MATEMÁTICA E BIOESTATÍSTICA Ano: 2015 CARGA HORÁRIA: 40 H PRÉ-REQUISITO: - SEMANAL: 02 T TOTAL: 02 AULAS

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

Medida de Tendência Central

Medida de Tendência Central Medida de Tendência Central um valor no centro ou no meio de um conjunto de dados 1 Definições Média (Média Aritmética) o número obtido somando-se todos os valores de um conjunto de dados, dividindo-se

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

AULAS 08 E 09 Distribuição de Probabilidade Normal

AULAS 08 E 09 Distribuição de Probabilidade Normal 1 AULAS 08 E 09 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 02 e 09 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed.

Leia mais

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística

Leia mais

Intervalo de Confiança - Margem de Erro

Intervalo de Confiança - Margem de Erro Intervalo de Confiança - Margem de Erro Tatiene Correia de Souza / UFPB [email protected] October 26, 2014 Souza () Intervalo de Confiança - Margem de Erro October 26, 2014 1 / 31 Margem de erro - relatórios

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média. UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar

Leia mais

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação Parte XIV Técnicas estatísticas para análise de dados e de resultados de modelos de simulação A saída de um modelo de simulação geralmente constitui-se de VA s, muitas das quais podem ter variância grande.

Leia mais

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2 Aula 6 Distribuição amostral da proporção Nesta aula você verá uma importante aplicação do Teorema Central do Limite: iremos estudar a distribuição amostral de proporções. Assim, você verá os resultados

Leia mais

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Fernando Deeke Sasse 14 de maio de 2010 Introdução Quão boa é uma dada estimação de um parâmetro? Suponha que estimamos

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Tópico 9. Teste t-student

Tópico 9. Teste t-student Tópico 9 Teste t-student Teste t Teste t pode ser conduzido para Comparar uma amostra com uma população Comparar duas amostras pareadas Mesmos sujeitos em dois momentos distintos Comparar duas amostras

Leia mais

Tamanho da Amostra e Amostragem

Tamanho da Amostra e Amostragem Tamanho da Amostra e Amostragem Objetivos da aula Qual a relação entre a pergunta de pesquisa e o tamanho da amostra? Por que é necessário calcular o tamanho da amostra? Quem determina o tamanho da amostra?

Leia mais

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Objetivo: Nesta aula, iremos aplicar os conceitos básicos sobre a teoria de teste de hipótese a uma situação específica.

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade.

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade. Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Plano da Apresentação Correlação linear Diagrama de dispersão Covariância Coeficiente de correlação de Pearson Teste de correlação

Leia mais

Correlação e Regressão linear simples

Correlação e Regressão linear simples Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Regressão linear simples Prof. Cesaltina Pires [email protected] Plano da Apresentação Correlação linear Diagrama de dispersão Covariância

Leia mais

Testes Não Paramétricos

Testes Não Paramétricos Testes Não Paramétricos Nos testes abordados até agora, ditos testes paramétricos, as hipóteses envolvem apenas parâmetros populacionais, como a média, a variância, uma proporção, etc. Além disso, em geral,

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

Exercícios Selecionados de Estatística Avançada. Sumário

Exercícios Selecionados de Estatística Avançada. Sumário 1 Exercícios Selecionados de Estatística Avançada Sumário I Probabilidade... 2 II Medidas de Posição e de Dispersão. Assimetria e Curtose... 5 III Variáveis Aleatórias Discretas e Contínuas. Função de

Leia mais

Teste de hipóteses para médias e proporções amostrais

Teste de hipóteses para médias e proporções amostrais Teste de hipóteses para médias e proporções amostrais Prof. Marcos Pó Métodos Quantitativos para Ciências Sociais Intervalo de confiança: outro entendimento É o intervalo que contém o parâmetro que queremos

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Matemática Aplicada às Ciências Sociais

Matemática Aplicada às Ciências Sociais ESCOLA SECUNDÁRIA DE AMORA PLANIFICAÇÃO ANUAL Matemática Aplicada às Ciências Sociais Ensino Regular Curso Geral de Ciências Sociais e Humanas 11º ANO Ano Letivo 2014 / 2015 PLANIFICAÇÃO A LONGO PRAZO

Leia mais

UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 6 Testes de Hipóteses UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Escolher o teste de hipótese adequado; Formular um

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO 1. IDENTIFICAÇÃO Disciplina: PROBABILIDADE E ESTATÍSTICA Código: IEE001 Pré-Requisito: IEM011 - CÁLCULO I N O de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: 0 Semestre: 1 O Ano:

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010.

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010. ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010 Curso: 12/06/2010 Nome: N o Instruções: Estaprovatemaduraçãode120 minutos e é constituída

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

Inspeção de Qualidade

Inspeção de Qualidade Roteiro Inspeção de Qualidade 1. Inspeção para Aceitação 2. Planos de Amostragem Simples 3. Determinação Plano de Amostragem 4. Inspeção Retificadora 5. Plano de Amostragem Dupla 6. Planos de Amostragem

Leia mais

Aula 1 Variáveis aleatórias contínuas

Aula 1 Variáveis aleatórias contínuas Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição

Leia mais

Amostragem: Desenho e Procedimentos

Amostragem: Desenho e Procedimentos Amostragem: Desenho e Procedimentos 1-1 Sumário do Capítulo 1) Amostragem ou censos 2) Desenho de um processo de amostragem i. Definir população alvo ii. Determinar o quadro de amostragem iii. Escolha

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados BIOESTATÍSTICA Parte 1 - Estatística descritiva e análise exploratória dos dados Aulas Teóricas de 17/02/2011 a 03/03/2011 1.1. População, amostra e dados estatísticos. Dados qualitativos e quantitativos

Leia mais

Probabilidade e Estatística, 2011/2

Probabilidade e Estatística, 2011/2 média verdadeira de 104F? Estabeleçamos a média 100F como um limite não tolerado:, Probabilidade e Estatística, 2011/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses Problemas Resolvidos em

Leia mais

Distribuições Conjuntas (Tabelas de Contingência)

Distribuições Conjuntas (Tabelas de Contingência) Cruzamento de Dados Distribuições Conjuntas (Tabelas de Contingência) Lorí Viali, Dr. DESTAT/FAMAT/PUCRS [email protected] http://www.pucrs.br/famat/viali Distribuição Conjunta Exemplo (tabela um) Suponha

Leia mais

Para mais de duas variáveis independentes, em função de uma variável dependente.

Para mais de duas variáveis independentes, em função de uma variável dependente. MÉTODOS QUANTlTATlVOS APLlCADOS À CONTABlLlDADE Prof. Héber Lavor Moreira Plano de Aula TEMA: REGRESSÃO MÚLTlPLA - Caso Multiplan S/A lntrodução Em muitos casos uma variável pode estar relacionada com

Leia mais

Regressão Linear Múltipla

Regressão Linear Múltipla UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EATAS E NATURAIS FACULDADE DE ESTATÍSTICA DISCIPLINA: Estatística Aplicada PROFESSORES: Heliton Tavares e Regina Madruga ALUNO: Wemenson avier Trabalho

Leia mais

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla Significância Estatística Existe uma estatítica, o t-estatístico,associado a cada estimativa O t-estatístico mede

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Medidas de dispersão e assimetria

Medidas de dispersão e assimetria Metodologia de Diagnóstico e Elaboração de Relatório FASHT Medidas de dispersão e assimetria Profª Cesaltina Pires [email protected] Plano da Apresentação Medidas de dispersão Variância Desvio padrão Erro

Leia mais

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

Como rodar a regressão no gretl. Usando o Console para calcular elasticidade. Elasticidade. Usando o Console para calcular predição

Como rodar a regressão no gretl. Usando o Console para calcular elasticidade. Elasticidade. Usando o Console para calcular predição Como rodar a regressão no gretl Alguns tópicos do gretl Usando o console: Comando: ols y const 3 Estima uma função linear usando o método de Mínimos Quadrados Ordinários. Elasticidade Intuição: resposta

Leia mais

Método dos mínimos quadrados Wikipédia, a enciclopédia livre

Método dos mínimos quadrados Wikipédia, a enciclopédia livre 1 de 5 25/12/2012 20:27 Método dos mínimos quadrados Origem: Wikipédia, a enciclopédia livre. O Método dos Mínimos Quadrados, ou Mínimos Quadrados Ordinários (MQO) ou OLS (do inglês Ordinary Least Squares)

Leia mais

Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná Quinto Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este documento apresenta a análise dos resultados

Leia mais

Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná 1º Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este relatório apresenta uma análise estatística

Leia mais

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS Química Analítica IV 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Todas as medidas físicas possuem um certo grau de incerteza. Quando se faz uma medida, procura-se

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Ronei Marcos de Moraes Análise de Variância e Estatística Nãoparamétrica UFPB Maio/2011 ANOVA - Análise de Variância O caso da comparação de várias médias

Leia mais

1 Hipótese Nula e Hipótese Alternativa

1 Hipótese Nula e Hipótese Alternativa Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 203 Aula Professor: Carlos Sérgio UNIDADE 7 - TESTES DE HIPÓTESES (NOTAS DE AULA) Hipótese Nula e Hipótese

Leia mais

Epidemiologia descritiva. Definições, taxas, confundimento

Epidemiologia descritiva. Definições, taxas, confundimento Epidemiologia descritiva Definições, taxas, confundimento Epidemiologia Estudo da distribuição (temporal e espacial) das doenças e dos seus determinantes. Distribuição Casos de doença por grupos etários,

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 2 http://www.iseg.ulisboa.pt/~vescaria/mqa/ Tópicos da apresentação Fontes de informação típicas para análise Fontes de informação típicas para análise Informação secundária

Leia mais

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo Variância conhecida Seja X 1 θ,..., X n θ, θ = (µ, σ 2 ) uma amostra aleatória de X θ N(µ, σ 2 ). Se σ 2 conhecido, e µ N(α, ψ), (família conjugada) então µ x N(ψ α, ψ ), em que ψ = ( n σ 2 + 1 ) 1 ( α

Leia mais

Contabilometria. Análise Discriminante

Contabilometria. Análise Discriminante Contabilometria Análise Discriminante Fonte: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Contabilidade e Administração, Editora Atlas, São Paulo, 010 Cap. 3 Análise Discriminante

Leia mais

Lição 5 Medidas Descritivas Medidas de Dispersão

Lição 5 Medidas Descritivas Medidas de Dispersão 99 Lição 5 Medidas Descritivas Medidas de Dispersão Após concluir o estudo desta lição, esperamos que você possa: identifi car o objetivo das medidas de dispersão; identifi car o conceito de variância;

Leia mais

PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula

PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula Curso Análise de Dados e Políticas Públicas Professor: Pablo Cerdeira Ementa O que Matemática tem a ver com Direito? Muita coisa. Neste curso de Análise de Dados e Políticas Públicas abordaremos três importantes

Leia mais

Estatística - exestatmedposic.doc 25/02/09

Estatística - exestatmedposic.doc 25/02/09 Medidas de Posição Introdução Vimos anteriormente que, através de uma distribuição de freqüências se estabelece um sistema de classificação que descreve o padrão de variação de um determinado fenômeno

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Probabilidade e Estatística The Science of collecting and analyzing data for the purpose of drawing

Leia mais

CAPÍTULO 8. de Variância - ANOVA ANOVA. Análise

CAPÍTULO 8. de Variância - ANOVA ANOVA. Análise CAPÍTULO 8 Análise de Variância - UFRGS Os testes de hipótese apresentados até aqui limitaram-se à comparação de duas médias ou duas variâncias. Contudo, há situações onde se deseja comparar várias médias,

Leia mais

3 Modelos de Simulação

3 Modelos de Simulação 43 3 Modelos de Simulação 3.1 Simulação de Monte Carlo O método de Monte Carlo foi concebido com este nome nos anos 40 por John Von Neumann, Stanislaw Ulam e Nicholas Metropolis durante o projeto de pesquisa

Leia mais

Experimento. Guia do professor. Quantos peixes há no lago? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. Guia do professor. Quantos peixes há no lago? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia Análise de dados e probabilidade Guia do professor Experimento Quantos peixes há no lago? Objetivos da unidade Introduzir um método que permite estimar o tamanho de uma deter minada população. licença

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Média, Mediana e Moda 1 Coletando Dados A coleta de dados produz um conjunto de escores de uma ou mais variáveis Para chegar à distribuição dos escores, estes têm de ser arrumados / ordenados do menor

Leia mais

ROTEIRO PARA ELABORAÇÃO DO PROJETO DE PESQUISA

ROTEIRO PARA ELABORAÇÃO DO PROJETO DE PESQUISA ROTEIRO PARA ELABORAÇÃO DO PROJETO DE PESQUISA O objetivo desse roteiro é orientar os estudantes de Estatística para a realização do trabalho proposto conforme previsto no plano de ensino da disciplina.

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

Estatística. Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara

Estatística. Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Estatística Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Objetivo da disciplina Adquirir conhecimento dos fundamentos da Estatística, em seus campos

Leia mais